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Abstract: The combination of unmanned aerial vehicles (UAV) with deep learning models has the
capacity to replace manned aircrafts for wildlife surveys. However, the scarcity of animals in the wild
often leads to highly unbalanced, large datasets for which even a good detection method can return a
large amount of false detections. Our objectives in this paper were to design a training method that
would reduce training time, decrease the number of false positives and alleviate the fine-tuning effort
of an image classifier in a context of animal surveys. We acquired two highly unbalanced datasets of
deer images with a UAV and trained a Resnet-18 classifier using hard-negative mining and a series
of recent techniques. Our method achieved sub-decimal false positive rates on two test sets (1 false
positive per 19,162 and 213,312 negatives respectively), while training on small but relevant fractions
of the data. The resulting training times were therefore significantly shorter than they would have
been using the whole datasets. This high level of efficiency was achieved with little tuning effort and
using simple techniques. We believe this parsimonious approach to dealing with highly unbalanced,
large datasets could be particularly useful to projects with either limited resources or extremely large
datasets.

Keywords: unmanned aerial vehicles; convolutional neural network; wildlife survey; remote sensing;
deep learning; conservation; hard-negative mining

1. Introduction

Accurate animal counts are the cornerstone of robust conservation and management
plans [1]. For species prone to be in conflict with humans or when populations densities
can greatly vary in time and space, they need to be carried out frequently [2]. Many
different techniques exist to assess animal populations, from indirect methods, like pellet
counts, to direct visual counting [3–5]. Most often, animal censuses are species-specific
and require substantial investments in time, money, and effort by wildlife management
teams [6]. Whilst some species gather periodically in specific locations, making population
assessment easier [5,7], others roam alone or in small groups across vast territories [8,9].
Perhaps the most commonly used technique in open or semi-open environments is direct
visual counting. Be it from the ground or from a moving aircraft, it is relatively easy to
set up and carry out. However, it is prone to errors due to animal movement, group sizes,
poor lines of sights, or variations in the observer’s capacities [5,10].

Unmanned aerial vehicles (UAV), commonly known as drones, have recently become
more accessible to researchers [11]. They allow easy access to remote areas, are safer and
less technically challenging than their manned counterparts, are less stressful for animals
and offer the possibility to completely automate flights [2,12,13]. Moreover, the onboard
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positioning systems allow the possibility to reproduce earlier flights, making them well-
suited for regular assessments of the same areas [2]. When used correctly, they have proven
to be able to produce more accurate counts than direct methods [5]. Because they are
most often equipped with a digital imagery sensor, they capture the whole scene, and thus
allow the counting of big groups of individuals or multiple species. They also offer the
possibility to use thermal infrared imagery. This has proven to be effective when detecting
animals that wouldn’t be visible on RGB images, for instance for animals hidden in tree
foliage [14] or at night [15]. All these characteristics make them particularly promising
alternatives to standard methods to reduce costs and efforts, and increase the accuracy of
wildlife surveys [14,16,17].

So far, the main bottleneck hindering their wide deployment is the difficulty to process
the vast amounts of data they generate [2,13,17]. Luckily, automatic object detection has
known an important revolution in the last few years, thanks to the use of convolutional
neural networks (CNN) [18], making the processing of large amounts of images faster and
more accurate than even humans on specific tasks [19,20]. Compared to previous image
classification techniques, they are completely data driven, extracting and refining automat-
ically the relevant information to make their decision [21]. Moreover, their performance is
known to increase with the amount of data provided [22], making them particularly inter-
esting for tasks that repeatedly collect vast amounts of data, like self-driving cars or in our
case, animal census. They have successfully been used to detect various species [8,23–26]
and their use in ecology has been on the rise in the past few years [21]. However, obtaining
good performances is often the result of tedious trial and error and educated guesses,
looking for the right values of the numerous hyperparameters that drive the learning
process in a long iterative effort [27].

The sparsity of animals in the wild [8,26] make their detection subject to the false
positive paradox, where a detection method with good accuracy might end up giving
more false positives (FP) than true positives if the natural frequency of the positive class is
extremely low [24,28]. These FP would then have to be processed manually, hindering the
performance of automatic detection [28]. Furthermore, this sparsity will naturally lead to
collecting many more images of background than of animals. The difference in numbers of
samples between classes is called class imbalance and is known to have a negative effect on
training deep learning classifiers. [29,30]. This is a common issue in fields such as disease
diagnosis or fraud detection, where the events of interest are rare [31,32]. Several methods,
such as oversampling, undersampling, class weighting, or thresholding have been studied
to tackle this issue [28,33]. While class weighting and oversampling seem to perform better
than the others [28,29,33], they have been evaluated by training on whole unbalanced
datasets, which can be very time consuming with large datasets.

Most often when using CNN to detect animals, any object that is not the class of
interest is labelled as background. As explained by Kellenberger et al. [28], the wider the
covered area, the more landscape variety the background class will contain. However,
some background objects might not be as common within the background class as others.
This intraclass imbalance can in turn be the source of false detections because the network
hasn’t seen enough of those rare samples [29]. Most of the previously discussed techniques
to address class imbalance cannot be used to address this issue because the subclasses are
not explicitly labelled within the background class. Furthermore, when using the whole
available training data as a training set, the overly represented background objects might
end up wasting computing time training on many easy samples and diluting the impact of
the hard ones.

