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Abstract: The recent literature has introduced the use of architected materials with a metallic lattice
structure-based topology to enhance the thermal conductivity of phase change materials (PCM).
The potential of such structures lies in the freedom of design with complex geometries. This,
however, has introduced novel challenges regarding the analytical description of these materials’
effective thermophysical properties, which are used in order to treat the composite as a homogenized
material. Only a few limited works have been presented thus far that have holistically addressed the
calculation of such properties. The wide variety of possible geometric parameters in these materials
can only be appropriately treated via an adaptable approach that can be extended to upcoming
lattice geometries. With this aim in mind, the present work introduces a method to calculate the
effective thermal conductivity of the discussed composite PCM. A cell-based approach to calculate
the effective thermal conductivity is introduced. The method makes use of Steinmetz’s solids as
a basis from which one can derive the porosity of unit cells with variable geometric parameters.
Empirical factors are introduced to account for limitations due to the complex geometry and eventual
manufacturing imperfections of these structures. Thus, semi-analytical formulae to describe the
effective thermal conductivity of the lattice cells are derived for a variety of cuboid and hexagonal
prismatic unit cells with generic topological parameters. The formulae are validated against the
models and experimental results present in the literature. Finally, an analysis and discussion of the
limited validity of homogenization techniques for lattice structures is presented.

Keywords: phase change material; lattice structures; additive manufacturing; effective thermal
conductivity; thermophysical properties; scale variance; lightweight structures; cellular solids;
architected materials

1. Introduction

Phase change materials (PCMs) have attracted significant attention in various fields
where energy storage or thermal management is needed. PCMs possess the ability to store
and release thermal energy during phase transitions, making them useful for applications
requiring efficient thermal regulation. However, the relatively low thermal conductivity of
PCMs limits the charging and discharging rates, leading to reduced overall efficiency [1].
In recent years, researchers have explored innovative strategies to enhance the thermal
conductivity of PCMs by incorporating them into porous metallic or carbon matrices, such
as metal foams. These porous structures provide efficient pathways for heat conduction and
offer a promising solution to overcome the inherent limitations of low thermal conductivity
in PCMs [2]. Metal or carbon foams belong to the class of materials called cellular solids [3]
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and are characterized by a random network of interconnected metallic struts and open
pores. By infiltrating the PCM into the interconnected pores of the metal foam, high
effective thermal conductivity (ETC) can be achieved due to the increased contact area
between the PCM and the metallic matrix. This enhanced thermal conductivity allows for
faster heat transfer, thereby improving the performance of PCMs in applications such as
thermal energy storage and thermal management systems.

Due to the many recent advancements in manufacturing techniques, particularly
through additive manufacturing techniques, novel cellular solids are continuously being
developed [4]. Lattice structures are three-dimensional structures composed of repeating
unit cells. Lattice structures can be classified as surface-based or strut-based. The surface-
based ones are often inspired by so-called triply periodic minimal surfaces (TPMS). Due
to their large surface area, such lattices are often investigated for applications such as
heat exchangers [5]. The unit cells of strut-based lattices are prismatic, and the struts join
different vertices via segments lying either on the face diagonals of the prism (face-centered)
or via volume diagonals (body-centered). A schematic representation of the most common
ones is given in Figure 1, while novel unit cells with a hexagonal shape are shown in
Figure 2. These are also studied in this work.

(a) (b) (c)

(d) (e) (f)

Figure 1. Cubic unit cells. (a) Face-centered cubic, f2cc; (b) face-centered cubic with z strut, f2ccz;
(c) body-centered cubic, bcc; (d) body-centered cubic with z strut, bccz; (e) combined face-centered
and body-centered cubic, f2bcc; (f) combined face-centered and body-centered cubic with z strut,
f2bccz.

(a) (b) (c)
Figure 2. The investigated hexagonal prism unit cells: (a) hexagonal prism with face-centered
struts and vertical struts, hp f cz; (b) triangular prism with face-centered and vertical struts (i.e., the
hexagon is split into triangles, on which the face-centered struts lie), tp f cz; (c) hexagonal prism with
body-centered and vertical struts, hpbcz.

These structures can be tailored to exhibit specific geometries and properties, including
enhanced thermal conductivity. Moreover, the versatility in design made possible by
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additive manufacturing techniques enables the fine-tuning of the lattice parameters, such
as the strut diameter, strut angle, cell size, porosity, and the overall structural geometry.
This fine-tuning aims to maximize the enhancement in thermal conductivity.

Several authors have investigated, both numerically and experimentally, the ther-
mal performance of composites composed of strut-based lattice structures and PCMs.
Righetti et al. [6] analyzed the effect of varying cell sizes for different bcc lattice samples
with the same porosity. They concluded that the melting time was the lowest for the
sample with the smallest cell size. In prior research, the authors of this work empirically
demonstrated that the impact of the cell topology on the thermal behavior of the composite
is a primary factor. They also found that, in comparison to metal foams, the effect of
natural convection on the thermal performance of lattice structure–PCM composites is
enhanced. This is mainly attributed to the geometries of some lattice structures, which can
exhibit larger pore sizes for the same porosity [7]. While architectured lattice structures are
becoming increasingly popular, the description of the effective thermophysical properties
has been approached by only a few authors and it still represents a challenge. The effective
density and heat capacity can be determined with the help of simple volumetric mixing
laws [8]. However, the effective thermal conductivity is strongly dependent on the geome-
try of the porous material. The methods to determine the effective thermal conductivity
of a lattice structure are similar to the ones developed in the last few decades to describe
foams. These can be divided into three categories: asymptotic, empirical, and cell-based
approaches [9], as schematically shown in Figure 3.

Effective thermal conductivity

Empirical approachAsymptotic approach Cell-based approach

Upper / lower bound Parallel / serial model

series/parallel model
with emprical fitting

Power laws

orientation-based
layerwise method

porosity-weighted
layerwise method

Figure 3. Schematic diagram of the existing effective thermal conductivity models for cellular
solids, i.e., foams and lattices. The model presented in this work belongs to the orientation-based
layerwise methods.