Hard-negative mining (HNM), also known as bootstrapping, is the search for negative
samples that the network fails to correctly classify [34]. Kellenberger et al. [28] use it to
fine tune a network after training it on the whole training set. However, it was originally
designed as an iterative process to build the training set by selecting the most relevant
samples from the training data. Because only the relevant samples are selected to form the
training set, the number of samples it contains is kept to a minimum while maintaining
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good levels of performance and short training times. The main downside of this method is
that it requires several rounds of training.

In this paper, we present a general method that simultaneously tackles two major
hurdles of training neural networks in image classification for wildlife surveys: the high
number of FP and the big size of datasets. More specifically, we showcase the effectiveness
of HNM to reduce the number of FP while training quickly and efficiently, using a series of
recent, simple, and available methods without needing extensive fine-tuning.

2. Materials and Methods
2.1. Data Acquisition

In order to train and test our models, we acquired images of red deer (Cervus elaphus),
in a deer farm near La Chute, Québec, Canada. This setup allowed us to ensure the presence
of around 250 deer in an open, but small, controlled environment. The site is composed of
five enclosures of different sizes and vegetation cover (Figure 1b–d).
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Figure 1. Pictures of the unmanned aerial vehicle (UAV) used for the data acquisition (a); outline of the enclosures (b);
examples of images of the same area in the summer and winter (c,d).

We used an electric multirotor UAV from Microdrones (Berlin, Germany), the md4-
1000 (Figure 1a), equipped with a Sony RXI RII camera and a 35 mm lens. The camera takes
RGB images of 7852 × 5304 pixels.

We flew over the site twice, in the summer on 25 August 2017 and in the winter
on 3 March 2018 in order to get two sets of images under very different environmental
conditions, to ensure we had a variety of backgrounds. In the summer, some of the
enclosures were very dry, covered with bare soil or dry grass. Only one enclosure had
green grass. In the winter, the deer were grouped in three enclosures. Most of the ground
was covered in snow but the rising temperatures were leaving patches of bare soil where
the deer gathered (Figure 1c,d). From the UAVs perspective, the deer were either standing
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up or lying down, exposing their flanks. While this species can grow to be more than 2 m
long, most of the herd were young individuals measuring around 1.6 m long or less.

Flights were done at 40 and 80 m above ground level in order to diversify the dataset.
In the summer acquisition, we flew over each deer enclosure at least once, at both altitudes.
Takeoff and landing were performed manually, away from the deer to avoid causing stress.
The rest of the flights were carried out automatically along linear transects covering the
whole enclosure. Images were taken with 80% frontal and lateral overlap. In the winter, the
colder temperatures reduced battery life. For safety reasons, we flew over all the enclosures
every flight.

2.2. Image Pre-Processing

For each acquisition, the images were grouped by flight and were split between
positive images containing deer, and negative images not containing any. The positive
images were manually annotated in ArcMap 10.6 from Esri, where each deer was marked
by a point in a vector layer. Individual images of deer were extracted from square windows
(of 350 × 350 pixels and 175 × 175 pixels at 40 and 80 m respectively, or about 3 m2,
with ground sample distances (GSD) of 5.2 mm and 10.3 mm respectively) centered on
each detection. These individual images were then sorted to only contain whole and
unobstructed images of deer. Their negative counterparts were automatically generated by
cropping the large negative images along a sliding window of the same size as the ones
used for the individual images of deer. A random sample of the resulting small negative
images was selected for each flight to match the number of positive images, thus creating a
balanced binary classification dataset (hereafter cited as initial datasets).

The training, validation, and test sets were made of images from separate flights to
avoid testing the network on images very similar to the ones it had already been trained
on (due to the high overlap).

Unbalanced datasets were also created for the training and validation sets, containing
all the available negative images. These datasets acted as the hard-negative ‘mines’ on
which we ran our trained model to retrieve hard samples. We will refer to these datasets
as training and validation “pools” to water down the mining references in the paper. The
resulting datasets and their imbalance factor (the number of negative samples per positive
sample) are summarized in Table 1.

Table 1. Sizes (number of images) of the initial training and validation sets, pools, and test sets and their imbalance factors
for the winter and summer acquisitions.

Initial Training Set Initial Validation Set Training Pool Validation Pool Test Set

Summer

Deer 3307 911 3307 911 1209
Negative 3307 911 627,131 85,923 325,756

Imbalance factor 1 1

Winter

Deer 3434 1203 3434 1203 1518
Negative 3434 1203 424,647 77,100 426,625

Imbalance factor 1 1 193 64 281

2.3. Proposed Approach

The training and testing were carried out using Pytorch 1.1.0 [35] on three graphics
processing units (GPU)(NVIDIA GeForce GTX 1080 Ti) with a Resnet-18 [36] pre-trained
on Imagnet, from the Pytorch model zoo. Using the smallest network of the Resnet family
gave good results while reducing training time compared to deeper architectures. For this
binary classification task, the capacity of the network was enough to obtain good results
in a reasonable amount of time. Because the images on ImageNet are likely to be very
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different from aerial images, we decided to fine-tune the whole network instead of specific
layers.

In our training, we used the optimizer called Ranger, implemented by Less Wright
(https://github.com/lessw2020/Ranger-Deep-Learning-Optimizer), that combines the
recent techniques of Rectified Adam [37] and LookAhead [38], with a flat learning rate
schedule and a batch size of 1100.

As we planned to train on data that the network had already seen through the HNM
process, we expected overfitting (the loss of generalization performance after training too
long on the same data) to be more present than if we were training from scratch every
time. To address this issue, we used data augmentation at every epoch on the training data,
composed of random flips, rotations, rescaling, and brightness changes as well as early
stopping [39] with a patience of 20 epochs. The small size of our validation set allowed us
to assess the validation performance after each epoch.

To select the learning rate, we used an implementation of the learning rate range test
(LRRT) [40] (https://github.com/davidtvs/pytorch-lr-finder). This simple test allowed us
to pick the learning rate without a grid search, therefore saving a lot of fine-tuning time.

2.3.1. Metric

The metric is the score by which the performance of the model is evaluated, either
during training on the validation dataset or after training on the test set. The most common
metrics for binary classification tasks are the accuracy and the F1 score [41]. However, these
metrics can be misleading and generate overoptimistic results when applied to unbalanced
datasets [41]. Instead, we chose to use the Matthews correlation coefficient (MCC), which
requires the classifier to perform well on both negative and positive samples to get a good
score, regardless of their ratio [41].

MCC =
TP ∗ TN − FP ∗ FN√

(TP + FP) ∗ (TP + FN) ∗ (TN + FP) ∗ (TN + FN)
(1)

TP = True Positives, TN = True Negatives, FP = False Positives, FN = False Negatives.
Because we expect the training data to become more unbalanced as the wildlife survey

progresses, the MCC assures us that the score given will be consistent and unbiased by the
imbalance throughout the process.

2.3.2. Workflow
Proposed Hard-Negative Mining (HNM)

For both acquisitions, we started our training procedure with balanced training and
validation sets (Table 1) on which we ran our model with 10 different seeds. We called
this round of training “round 0” as no hard sample had been found yet. We used the
validation MCC score to select the best model and ran it in inference mode on the training
and validation pools to select the hard samples. Only new images not already present in
the validation set were added, as opposed to the training set for which all images were
added. We ran this process until the number of hard negatives reached our acceptability
threshold of 10 FP on the validation pool. To make sure that the gains transferred well
to the test set, we ran the best model of each training round on the test set, but all the
decisions regarding the training were made based on the validation set. We modified the
inference process to also output the class activation maps [42] of the incorrectly classified
images, in order to visualize the areas the network was basing its decisions on. The whole
process is summarized in Figure 2.

Training Times

For a given hardware setup, the training time directly depends on the number of
images present in the training and validation sets. To compare the training time of our
method to the training on the full dataset, we ran a training run on them for both acqui-
sitions with the same techniques and optimizer used in HNM. For each acquisition, we

https://github.com/lessw2020/Ranger-Deep-Learning-Optimizer
https://github.com/davidtvs/pytorch-lr-finder
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performed a LRRT to pick a learning rate value, then trained the same pretrained network
used in round 0 of HNM with an early stopping patience of five epochs.
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3. Results
3.1. Hard-Negative Mining

It took only one round of HNM for both acquisitions to reach our acceptability thresh-
old. The details of the training and validation sets for both acquisitions can be found
in Table 2.

The inference on the training and validation pools after round 0 of HNM added
2837 and 854 negative samples to the summer training and validation set, bringing their
imbalance factors from 1 to 1.86 and 1.94 respectively. Much fewer hard samples were
found for the winter acquisition, with 53 added to the training set and 51 to the validation
set. The imbalance factors went from 1 to 1.02 and 1.04 respectively. The proportions of
hard samples in the full dataset were larger for the summer acquisition, with 0.45% and
0.99% for the training and validation pools respectively, against 0.01% and 0.06% for the
winter dataset.

For round 1 of training, the summer training and validation sets were made of 0.98
and 2.06% of the training and validation pools respectively. For the winter acquisition, they
represented 1.44% and 1.63% of the training and validation pools.
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Table 2. Number of images and characteristics of training and validation sets and pools for both summer and winter
acquisitions for the two rounds of training.

Training
Set

% of Training
Pool

Training
Pool

Validation
Set

% of Validation
Pool

Validation
Pool

Summer

Round 0
Deer 3307 100 3434 911 100 911

Negative 3307 0.53 627,131 911 1.06 85,923

Round 1
Deer 3307 100 3307 911 100 911

Negative 6144 0.98 627,131 1765 2.06 85,923
Imbalance factor 2 190 2 94

Winter

Round 0
Deer 3434 100 3434 1203 100 1203

Negative 3434 0.81 426,747 1203 1.56 77,100

Round 1
Deer 3434 100 3434 1203 100 1203

Negative 3487 1.44 426,747 1254 1.63 77,100
Imbalance factor 1 124 1 64

Adding these hard samples had some notable impacts on the performance on the
validation pool sets for both acquisitions after round 1 of training (Tables 3 and 4). The
numbers of FP went from 854 to 4 and 51 to 5 for the summer and winter sets respectively,
thereby reducing the FP rates by 99.5% and 90.2% respectively. The numbers of FN increased
for both acquisitions between the two rounds of training, going from 0 to 9 for the summer
acquisition and from 0 to 1 for the winter acquisition. However, round 1 of training still
resulted in an overall gain in performance, as the MCC scores went from 0.715 to 0.993 for
the summer acquisition and from 0.979 to 0.998 for the winter acquisition. The summer
acquisition showed the highest gain from the HNM process, as the MCC on the validation
pool improved by 28% between the two rounds, compared to the 1.9% increase in the winter
validation pool. The FP rate on the validation pool at the end of round 1 of training was 1 FP
for 21,276 negative images for the summer set and 1 FP for 15,385 negative images for the
winter set. This transferred well to both test sets, which went from 1/185 and 1/13,761 to
1/19,162 and 1/213,312 for the summer and winter sets respectively (Tables 3 and 4).