The asymptotic approach, mainly attributed to Maxwell, univocally relates the effec-
tive thermal conductivity to the porosity and sets upper and lower bounds to the effective
thermal conductivity. According to Ranut et al. [9], the method is poor in predicting the
ETC. However, several authors have adapted this method by using empirical correction
factors. Calmidi and Mahajan [10] fitted the parallel model with a coefficient A and an
exponential factor n. Bhattachaeya et al. [11] used both parallel and serial models to assess
the contribution of each model to the effective thermal conductivity (ETC) of high-porosity
metal foams. Mendes et al. [12] examined different methods of calculating the upper bound
and lower bound, such as the Hashin–Shtrikman bounds [13] or the effective medium
theory, along with a combination of these methods. They obtained good results with certain
combinations of the different bound methods. Wang et al. [14] investigated the effective
thermal conductivity of sandwich panels based on lattice cores for high-temperature ap-
plications and delivered a power law correlation for the effective thermal conductivity.
Similarly, several authors have developed correlations based on power laws to describe
the effective thermal conductivity for a variety of lattice structures, both with and without
PCMs as fillers [15–17]. The empirical models demonstrate a high level of accuracy in
estimating the effective thermal conductivity (ETC) for various material combinations.
Nonetheless, these models exhibit limited flexibility when it comes to accommodating
different geometries. For small changes in the matrices, new empirical factors have to be
determined to make the equations match reality. To improve the flexibility of ETC mod-
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els, cell-based approaches were introduced by Calmidi and Mahajan [10] to describe the
effective thermal conductivity of metal foams approximating random cells with hexagons.
Using this method, the effect of the geometry of the porous medium can be considered.
However, due to the randomness of the foam geometry, empirical factors are usually used
to adapt the models to the experimental or numerical results. The thermal network method
is frequently used to calculate the conductivity of different layers in series. Alternatively,
the conductivity can be determined with a porosity-weighted approach [10,18], which does
not take into account the strut or the ligament orientation, unlike the strut orientation-based
methods [19–21]. To model the structure precisely, the ligament orientation needs to be
respected, as a longer distance of the ligament leads to higher thermal resistance. Due to the
high regularity and periodicity of the geometry of a lattice structure, cell-based models can
offer high reliability and robustness to predict the ETC, and they are theoretically superior
to purely empirical methods. To the authors’ knowledge, only Hubert et al. [22] have used
a cell-based approach to obtain the ETC of a lattice structure with a PCM as a filler. They
used fitting coefficients to model the complex intersections between struts and nodes at
which struts cross each other. Such coefficients are determined from experimental data
and are different for different topologies. The nodes are modeled as cubic elements, with
their dimensions determined by the empirical coefficients provided experimentally. The
model presented in [22] is capable of modeling the ETC for the bcc, bccz, f2cc, and f2ccz
cell topologies, taking into account different porosities and with a fixed aspect ratio of 1.
However, the number of investigated cell types is limited. There is a large number of cell
topologies and new cell shapes, such as hexagonal cells (Figure 2), which can offer a higher
packaging density of struts with respect to cubic unit cells. Furthermore, the model in [22]
only applies to cubic cells, i.e. the aspect ratio between edge lengths is 1. Variations in the
aspect ratio lead to different strut angles and thus to significant changes in the ETC. This is
especially interesting for multifunctional use cases. The aspect ratio, being an additional
parameter, enables more flexibility in tailoring the material properties. Additionally, in [22],
the idealization of the cell nodes is based only on empirical factors. In this work, instead, a
novel model is presented. Generic topological parameters are introduced, which allows
one to consider a much wider spectrum of geometries with respect to previous works.

The work is structured as schematically shown in Figure 4. Section 2 focuses on
deriving formulae to describe the geometry of the lattice unit cells based on the input
parameters (Figure 4b).

In order to more accurately describe the nodes at the intersection of the struts, Stein-
metz’s solids are used [23]. Due to the complex geometry of the cells and in order to account
for eventual manufacturing imperfections, the analytical formulae that derive the unit cell
porosity are accompanied by empirical factors obtained via numerical investigations. In
particular, the model introduced here has the capability to individually analyze the impact
of various geometric parameters. These parameters include the cell height, cell aspect ratio
(strut angle), strut radius, and cell type. In addition to cubic or parallelepiped unit cells
(Figure 1, cells based on hexagonal prisms are treated as well (Figure 2). Although less
investigated, such unit cells exhibit the highest packaging density for cylindrical struts in
the z direction, which enables the most efficient arrangement of conductive struts for a
given porosity. Once the porosity is determined as a function of all the other geometric
parameters, the effective thermal conductivity (ETC) can be calculated. The derivation of
the ETC, described in Section 3, is based on a network of thermal resistances composed of
nodes and struts. The same approach is used to obtain both the ETC in the direction of z
struts (3-direction) and in the orthogonal direction (1,2-direction). Simple volume mixing
rules are presented in Section 4, where the validation of the presented model is discussed.
Section 5 (Figure 4a) presents an analysis of the quantitative results, with a major focus on
the effect of each geometric parameter on the variation in the effective thermal conductivity.
Furthermore, the validity of the homogenization techniques, which come with the use of
effective thermophysical properties, is discussed. In particular, the scale variance is ad-
dressed. According to several authors [12,20], if convection and radiation can be neglected,
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the ETC of a cellular solid with a filler (e.g., a PCM) can be considered scale-invariant,
i.e., a variation in the cell size and strut radius maintaining the same porosity does not
lead to a variation in the ETC. While this can be a valid assumption, the transient thermal
behavior of the composite is affected by the cell size and by the number of cells present in
the domain. Therefore, this work presents the first approach to account for scale variance
when treating the composite by means of effective thermophysical properties.