Table 3. Confusion matrix of the inference on the summer validation pool and test set after both rounds of training and
their Matthews correlation coefficient (MCC) scores.

Round 0 Round 1

Predicted Label Predicted Label

Deer Negative MCC Deer Negative MCC

Validation
/True label

Deer 911 0
0.7149

902 9
0.9928Negative 854 85,069 4 85,919

Test
/True label

Deer 1157 52
0.6142

1192 17
0.9859Negative 1760 323,996 17 325,739

Table 4. Confusion matrix of the inference on the winter validation pool and test set after both rounds of training and their
Matthews correlation coefficient (MCC) scores.

Round 0 Round 1

Predicted Label Predicted Label

Deer Negative MCC Deer Negative MCC

Validation
/True label

Deer 1203 0
0.9791

1202 1
0.9975Negative 51 77,049 5 77,095

Test
/True label

Deer 1516 2
0.9883

1502 16
0.9940Negative 34 426,591 2 426,623
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3.2. Class Activation Maps

The class activation maps of most of the false negatives show that the decision to
classify these images as negatives is based on the background surrounding the deer,
avoiding the deer itself (Figure 3a).
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Figure 3. Examples of false negatives and their respective class activation map. The warm-colored
areas are the ones that led to the decision to classify the image as a negative, while the cold colors
contributed the least. Image (a) shows images in which the network perceived a difference between
the deer and the background; (b) shows the cases in which it didn’t detect the deer or mistook it
for background.
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The network failed to distinguish between the background and the deer on only two
images on the summer test set and one on the winter test set (Figure 3b).

3.3. Training Times

The difference in training time between the two rounds of training of HNM and
training on the full dataset for both acquisitions is summarized in Tables 5 and 6.

Table 5. Comparison of training times between the two rounds of hard-negative mining (HNM) and
training on the full unbalanced dataset for the summer and winter acquisitions.

Total Number
of Epochs

Total Training Time
(min)

Average Training
Time Per Model (min)

Summer

HNM 1150 1068 106.8
Full dataset 10 932 932

Winter

HNM 1135 872 87.2
Full dataset 14 295 295

Table 6. Performance on validation pool and on test sets for the best model of the hard-negative
mining (HNM) process and the model trained on the full unbalanced dataset for both acquisitions.

Validation Pool MCC Test Set MCC

Summer

Best HNM model 0.993 0.986
Full dataset 0.877 0.923

Winter

Best HNM model 0.998 0.994
Full dataset 0.996 0.990

One training on the full summer dataset took 932 min (15 h and 32 min). This is
136 min less than it took to train the 20 models with HNM. The training on the full winter
dataset was much faster than for the summer dataset (295 min or 4 h and 55 min), a little
more than a third of the time it took to train the 20 models of the HNM on the same
acquisition. For both acquisitions, the final models of the HNM process outperformed the
models trained on the full datasets on the validation and test MCC scores, by 13.19% and
6.79% on the summer validation and test MCC respectively and by 0.17% and 0.36% for the
winter acquisition. On average, it took 106.8 and 87.2 min to train a single model through
the HNM method for the summer and winter acquisitions respectively.

4. Discussion

Our goal in this paper was to reduce training time and the number of FN when
training on highly unbalanced data, with minimal fine-tuning of hyperparameters. Our
method managed to achieve better performance than the same model on the whole dataset,
in a fraction of the training time and with very low FP rates (around 1 FP per 6 hectares on
the summer test set and 1 per 60 hectares on the winter test set).

4.1. Training the Models

Early stopping allowed us to simultaneously avoid overfitting, save the version of
the network with the best generalization performance, and limit training time. However,
shortening the training also limits the capacity of an optimizer such as RAdam to reach its
best performance when using a suboptimal learning rate. The LRRT offers an interesting
synergy with early stopping in this regard, as it ensures that the learning rate is picked
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within the range containing the optimal value. Therefore, we can expect good performance
from the beginning of training and an end result not too far from what it would have been
with the optimal value. While training parameters are generally given in the literature, little
information is provided regarding the process to pick them [8,24,43,44]. The LRRT used in
this article offers an interesting tool to standardize the search for good learning rate values
at little cost. Moreover, it can also be used to find good values for other optimizer-related
parameters, such as weight decay or momentum [27].

Slightly worse hyperparameter values than the ones chosen would likely have in-
creased the number of hard samples and the time for the network to converge, but the
performance between HNM rounds would likely have improved due to the addition of
new, relevant data. In our eyes, the method presented here offers a good trade-off be-
tween shortening the training time and good generalization performance. An alternative
approach to improve the performance on the final round of training (round 1 in this case)
would be to spend more time fine-tuning the hyperparameters instead of using the same
exact training method as in the previous rounds. However, in a case like ours where the
performance on the validation set is already very good, we expect diminishing returns on
the time invested in the fine-tuning.

Apart from the impact high levels of imbalance can have on generalization perfor-
mance, training on large datasets requires a lot of computing time. Moreover, the hyperpa-
rameter tuning required to use any method that tackles imbalance on a full dataset, also
takes significantly longer on a large dataset. While HNM doesn’t completely remove the
imbalance, it greatly reduces its magnitude. The other techniques to mitigate the impact
of imbalance mentioned earlier could still be used in conjunction with HNM, but the
fine-tuning of their parameters would require far less time due to the smaller size of the
training and validation sets.