Derivation of the model for the homogenisation 
of thermophysical properties

Model validation Application of the model 
to investigate the effect 

of each geometric parameter.
Discussion on the limitations of 

homogenisation techniques

Sections 2 and 3

Section 5: Results and discussion

Conclusions

Section 6

Section 5.1: Effect of the strut radius on the effective thermal conductivity 

Section 5.2: Effect of the aspect ratio angle φ

Section 5.3: Scale variance, i.e. effect of the cell size and number of cells 
  in the domain  

Section 4

(a)

Input parameters:
unit cell topology, cell size h, strut radius r, cell aspect ratio angle φ 

Calculation of the porosity ε
based on Steinmetz’s solids 

and empirical factors

Effective thermal conductivity model
based on network of thermal resistances

λ    3- direction

Effective thermal conductivity model
based on network of thermal resistances

λ   1,2- direction

Mixing rules for effective density,
 specific heat capacity,

and latent heat

ρ, Cp, Hf

Model for the homogenisation of thermophysical properties

(b)
Figure 4. Flowcharts introducing the framework of this study and its fundamental steps. (a) Frame-
work of the present study. (b) Detailed description of the framework for the presented model.
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2. Derivation of the Lattice Cell Geometric Properties

To effectively characterize various cell topologies and make meaningful comparisons
between them, it is essential to take into account all geometric parameters within a lattice
structure. These variables are the cell height h, the cell width L, the aspect ratio of the cell
height h to the cell width L expressed by the angle ϕ = arctan h

L , the strut radius r, and the
cell type. For face-centered (fc) cells, ϕ corresponds to the strut angle. For body-centered
(bc) cells, the strut angle Ω follows from Equation (1). For hexagonal cells, ϕ corresponds to
the ratio of cell height to edge length Lside. The face-centered struts thus have an angle of ϕ,
while the body-centered strut angle Ωhex is calculated using Equation (2). The following cell
types are investigated: f2cc, f2ccz, bcc, bccz, f2bcc, f 2bccz, hp f cz, hpbcz, tp f cz. In Figure 5,
definitions of the geometric variables of a unit cell are shown.

Ω = arctan
(

tan(ϕ)/
√

2
)

. (1)

Ωhex = arctan(tan(ϕ)/2). (2)

3

2
1

h

L

φ

2r

Figure 5. Illustration of the unit cell geometric parameters based on a cell with face-centered struts.
The 3-direction corresponds to the z strut direction.

Prior to introducing the analytical models employed in this study, it is pertinent to
elucidate their domain of applicability. In order to consider the composite material as a
cellular solid infiltrated by a PCM, it is necessary that the unit cells are open on all sides.
This condition imposes constraints on the geometric parameters of each individual unit
cell. It is important to note that the range of validity varies due to the different topological
configurations. For instance, unit cells with a relatively low number of struts, such as
the f2cc topology, maintain their status as open cells at porosities below those required
for densely packed unit cells, i.e., the f2bccz topology. In summary, the semi-analytical
models employed for porosity calculations have been determined to consistently hold true
for porosities ε > 0.4 and aspect ratio angles 15◦ < ϕ < 75◦. Conversely, the simplified
models outlined in Section 3.4 are applicable only when dealing with porosities exceeding
0.9 and aspect ratio angles up to 45◦. Furthermore, the equations used for the semi-
analytical estimation of the ETC exhibit validity within a narrower range of porosities
(ε > 0.65) and aspect ratio angles (15◦ < ϕ < 65◦). For a comprehensive examination of the
scope of validity of the presented models, we refer the reader to Section 4.

2.1. Derivation of the Porosity

For the exact calculation of the ETC, knowledge of the lattice porosity is necessary.
The struts are modeled as cylinders. The volume of the cylinder depends on several
parameters, introduced in Equation (3). The strut’s length is related to the cell size h and to
the strut type, which is taken into account by making use of the strut angle ϑ. The angle ϑ
corresponds to the angle between the horizontal plane (1,2-plane in Figure 5) and the strut.
For face-centered (fc) struts, i.e., struts that run across the cell sides, this is the angle ϕ. For
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body-centered (bc) struts, which run through the center of the cell, this corresponds to the
angle Ω or Ωhex. For z struts, ϑ = 90◦.

Vstr(ϑ) = πr2 h
sin(ϑ)

(3)

The intersection of two struts creates a generic angle α between the two struts. Table 1
shows the values of α for simple intersections. The volume of the intersection can be
described via Steinmetz’s solid, shown in Figure 6. Its volume is

V2(ϑ) =
16

3 sin(α)
r3 (4)

Figure 6. Steinmetz’s solid for an intersection of two cylinders.

Table 1. Value of the angle α for intersections of different types of struts.

Intersection α

2 fc struts π − 2ϕ
2 bc struts π − 2Ω

fc and z strut π/2− ϕ
bc and z strut π/2−Ω

Four-fold intersections occur at the top and bottom interfaces of most cells and in the
central nodes of body-centered cells. Their volume is calculated according to Equation (5).
The equation contains two double intersections from Equation (4), and the overlap between
them is subtracted in the last term. The last term corresponds to the volume of a four-fold
Steinmetz solid.

V4(ϑ) = 2V2(ϑ)− 12(
√

8−
√

6)r3 (5)

Eight-fold intersections result from a combination of two four-fold intersections, as
indicated in Equation (6). These intersections occur at the interfaces of the cell types f2bcc
and f2bccz. Here, a body-centered four-fold intersection and a face-centered four-fold
intersection are added together for the calculation. The overlap of these two volumes
is subtracted from the sum. The subtracted volume can be approximated by a six-fold
Steinmetz’s solid, as its volume can be determined analytically and it deviates only slightly
from the volume of the eight-fold body [23]. However, as Steinmetz’s solids have analytical
solutions only for a constrained amount of intersection angles, the intersection of the fc
and bc struts with each other is not taken into account in the subtracting term, leading to
inaccuracies that must be corrected with an empirical coefficient.
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V8(ϕ, Ω) = V4,bc(Ω) + V4, f c(ϕ)− 16
3
(3 +

√
12−

√
32)r3 (6)

The porosity ε results from the proportion of the lattice volume Vs to the total volume
Vtot according to Equation (7).

ε =
Vtot −Vs

Vtot
(7)

The volume fraction χ is simply the strut volume compared to the total volume and
can be calculated from Equation (8).