We noticed high levels of variability between runs using different random initializa-
tions for a given set of hyperparameters, despite what can be read in [43], and therefore
encourage practitioners to try several runs before settling on a final model (see Appendix A
for more details).

4.2. Hard-Negative Mining

Whilst the FP rate was better on the winter acquisition than on the summer one, the
HNM impact on the classification performance between the two rounds of training was
much stronger on the summer acquisition (improvement of a factor 100 on the summer test
set against an improvement of a factor 14 on the winter test set). We believe the reason for
this to be the higher variety of objects present in the negative class of the summer dataset
compared to its winter counterpart. In the winter, snow covered the majority of the objects
present in the images, thereby reducing the intraclass imbalance of the negative class while
increasing the contrast between the deer and the background. With more objects to confuse
the network in the summer acquisition, the first inference on the training and validation
pools returned significantly more FP than for the winter dataset. Most of these FP were
similar, with a vast majority of them being of rocks, tree trunks, or shadows and happened
to be almost absent of the initial training set. In this regard, the HNM ended up being a
way of oversampling confusing objects within the negative class of the training set.

While applying the network to new areas that may offer different background diversity
than previously encountered and thus may decrease its performance [28], the HNM process
can retrieve only the informative examples needed to fine-tune the network. This would
allow the training process to scale well in time as more data is acquired, without needing
to retrain the network from scratch.

Unsurprisingly, the training of a model through HNM was significantly faster than a
simple training on the full dataset and achieved better results. This highlights the negative
impact a high number of easy samples can have on performance when nothing is done to
mitigate the imbalance.
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We believe this approach could be very beneficial to studies that use CNN to perform
image classification on imbalanced datasets applied to different species, either on camera-
trap images [43,44] or on UAV imagery [24]. The latter is a particularly good example
as it has annotation and classification methodologies very similar to ours but with a
much higher proportion of FP (1 FP for 530 negative images and an MCC score of 0.3526).
The vast majority of their negative class is made of ocean, with very little intraclass
diversity and therefore few objects that could confuse the network. Most of the negative
images are likely to be easy samples that negatively impact the network’s performance
and could be removed from the training set through HNM. However, the difference in
overall performance between our study and theirs doesn’t only come from our HNM
method. As explained in their article, other factors such as network depth (4 layers against
18 in ours), the use of a non-pretrained network, or the fact that they favor the recall
against the precision may also have a significant impact on their network’s performance.
We could expect similar results to ours for images of similar GSD, of animals of comparable
sizes to the red deer and in a similar environment, such as white-tailed deer (Odocoileus
virginianus), caribou (Rangifer tarandus), or black bear (Ursus americanus).

When facing high levels of imbalance (75% of their images are negative), Norouz-
zadeh et al. [43] opted for a two-stage pipeline, first separating empty and full (containing
animals) images then classifying the species present in the full images. To that end, they
first randomly selected negative images to match the number of positive images, as we do
to start our round 0. However, they then carried out their training without using the rest of
the negative images, amounting to half of their available data. A single round of mining
on the negative data might have brought new informative samples, improving the ability
of the network to distinguish between empty and full images, without causing too much
imbalance. Perhaps this alone might have helped improve the performance of their one
stage pipeline and reduced the need for a two-stage approach.

4.3. Perspectives on Future Work

The nature of image classification as it is performed here can lead to mistakes when
the network is more confident in the background area around the deer than the deer itself.
When looking at the class activation maps of most of the FN (Figure 3), both deer and
background are properly distinguished by the network, but the prediction is not the one we
expect. Preliminary testing on these images have shown that cropping a significant portion
of the background area around the deer led the network to classify it as deer. We interpret
this as the consequence of forcing the network to give only one, non-spatially-specific
label to the images containing both classes, based on the one that gives the highest score.
A promising avenue to improve on this is to use the same network to perform coarse
semantic segmentation by transforming it into a fully convolutional network (FCN). This
method outputs a raster per class, highlighting the areas in the image where the class is
detected (Figure 4). Similar ideas in Kellenberger et al. [28] and Bowler et al. [26] achieved
good levels of performance. We believe that this technique could be used as a detection
method but additional work to fully automate the detection from the coarse segmentation
map is needed to assess its effectiveness on full-size images.
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Appendix A

Randomness has an important impact on training, from the initialization of the net-
work to the order with which the samples are picked. Setting this randomness from the
start is necessary to ensure that training runs are reproducible. This is easily done in
Pytorch by setting the seed at the beginning of training. The seed is a number from which
python generates pseudo-random numbers. From each seed, the number generated at the
Nth call of a function using that given seed will always be the same, thus ensuring run
reproducibility. However, because of the randomness it generates throughout the training,
it is impossible to predict which seed will yield the best results. It is therefore necessary to
use different seeds for each training run and keep the one that performs the best on the
validation set.

We randomly picked 10 numbers between 1 and 10,000 to use as seeds. Every round
of training was carried out 10 times, using a different seed from our list of seeds.

We noticed that by selecting the best models based on their validation MCC, the
performance on the number of false positives on the validation and test pools were both
times under the average for the ten different seeds (Tables A1 and A2). However, for both
acquisitions, a wrong seed could more than double the number of false positives compared
to the lowest value.

Table A1. Details of the performance for each seed used at round 0 of training on the summer dataset,
highlighted in blue is the model selected for inference to create the round 1 dataset.