χ = 1− ε =
Vs

Vtot
(8)

The strut volume is calculated via the cylinder volume of a strut together with the
number of fc struts, δ f c, the number of bc struts, δbc, and the number of z struts, δz, minus
the volumes of the intersections. In general, Equation (9) applies to all cell types. This
is composed of Equation (3) with the three different strut types that occur in the cells.
The volumes from Equation (4) are subtracted with the respective strut intersection angles
that occur.

ε = 1− 1
Vtot

[
πr2hcell

(
δbc

sin(Ω)
+

δ f c

sin(ϕ)
+ δz

)

− 16
3

r3
(

F1

sin(π − 2ϕ)
+

F2

sin(π/2− ϕ)
+

F3

sin(π − 2Ω)
+

F4

sin(π/2−Ω)

)]
(9)

The first term in the square brackets of Equation (9) models the number of struts with their
respective cylinder volumes. The second term subtracts the intersections. The factors F1, F2,
F3, and F4 are associated with the number of volumes that need to be subtracted because of
the intersection of the struts. The factors can either be derived geometrically or determined
empirically. At some intersections, multiple struts cross. In the case of the cell f2bccz,
for example, nine struts cross at one intersection. This leads to intersection volumes that
cannot be determined analytically. Therefore, for such cases, a semi-empirical approach is
used to determine the intersection volumes of the struts that need to be subtracted from
the cylinder volumes of the struts. The factors Fi are empirically determined and serve as
coefficients to adjust or correct the model introduced in this context. The factors F1 and F3
take into account intersections of equal struts. The factors F2 and F4 account for the number
of intersections between diagonal struts and z struts.

To obtain an appropriate value of the porosity, the cell topology is accounted for
by making use of the coefficients δi. A f2ccz cell has four fc struts, no bc struts, and a
single z strut. Thus, δbc = 0 four fc struts δ f c = 4 and one z strut δz = 1. As f2ccz
does not contain bc struts, also the factors F3 and F4 are set to zero. The empirical factors
are fitted and evaluated based on the volume measurement functions of CAD-generated
geometries. Such factors can be adapted in the future to account for different manufacturing
tolerances. Table 2 shows the fitted factors of the respective cells with the numerically
obtained volumes. A gradient descent algorithm is used to find appropriate values for the
parameters Fi. The root mean squared error (RMSE) of the derived equations is shown in
Table 2. The empirical fits show very good approximation over a wide porosity range with
errors below 1%. The equations can be used for porosities of ε > 0.5. Once this threshold is
reached, the pores created by the cells are no longer open.
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Table 2. Coefficients for the empirical porosity calculation. The RMSE indicates the root mean
squared error over the used parameter set.

Cell Type Vtot δbc δf c δz F1 F2 F3 F4 RMSE [%]

f2cc h3
cell

tan2(ϕ)
0 4 0 3.061 1.954 0 0 0.38

f2ccz h3
cell

tan2(ϕ)
0 4 1 2.935 3.667 0 0 0.18

bcc h3
cell

tan2(ϕ)
4 0 0 0 0 2.993 3.340 0.13

bccz h3
cell

tan2(ϕ)
4 0 1 0 0 3.137 4.923 0.33

f2bcc h3
cell

tan2(ϕ)
4 4 1 3.940 4.380 3.706 4.190 0.07

f2bccz h3
cell

tan2(ϕ)
4 4 1 3.741 5.874 3.340 4.779 0.61

hp f cz 3
√

3h3
cell

2 tan2(ϕ)
0 6 2 5.133 4.756 0 0 0.98

hpbcz 3
√

3h3
cell

2 tan2(ϕ)
6 0 2 0 0 5.093 8.334 0.18

tp f cz 3
√

3h3
cell

2 tan2(ϕ)
0 18 3 12.907 20.254 0 0 0.28

3. Effective Thermal Conductivity Model

The effective thermal conductivity depends both on the porosity of the unit cell and
on the other geometric parameters. In general, the effective thermal conductivity of a lattice
structure is orthotropic; thus, a model is derived for the 3-direction and the 1,2 ones. The
following assumptions are made:

• no convection or radiation is present;
• the thermophysical properties remain constant over the temperature interval across a

unit cell;
• thermal equilibrium is assumed.

A thermal network is used to calculate the ETC. The network is divided into three
layers. The first layer contains the node at the top or bottom cell interface. The second layer
covers the strut that connects the two nodes. The third layer contains the second node at the
intersection point of the struts, halfway through the cell. To determine the conductivity, the
thermal resistance of the individual layers is determined first. The following simplifications
are used for the calculation procedure.

• All unit cells are symmetric in all three spatial directions lying on planes that pass
through the center point. Thus, such symmetry is exploited to simplify the calculations.

• The thermal resistance of the strut intersections is modeled as a cuboid node (Figure 8).
Since the cuboid is obtained as an equivalent volume of Steinmetz’s solid, the number
and type of struts (i.e., face-centered or body-centered) that cross at a specific node are
important in defining its resistance.

• Only the lattice structure is taken into account. The filler, i.e., PCM, is included as
thermal resistance placed in parallel to one of the lattice unit cells.

Figure 7 schematically describes the procedure of deriving the ETC.

𝐹
𝑅𝑠𝑡𝑟 = ∑𝑅𝑖

→ 𝑅𝑠= 

𝑠𝑡𝑟

1

𝑅𝑠𝑡𝑟

−1

𝑅1

𝑅2

𝑅3

(a) (b) (c) (d)

Figure 7. Workflow to obtain the effective thermal conductivity. (a) Determining the strut types
and the quantity of each type, (b) transforming the intersections into cubes and calculating the
intersection volumes, (c) modeling the struts in three layers and determining the resistance of each
layer, (d) calculating the overall strut resistance using thermal network calculations.
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3.1. Three-Direction

The edge lengths of the cube representing the intersection nodes result from the strut
angle ϑ and the volume of the struts, as schematically shown in Figure 8. If a bc strut is
considered, the angle Ω is used to calculate the edge length. If a fc strut is used, ϑ = ϕ.
This procedure is also applied to the eight-fold intersections where both strut types meet
at the intersection. The cube is different for every strut type, even if the struts meet at the
same intersection. For the calculation of the edge length t of the n-fold intersection of the
cube, Equation (10) is obtained.

tn(ϑ, Vn) =
(

Vn(ϑ) sin2(ϑ) cos(ϑ)
)1/3

(10)

t/sin(θ)

t/cos(θ)

t/sin(θ)

Figure 8. Transformation of the node intersection into equivalent prismatic volume.