Seed MCC Val ValPool
MCC ValPool FP MCC Test Test FP

123 0.9891 0.6241 1390 0.6164 1903

2167 0.9771 0.5311 2217 0.4603 4303

1545 0.9803 0.5829 1702 0.5549 2620

8297 0.9879 0.6568 1158 0.6060 1992

1487 0.9858 0.5724 1806 0.5546 2576

7725 0.9847 0.5914 1630 0.5459 2746

8780 0.9913 0.6096 1498 0.5660 2504

5027 0.9836 0.5857 1683 0.4648 4249

970 0.9858 0.6285 1359 0.5328 2945

960 0.9923 0.7149 854 0.6142 1760
Average 0.9858 0.6098 1529.7 0.5516 2759.8

SD 0.0047 0.0506 373.6252 0.0553 886.6702
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Table A2. Details of the performance for each seed used at round 0 of training on the winter dataset,
highlighted in blue is the model selected for inference to create the round 1 dataset.

Seed MCC Val ValPool
MCC ValPool FP MCC Test Test FP

123 1.0000 0.9791 51 0.9883 34
2167 0.9983 0.9791 51 0.9879 31

1545 0.9992 0.9752 61 0.9879 34

8297 0.9983 0.9772 56 0.9925 20

1487 0.9983 0.9729 67 0.9867 38

7725 0.9992 0.9791 51 0.9886 31

8780 0.9992 0.9748 62 0.9854 42

5027 0.9992 0.9868 32 0.9931 20

970 0.9983 0.9633 92 0.9807 59

960 0.9992 0.9701 74 0.9863 36

Average 0.9989 0.9758 59.7 0.9877 34.5

SD 0.0006 0.0063 16.042 0.0006 11.138

The seed seems to have a non-negligible effect on the network’s performance. Our
understanding is that a good initialization, through a favorable seed, may position the
network in a spot allowing it to reach a smaller loss faster than with another, less favorable,
seed. Although this may not surprise the most experienced practitioners, we thought it
could be beneficial to newcomers in the field.

Running a model with multiple seeds is a way to assess the model’s average perfor-
mance. In a real case scenario however, our end goal wouldn’t be to have a good assessment
of the average performance of a tuned model but to pick the best performing model we
could get in a reasonable time. In the case of an iterative process such as ours, selecting the
best performing networks early is likely to save even more computing time down the line.
Therefore, we would recommend trying out at least three seeds after the hyperparameter
selection and keeping the one that performs the best on the validation set. In our case, the
small size of our training sets allowed us to test 10 different seeds without committing too
much computing time. The number of seeds to try is left at the discretion of the practitioner
as it depends on the availability of resources and time constraints. However, we believe
that the possible gain in performance compared to the little effort needed to try different
seeds make it worth testing.

References
1. Jachmann, H. Estimating Abundance of African Wildlife: An Aid to Adaptive Management, 1st ed.; Springer Science & Business Media:

Berlin, Germany, 2012; ISBN 978-1-4615-1381-0.
2. Linchant, J.; Lisein, J.; Semeki, J.; Lejeune, P.; Vermeulen, C. Are Unmanned Aircraft Systems (UASs) the Future of Wildlife

Monitoring? A Review of Accomplishments and Challenges: A Review of UASs in Wildlife Monitoring. Mamm. Rev. 2015, 45,
239–252. [CrossRef]

3. Goode, M.J.; Beaver, J.T.; Muller, L.I.; Clark, J.D.; van Manen, F.T.; Harper, C.A.; Basinger, P.S. Capture—Recapture of White-Tailed
Deer Using DNA from Fecal Pellet Groups. Wildl. Biol. 2014, 20, 270–278. [CrossRef]

4. Corlatti, L.; Gugiatti, A.; Pedrotti, L. Spring Spotlight Counts Provide Reliable Indices to Track Changes in Population Size of
Mountain-Dwelling Red Deer Cervus Elaphus. Wildl. Biol. 2016, 22, 268–276. [CrossRef]

5. Hodgson, J.C.; Baylis, S.M.; Mott, R.; Herrod, A.; Clarke, R.H. Precision Wildlife Monitoring Using Unmanned Aerial Vehicles.
Sci. Rep. 2016, 6, 22574. [CrossRef] [PubMed]

6. Witmer, G.W. Wildlife Population Monitoring: Some Practical Considerations. Wildl. Res. 2005, 32, 259. [CrossRef]
7. Lhoest, S.; Linchant, J.; Quevauvillers, S.; Vermeulen, C.; Lejeune, P. How Many Hippos (Homhip)—Algorithm for Automatic

Counts of Animals with Infrared Thermal Imagery from UAV. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, XL-3/W3,
355–362. [CrossRef]

http://doi.org/10.1111/mam.12046
http://doi.org/10.2981/wlb.00050
http://doi.org/10.2981/wlb.00244
http://doi.org/10.1038/srep22574
http://www.ncbi.nlm.nih.gov/pubmed/26986721
http://doi.org/10.1071/WR04003
http://doi.org/10.5194/isprsarchives-XL-3-W3-355-2015


Geomatics 2021, 1 48

8. Rey, N.; Volpi, M.; Joost, S.; Tuia, D. Detecting Animals in African Savanna with UAVs and the Crowds. Remote Sens. Environ.
2017, 200, 341–351. [CrossRef]

9. Vermeulen, C.; Lejeune, P.; Lisein, J.; Sawadogo, P.; Bouché, P. Unmanned Aerial Survey of Elephants. PLoS ONE 2013, 8, e54700.
[CrossRef]

10. Ransom, J.I. Detection Probability in Aerial Surveys of Feral Horses. J. Wildl. Manag. 2012, 76, 299. [CrossRef]
11. Burke, C.; Rashman, M.; Wich, S.; Symons, A.; Theron, C.; Longmore, S. Optimizing Observing Strategies for Monitoring Animals

Using Drone-Mounted Thermal Infrared Cameras. Int. J. Remote Sens. 2019, 40, 439–467. [CrossRef]
12. Wang, D.; Shao, Q.; Yue, H. Surveying Wild Animals from Satellites, Manned Aircraft and Unmanned Aerial Systems (UASs):

A Review. Remote Sens. 2019, 11, 1308. [CrossRef]
13. Van Gemert, J.C.; Verschoor, C.R.; Mettes, P.; Epema, K.; Koh, L.P.; Wich, S. Nature Conservation Drones for Automatic

Localization and Counting of Animals. In Proceedings of the ECCV Workshops, Zurich, Switzerland, 6–7 September 2014; pp.
255–270.

14. Gonzalez, L.; Montes, G.; Puig, E.; Johnson, S.; Mengersen, K.; Gaston, K. Unmanned Aerial Vehicles (UAVs) and Artificial
Intelligence Revolutionizing Wildlife Monitoring and Conservation. Sensors 2016, 16, 97. [CrossRef] [PubMed]

15. Bondi, E.; Jain, R.; Aggrawal, P.; Anand, S.; Hannaford, R.; Kapoor, A.; Piavis, J.; Shah, S.; Joppa, L.; Dilkina, B.; et al. BIRDSAI:
A Dataset for Detection and Tracking in Aerial Thermal Infrared Videos. In Proceedings of the 2020 IEEE Winter Conference on
Applications of Computer Vision (WACV), Snowmass Village, CO, USA, 1–5 March 2020; pp. 1736–1745.

16. Chrétien, L.-P.; Théau, J.; Ménard, P. Visible and Thermal Infrared Remote Sensing for the Detection of White-Tailed Deer Using
an Unmanned Aerial System: Detection of White-Tailed Deer Using an UAS. Wildl. Soc. Bull. 2016, 40, 181–191. [CrossRef]

17. Longmore, S.N.; Collins, R.P.; Pfeifer, S.; Fox, S.E.; Mulero-Pázmány, M.; Bezombes, F.; Goodwin, A.; De Juan Ovelar, M.; Knapen,
J.H.; Wich, S.A. Adapting Astronomical Source Detection Software to Help Detect Animals in Thermal Images Obtained by
Unmanned Aerial Systems. Int. J. Remote Sens. 2017, 38, 2623–2638. [CrossRef]

18. LeCun, Y.; Bengio, Y.; Hinton, G. Deep Learning. Nature 2015, 521, 436–444. [CrossRef]
19. He, K.; Zhang, X.; Ren, S.; Sun, J. Delving Deep into Rectifiers: Surpassing Human-Level Performance on Imagenet Classification.

In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1026–1034.
20. Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al.

ImageNet Large Scale Visual Recognition Challenge. Int. J. Comput. Vis. 2015, 115, 211–252. [CrossRef]
21. Christin, S.; Hervet, É.; Lecomte, N. Applications for Deep Learning in Ecology. Methods Ecol. Evol. 2019, 10, 1632–1644. [CrossRef]
22. Sun, C.; Shrivastava, A.; Singh, S.; Gupta, A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. arXiv 2017,

arXiv:1707.02968.
23. Maire, F.; Alvarez, L.M.; Hodgson, A. Automating Marine Mammal Detection in Aerial Images Captured During Wildlife Surveys:

A Deep Learning Approach. In Proceedings of the Australasian Joint Conference on Artificial Intelligence, Canberra, ACT,
Australia, 30 November–4 December 2015; pp. 379–385.

24. Gray, P.C.; Fleishman, A.B.; Klein, D.J.; McKown, M.W.; Bézy, V.S.; Lohmann, K.J.; Johnston, D.W. A Convolutional Neural
Network for Detecting Sea Turtles in Drone Imagery. Methods Ecol. Evol. 2018, 10, 345–355. [CrossRef]

25. Gray, P.C.; Bierlich, K.C.; Mantell, S.A.; Friedlaender, A.S.; Goldbogen, J.A.; Johnston, D.W. Drones and Convolutional Neural
Networks Facilitate Automated and Accurate Cetacean Species Identification and Photogrammetry. Methods Ecol. Evol. 2019, 10,
1490–1500. [CrossRef]

26. Bowler, E.; Fretwell, P.T.; French, G.; Mackiewicz, M. Using Deep Learning to Count Albatrosses from Space: Assessing Results in
Light of Ground Truth Uncertainty. Remote Sens. 2020, 12, 2026. [CrossRef]

27. Smith, L.N. A Disciplined Approach to Neural Network Hyper-Parameters: Part 1—Learning Rate, Batch Size, Momentum, and
Weight Decay. arXiv 2018, arXiv:1803.09820.