Thus, for the resistance of the first section, Equation (11) follows:

R1(n, ϑ) =
n tn/(2 cos(ϑ))
σ1t2

n/ sin2(ϑ)λs
=

1
σ1

n sin2(ϑ)

2 tn cos(ϑ)λs
(11)

where n represents the number of struts involved in the intersection. The z strut is not
counted. σ is an empirical factor introduced to take into account the complex intersections
at the nodes. It is assumed that the resistance is reduced by the accumulation of material.
λs is the conductivity of the strut material. The same procedure applies to the third layer.
Equation (12) calculates the resistance for the third layer at half cell height.

R3(n, ϑ) =
1
σ3

n sin2(ϑ)

2tn cos(ϑ)λs
(12)

A different procedure is used for the second layer. Here, the longitudinal resistance of
a cylinder is used. To obtain the new strut length, the distance from the node center to the
corner of the node is subtracted from the strut length. Equation (13) follows for the new
strut length Lstr.

Lstr(ϑ, n1, n3) =
h

2 sin(ϑ)
− tn1(ϑ, Vn1) + tn3(ϑ, Vn3)

2

(
1

cos2(ϑ)
+

2
sin2(ϑ)

)0.5
(13)

With Lstr, we have Equation (14) for the resistance of the second layer.

R2(ϑ, n1, n3) =
Lstr(ϑ, n1, n3)

πr2λs
(14)

Overall, the resistance through the entire cell of a single strut results from a series
system of the individual layer resistances in Equation (15). As only the half strut length is
used for the resistances R1, R2, R3, they are multiplied by two to obtain the resistance of a
strut through the cell.

Rstr(ϑ, n1, n3) = 2(R1(ϑ, n1) + R2(ϑ, n1, n3) + R3(ϑ, n3)) (15)

A simpler model is used for the z strut, which is assumed to pass through the complete
cell height. The influence of the accumulation in the nodes is taken into account by the
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empirical factors σ of the other diagonal struts. The overall resistance of the lattice can
be calculated from the number of struts together with Rstr. Equation (16) shows the total
resistance of the struts.

Rs =

[
δbc

Rstr,bc(Ω, n1, n3)
+

δ f c

Rstr, f c(ϕ, n1, n3)
+

δz

Rz

]−1

(16)

3.2. One- and Two-Direction

The same approach is used for the ETC in the 1,2-direction. The calculation of the
node volumes remains the same. The cell is rotated by 90° around one of the horizontal
axes. The layers are divided along the investigated direction (1- or 2-direction). Figure 9
shows the stacked cells in different orientations. In the figure, the cell is rotated around
the 2-axis. The volume of the prism at the intersections of the struts changes compared to
the modeling in the 3-direction. In the 1,2 direction, the edge length of the prism becomes
t/ sin(ϑ). The guiding surface of the prism corresponds to (t/ cos(ϑ))2. Thus, Equation (17)
for the edge length parameter t is obtained.

tn(ϑ, Vn) =
(

Vn(ϑ) sin(ϑ) cos2(ϑ)
)1/3

(17)

(a) 3-direction (b) 1,2-direction

Figure 9. (a) Two f2ccz cells stacked in 3-direction; (b) two cells stacked in 1,2-direction.

The resistances of the nodes result from Equation (18) for the node of the first layer
and Equation (19) for the node of the third layer.

R1(n, ϑ) =
1
σ1

n cos2(ϑ)

2 tn sin(ϑ)λs
(18)

R3(n, ϑ) =
1
σ3

n cos2(ϑ)

2 tn sin(ϑ)λs
(19)

Due to the rotation, not all struts contribute efficiently to the conductivity anymore.
The z strut in Figure 9b does not connect the bottom and top interfaces of the cell anymore.
Nevertheless, these struts improve the conductivity of the cells because the intersections of
the nodes become thicker. The additional material increases the conductive surface and
reduces the path length, thus lowering the resistance. This influence can be taken into
account by the empirical parameter σ (Equation (20)).

σi = σ tan(ϑ) (20)

The conductivity of layer two is calculated from the same equations for the 3-direction
(Equations (13) and (14)), but with the new strut length from Equation (17). The conductivity
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of the lattice can thus be calculated from Equations (21) and (22). For a f2bccz cell, it thus
follows that there are two fc struts (δ f c = 2), since the remaining struts do not contribute
directly to the conductivity, four bc struts (δbc = 4), and zero z-struts (δz = 0) per unit cell.

Rstr(ϑ, n1, n3) = 2(R1(ϑ, n1) + R2(ϑ, n1, n3) + R3(ϑ, n3)) (21)

Rs =

[
δbc

Rstr,bc(Ω, n1, n3)
+

δ f c

Rstr, f c(ϕ, n1, n3)

]−1

(22)

3.3. Cell Topology
3.3.1. Cuboid Prisms

For the cuboid cells (i.e., cubic or parallelepiped with rectangular faces), the ETC can
be determined as follows. For example, a cell of type f2bccz has four fc struts (δ f c = 4), four
bc struts (δbc = 4), and one z strut (δz = 1) per unit cell. For the strut resistance Rstr,bc, there
is an eight-fold intersection in the first layer and a four-fold intersection in the third layer.
Thus, Rstr,bc(Ω, 8, 4) is used. The fc struts have an eight-fold intersection in layer one and a
two-fold intersection in layer three. This results in Rstr, f c(ϕ, 8, 2). The empirical coefficients
are determined numerically. A gradient descent algorithm is used to find accurate values.
Tables 3 and 4 show the coefficients to be used and values for σ for the cuboid cells.

Table 3. Coefficients to calculate the ETC in 3-direction for cubic cell types. The RMSE is calculated
varying the topological cell setups.

Cell Type δf c δbc δz n1, f c n3, f c n1,bc n3,bc σ1, f c σ3, f c σ1,bc σ3,bc RMSE

f2cc 4 0 0 4 2 - - 2.024 1.793 - - 2.09
f2ccz 4 0 1 4 2 - - 1.448 1.168 - - 1.65
bcc 0 4 0 - - 4 4 - - 1.903 1.903 1.59
bccz 0 4 1 - - 4 4 - - 1.537 1.537 1.85
f2bcc 4 4 0 8 2 8 4 2.145 1.311 2.145 1.311 1.01
f2bccz 4 4 1 8 2 8 4 1.654 1.185 1.654 1.133 1.00

Table 4. Coefficients to calculate the ETC in 1- and 2-direction for cuboid cell types. The RMSE is
calculated with different topological cell setups. For this direction, high angles ϕ cannot be respected
as it leads to large material accumulation at the intersections. For the cells marked with a *, the factor
is multiplied by tan ϑ as in Equation (20).

Cell Type δf c δbc n1, f c n3, f c n1,bc n3,bc σ1, f c σ3, f c σ1,bc σ3,bc RMSE

f2cc 2 0 4 2 - - 2.618 3.316 - - 1.14
f2ccz 2 0 4 2 - - 1.732 2.836 - - 1.54
bcc 0 4 - - 4 4 - - 4.277 4.277 1.52
bccz 0 4 - - 4 4 - - 10.95 * 4.073 1.61
f2bcc 4 4 8 2 8 4 10.86 * 2.420 10.86 * 3.840 1.87
f2bccz 4 4 8 2 8 4 9.576 * 3.468 9.576 * 4.564 2.38

In the 3-direction, the empirical factors σ decrease when a z strut is added. This is
reasonable because the z strut occupies a fraction of the node of the first layer and the
diagonal struts thus have less conducting surface. If σ decreases, the resistance of the strut
increases. Once the resistance Rs of the lattice is derived, the effective conductivity can be
calculated via Equations (23) and (24) with the inputs cell type, radius r, cell height h, and
angle ϕ of the cell. The conductivity of the filler λ f is taken into account, weighted with the
porosity ε.

λe f f3(ϕ, r, h) =
tan2(ϕ)

h Rs
+ ελ f (23)

λe f f1−2(ϕ, r, h) = ελ f +
1

h Rs
(24)
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3.3.2. Hexagonal Prismatic Cells

The hexagonal prismatic cells hp f cz, tp f cz, and hpbcz have different types of inter-
sections. A six-fold intersection occurs at the center of the hpbcz cell and at the corners
of the tp f cz cell. Thus, three two-fold intersections are combined and the volume of their
overlap is subtracted (Equation (25)). The subtracted volume is similar to the volume
already subtracted for four-fold intersections. The difference is that the nodes intersect
with the angle π/3 instead of π/2, so that the subtracted volume is larger.

V6(ϑ) = 3V2(ϑ)− 2
12(
√

8−
√

6)
sin(π/3)

r3 (25)

The volume on the edges requires a different treatment because the struts are not fully
compenetrating. Figure 10 shows the intersecting half Steinmetz’s solids. The volume is
referred to as a three-fold intersection and can be determined by Equation (26).

V3(ϑ) =
3
2

V2(ϑ)−
1
2

12(
√

8−
√

6)
sin(π/3)

r3 (26)

Figure 10. Intersection of the struts at the cell corner of the hexagonal cells hp f cz and hpbcz.

The edge length of the cube and the resistances of the layers are calculated according
to the previously presented procedure (Equations (10)–(16)). For the cells hp f cz and tp f cz,
the angle ϕ shall be used for the struts. For the cell hpbcz, the angle Ωhex is considered.
Equation (27) follows for the effective conductivity in the 3-direction of the hexagonal cells.

λe f f3(ϕ, r, h) =
2 tan2(ϕ)

3
√

3h Rs
+ ελ f (27)

Table 5 shows the parameters to be used for the different cell types.

Table 5. Coefficients to calculate the ETC in 3-direction for hexagonal cell types. The RMSE is
calculated with different topological cell setups.

Cell Type δf c δbc δz n1, f c n3, f c n1,bc n3,bc σ1, f c σ3, f c σ1,bc σ3,bc RMSE

hp f cz 6 0 2 3 2 - - 1.027 1.803 - - 1.27
tp f cz 18 0 3 6 2 - - 1.671 1.178 - - 2.75
hpbcz 0 6 2 - - 3 6 - - 1.484 1.754 2.93

The edge length of the nodes is calculated using Equation (17), while the resistances of
the first and third layers are calculated using Equations (18) and (19). The second layer is
calculated using Equations (13) and (14). Setting up the total resistance in the 1,2-direction
of the struts requires a different approach for the hexagonal cells. For the hp f cz cell, two
total strut lengths are needed to pass from one side of the hexagon to the other. Two strut
paths effectively lead from the top to bottom interface. For the tp f cz cell, two struts are
needed as well, which have six different paths. In the hpbcz cell, four struts conduct directly
through the hexagon. Due to the obvious assumption that one strut is composed of two
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half struts, Equations (28)–(30) follow for the thermal resistances in the 1,2-directions of the
struts for the cells hp f cz, tp f cz, and hpbcz, respectively.

Rs,hp f cz =
1
2

4(R1 + R2 + R3), (28)

Rs,tp f cz =
1
6

4(R1 + R2 + R3), (29)

Rs,hpbcz =
1
4

2(R1 + R2 + R3). (30)

Equation (31) follows for the ETC of the hexagonal cells in the 1,2-direction. All
coefficients to calculate the ETC are summarized in Table 6.

λe f f1,2(ϕ, r, h) = ελ f +
2
√

3
3h Rs

(31)

Table 6. Coefficients to calculate the ETC in 1- and 2-direction for hexagonal cell types. The RMSE is
calculated with different topological cell setups. For this direction, high angles ϕ cannot be respected
as it leads to large material accumulation at the intersections. For the cells marked with a *, the factor
is multiplied by tan ϑ as in Equation (20).