28. Kellenberger, B.; Marcos, D.; Tuia, D. Detecting Mammals in UAV Images: Best Practices to Address a Substantially Imbalanced
Dataset with Deep Learning. Remote Sens. Environ. 2018, 216, 139–153. [CrossRef]

29. Leevy, J.L.; Khoshgoftaar, T.M.; Bauder, R.A.; Seliya, N. A Survey on Addressing High-Class Imbalance in Big Data. J. Big Data
2018, 5, 42. [CrossRef]

30. Mazurowski, M.A.; Habas, P.A.; Zurada, J.M.; Lo, J.Y.; Baker, J.A.; Tourassi, G.D. Training Neural Network Classifiers for Medical
Decision Making: The Effects of Imbalanced Datasets on Classification Performance. Neutral Netw. 2008, 21, 427–436. [CrossRef]

31. Chan, P.K.; Stolfo, S.J. Toward Scalable Learning with Non-Uniform Class and Cost Distributions: A Case Study in Credit Card
Fraud Detection. In Proceedings of the Fourth International Conference on Knowledge Discovery and Data Mining (KDD’98),
New York, NY, USA, 27–31 August 1998; p. 12.

32. Mac Namee, B.; Cunningham, P.; Byrne, S.; Corrigan, O.I. The Problem of Bias in Training Data in Regression Problems in Medical
Decision Support. Artif. Intell. Med. 2002, 24, 51–70. [CrossRef]

33. Buda, M.; Maki, A.; Mazurowski, M.A. A Systematic Study of the Class Imbalance Problem in Convolutional Neural Networks.
Neutral Netw. 2018, 106, 249–259. [CrossRef]

34. Sung, K.-K.; Poggio, T. Example-Based Learning for View-Based Human Face Detection. IEEE Trans. Pattern Anal. Mach. Intell.
1998, 20, 39–51. [CrossRef]

http://doi.org/10.1016/j.rse.2017.08.026
http://doi.org/10.1371/journal.pone.0054700
http://doi.org/10.1002/jwmg.204
http://doi.org/10.1080/01431161.2018.1558372
http://doi.org/10.3390/rs11111308
http://doi.org/10.3390/s16010097
http://www.ncbi.nlm.nih.gov/pubmed/26784196
http://doi.org/10.1002/wsb.629
http://doi.org/10.1080/01431161.2017.1280639
http://doi.org/10.1038/nature14539
http://doi.org/10.1007/s11263-015-0816-y
http://doi.org/10.1111/2041-210X.13256
http://doi.org/10.1111/2041-210X.13132
http://doi.org/10.1111/2041-210X.13246
http://doi.org/10.3390/rs12122026
http://doi.org/10.1016/j.rse.2018.06.028
http://doi.org/10.1186/s40537-018-0151-6
http://doi.org/10.1016/j.neunet.2007.12.031
http://doi.org/10.1016/S0933-3657(01)00092-6
http://doi.org/10.1016/j.neunet.2018.07.011
http://doi.org/10.1109/34.655648


Geomatics 2021, 1 49

35. Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. PyTorch:
An Imperative Style, High-Performance Deep Learning Library. In Advances in Neural Information Processing Systems; Touretzky,
D.S., Mozer, M.C., Hasselmo, M.E., Eds.; MIT Press: Cambridge, MA, USA, 2019; pp. 8026–8037.

36. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

37. Liu, L.; Jiang, H.; He, P.; Chen, W.; Liu, X.; Gao, J.; Han, J. On the Variance of the Adaptive Learning Rate and Beyond. arXiv 2020,
arXiv:1908.03265.

38. Zhang, M.R.; Lucas, J.; Hinton, G.; Ba, J. Lookahead Optimizer: K Steps Forward, 1 Step Back. arXiv 2019, arXiv:1907.08610.
39. Prechelt, L. Early Stopping—But When? In Neural Networks: Tricks of the Trade; Lecture Notes in Computer Science; Orr, G.B.,

Müller, K.-R., Eds.; Springer: Berlin/Heidelberg, Germany, 1998; Volume 1524, pp. 55–69. ISBN 978-3-540-65311-0.
40. Smith, L.N. Cyclical Learning Rates for Training Neural Networks. arXiv 2015, arXiv:1506.01186.
41. Chicco, D.; Jurman, G. The Advantages of the Matthews Correlation Coefficient (MCC) over F1 Score and Accuracy in Binary

Classification Evaluation. BMC Genom. 2020, 21, 6. [CrossRef] [PubMed]
42. Zhou, B.; Khosla, A.; Lapedriza, A.; Oliva, A.; Torralba, A. Learning Deep Features for Discriminative Localization. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 2921–2929.
43. Norouzzadeh, M.S.; Nguyen, A.; Kosmala, M.; Swanson, A.; Palmer, M.S.; Packer, C.; Clune, J. Automatically Identifying,

Counting, and Describing Wild Animals in Camera-Trap Images with Deep Learning. Proc. Natl. Acad. Sci. USA 2018, 115,
E5716–E5725. [CrossRef] [PubMed]

44. Willi, M.; Pitman, R.T.; Cardoso, A.W.; Locke, C.; Swanson, A.; Boyer, A.; Veldthuis, M.; Fortson, L. Identifying Animal Species in
Camera Trap Images Using Deep Learning and Citizen Science. Methods Ecol. Evol. 2019, 10, 80–91. [CrossRef]

http://doi.org/10.1186/s12864-019-6413-7
http://www.ncbi.nlm.nih.gov/pubmed/31898477
http://doi.org/10.1073/pnas.1719367115
http://www.ncbi.nlm.nih.gov/pubmed/29871948
http://doi.org/10.1111/2041-210X.13099

	Introduction 
	Materials and Methods 
	Data Acquisition 
	Image Pre-Processing 
	Proposed Approach 
	Metric 
	Workflow 


	Results 
	Hard-Negative Mining 
	Class Activation Maps 
	Training Times 

	Discussion 
	Training the Models 
	Hard-Negative Mining 
	Perspectives on Future Work 

	
	References