Cell Type δf c δbc n1, f c n3, f c n1,bc n3,bc σ1, f c σ3, f c σ1,bc σ3,bc RMSE

hp f cz 2/2 0 3 2 - - 2.815 2.483 - - 2.5
tp f cz 6/2 0 6 2 - - 8.880 * 2.584 - - 1.81
hpbcz 0 4 - - 3 6 - - 8.080 * 8.192 2.86

3.4. Simplified Models

The derived equations of Sections 2.1 and 3 are valid across a broad range of param-
eters. Above all, porosity plays a decisive role. As the porosity decreases, the degree of
strut overlap increases. This makes the modeling complex and thus necessitates the use
of empirical correlation factors in order to accurately describe the geometric and thermal
model. With high porosities, on the other hand, the overlaps are small, so a simplification
of the model is reasonable. In this case, the general Equation (9) for the porosity yields
the simplified formulation in Equation (32). The minimum porosity for which the simpli-
fied modeling is widely applicable is ε = 0.9. Neglecting the overlaps simplifies also the
derivation of the ETC, which is provided in Tables 7 and 8.

ε = 1− 1
Vtot

πr2hcell

(
δbc

sin(Ω)
+

δ f c

sin(ϕ)
+ δz

)
(32)

Table 7. Simplified analytical equations to calculate the ETC in 3-direction.

Cell Type δf c δbc δz ETC

f 2cc 4 0 0 λe f f = ελ f + λs tan2(ϕ)π r2

h2 4 sin(ϕ)

f 2ccz 4 0 1 λe f f = ελ f + λs tan2(ϕ)π r2

h2 (4 sin(ϕ) + 1)

bcc 0 4 0 λe f f = ελ f + λs tan2(ϕ)π r2

h2 4 sin(Ω)

bccz 0 4 1 λe f f = ελ f + λs tan2(ϕ)π r2

h2 (4 sin(Ω) + 1)

f 2bcc 4 4 0 λe f f = ελ f + λs tan2(ϕ)π r2

h2 (4 sin(ϕ) + 4 sin(Ω))

f 2bccz 4 4 1 λe f f = ελ f + λs tan2(ϕ)π r2

h2 (4 sin(ϕ) + 4 sin(Ω) + 1)

hp f cz 6 0 2 λe f f = ελ f + 2 2πr2 tan ϕ2λs
3
√

3h2 + 6 2πr2 tan ϕ2λs
3
√

3h2 sin ϕ

tp f cz 18 0 3 λe f f = ελ f + 3 2πr2 tan ϕ2λs
3
√

3h2 + 18 2πr2 tan ϕ2λs
3
√

3h2 sin ϕ

hpbcz 0 6 2 λe f f = ελ f + 2 2πr2 tan ϕ2λs
3
√

3h2 + 6 2πr2 tan ϕ2λs
3
√

3h2 sin Ωhex
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Table 8. Simplified analytical equations to calculate the ETC in 1- and 2-direction.

Cell Type δf c δbc δz ETC

f 2cc 2 0 0 λe f f = ελ f + λsπ r2

h2 2 sin(ϕ)

f 2ccz 2 0 0 λe f f = ελ f + λsπ r2

h2 2 sin(ϕ)

bcc 0 4 0 λe f f = ελ f + λsπ r2

h2 4 sin(Ω)

bccz 0 4 0 λe f f = ελ f + λsπ r2

h2 4 sin(Ω)

f 2bcc 2 4 0 λe f f = ελ f + λsπ r2

h2 (2 sin(ϕ) + 4 sin(Ω))

f 2bccz 2 4 0 λe f f = ελ f + λsπ r2

h2 (2 sin(ϕ) + 4 sin(Ω)

hp f cz 2/2 0 0 λe f f = ελ f + λs
2
√

3πr2 sin(ϕ)
3h2

tp f cz 6/2 0 0 λe f f = ελ f + 3λs
2
√

3πr2 sin(ϕ)
3h2

hpbcz 0 6 0 λe f f = ελ f + 4λs
2
√

3πr2 sin(Ω)
3h2

4. Validation
4.1. Porosity

Figure 11 shows the derived functions for the porosity with the numerical values
obtained from a CAD model. As the semi-analytical equations are calibrated with empirical
coefficients obtained from the CAD model, they obviously show very high accuracies and
almost no deviation from the numerical results. The simplified model equations have a
limited range of validity. Starting from porosities below 0.85, deviations of more than 5%
occur. This deviation results from neglecting the Steinmetz’s solids. The more overlaps
that occur within the cell, the higher the underestimation of the porosity. Consequently,
the porosity is always underestimated by the simplified equations. The simplified model
is therefore only viable for cells with porosities ε > 0.9. The semi-analytical equations are
valid for porosities from ε > 0.5 and angles 15◦ < ϕ < 75◦.
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Figure 11. Comparison of the different models for calculation of the porosity of the cell type f2cc.
Either the radius r or the angle ϕ is varied. The height of all cells is hcell = 10 mm.

4.2. Effective Thermal Conductivity

To determine the empirical factors, numerical models based on the Finite Element
Method are employed. Furthermore, a validation procedure is conducted, involving a
comparison between the outcomes generated by these computational models and the
empirical data presented in the model developed by Hubert et al. [22]. Additionally, the
current model is assessed by comparing it to experimental results obtained in previous
research by the same authors [7].

4.2.1. Finite Element Model

The numerical models are built with the help of the commercial software COMSOL
Multiphysics®. The assumption is made that the only relevant heat transfer mode is heat
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conduction. A stationary and a transient model are developed. The stationary model is
used to determine the ETC. The transient model is used to investigate the time-dependent
behavior of the composite PCM and the effect of the cell size on it.

In the stationary model, the material properties are assumed to be constant over the
investigated range. To limit the computational effort, a quarter of the cell cross-section is
used. As shown before, the cells are symmetrical through the center point so that the cell
is fully represented. Hubert et al. [22] have already demonstrated that this assumption is
valid. In this approach, several cells are stacked on top of each other. A minimum of seven
cells delivers stable results, i.e., an increase in the number of stacked cells does not lead to
a variation in the ETC. Figure 12a shows the simulation model and Figure 12b shows the
applied boundary conditions for it. The central unit cell is selected as the location for the
measurement of the temperature difference, which is used to determine the conductivity.
By means of Equation (33), the ETC of a cell can be determined.

λe f f =
q̇h

T2 − T1
(33)

In Equation (33), q̇ is the heat flux flowing through the cell, h is the cell size, T1 is the
temperature at the top interface of the cell, and T2 is the temperature at the bottom interface.

(a) CAD model.

T(t)=T(t=t0)=293.15 K

q

symmetry symmetry

(b) Boundary conditions

Figure 12. Simulation model for the calculation of the ETC and the applied boundary conditions,
with a constant value of q̇.

A convergence analysis is carried out for each cell. The maximum element size of
1.82 mm and minimum element sizes of 0.078 mm for the cell dimensions h = 10 mm and
ϕ = 45◦ were found to deliver an error < 0.1%. The number of elements required depends
on the cell complexity. In each case, the smallest radius examined is used for the cells,
since this case requires the highest number and smallest size of elements for an accurate
calculation. Figure 13 shows the convergence plot for the cell f2bccz.
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Figure 13. Convergence study of the stationary model for the f2bccz cell, which requires the most elements.
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4.2.2. Three-Direction

To validate the equations derived for the ETC in the 3-direction, both numerical
results and literature data from [7,22] are used. Figure 14 shows the results of the derived
equations, which are compared to the numerical results. However, since Hubert et al. [22]
only provide a solution for the cells f2cc, f2ccz, bcc, and bccz with an angle of ϕ = 45◦,
the model is only compared in a few plots. The equations are validated for the parameter
range 15◦ < ϕ < 65◦ and 0.01 < r/h < 0.13. In general, the equations are valid for
porosities ε > 0.65. Since the applications of the structures mainly target high porosities,
this range is suitable for the characterization of the composite.

The simple analytical equations are also plotted in Figure 14. They show good agree-
ment with the experiments for the aspect ratio angle ϕ = 45◦. The conductivity of the
cells with bc struts is generally underestimated at this angle. The cells with fc struts are
overestimated. As the angle increases, the inaccuracy of the analytical model becomes
significantly higher. With higher angles, the ETC is generally overestimated. For small
angles, the equations underestimate the ETC. This is due to the overlap of the struts at the
cell interfaces.

numerical data
semi-analytical
simplified-analytical
Hubert et al. (2021)

0

0.19

1.00.950.90.850.80.75
Porosity

f2ccz

0.14

0.09

0.04

ef
f

s
λ

λ

(a) ϕ = 45◦

Porosity

0

0.20

0.45

0.70

0.95

1.20

0.4 0.5 0.6 0.7 0.8 0.9 1.0

numerical data

f2ccz

semi-analytical
simplified-analytical

ef
f

s

(b) ϕ = 65◦

Figure 14. Comparison of the different models for calculation of the ETC in 3-direction of the cell type
f2ccz. The radius is varied between r = 0.1 mm and r = 1.3 mm. The height of all cells is h = 10 mm,
while the angle is specified in the caption under the plot. The model for aspect ratio 1 (ϕ = 45◦) is
validated against the results of Hubert et al. [22]

4.2.3. One- and Two-Direction

The comparison of the derived equations with the numerical results in the 1,2-direction
can be seen in Figure 15. In general, good agreement of the analytical results with the
numerical ones can be seen. However, the equations have difficulties in predicting the
conductivity for high angles (>60◦). This is due to the struts that are not directly involved in
conducting the heat in the 1- and 2-direction, such as the z struts. At high angles, the struts
significantly shorten the conduction path and lead to large material accumulation; see
Figure 16. However, this is not taken into account in the equations. The semi-analytical
equations can therefore only be used for angles ϕ < 60◦. In this parameter range, the equa-
tions are accurate, with errors below 5% for porosities above ε > 0.65. The simple analytical
models quickly deviate from the numerical results.

Additionally, the presented equations are validated against experimental results
present in the literature. For such purpose, a homogenized composite is considered.
The other effective properties are obtained via mixture laws:
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ρe f f = ερPCM + χρs (34)

Cpe f f = ε
ρPCM
ρe f f

CpPCM + χ
ρs

ρe f f
Cps (35)

H fe f f
= ε

ρPCM
ρe f f

H fPCM (36)

where ρ is the density, ε is the porosity of the lattice, χ is its volume fraction, Cp is the
specific heat capacity, and H f is the latent heat of fusion. The effective thermal conductivity
is obtained with the model presented in this work. The lattice geometric properties are the
ones provided in the previous work [7] and summed up in Table 9. Using the aforemen-
tioned parameters, a homogenized PCM composite is simulated. The energy equation for
the PCM is solved using the apparent heat capacity method, implemented in COMSOL®

Multiphysics. Figure 17 shows two plots where the f2ccz and the bccz unit cells are vali-
dated against experimental results at a heating orientation opposite to gravity, so that the
influence of natural convection can be neglected. While the maximum deviation amounts to
8.58%, this can be attributed to the approximation introduced by the apparent heat capacity
method, rather than an error in the calculation of the thermophysical properties.
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Figure 15. Comparison of the different models for calculation of the ETC in 1,2-direction of the cell
type bccz. The radius is varied between r = 0.1 mm and r = 1.3 mm. The height of all cells is
h = 10 mm, while the angle is specified below the plot. The model for aspect ratio 1 (ϕ = 45◦) is
validated against the results of Hubert et al. [22].

(a) (b)

Figure 16. Example of the overlap of the struts at high angles for the f2ccz cell. In (a), the cell is
shown from an isometric view; in (b), a cross-section cut in the middle vertical plane is shown.
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Figure 17. Comparison of the simulation results based on a homogenized composite and the experi-
mental data from [7].

Table 9. Unit cell geometries considered for experimental validation based on [7].

f2ccz bccz

Cell size 5 mm 5 mm
Radius 1 mm 1 mm

ϕ 45° 45°

5. Results and Discussion

The presented semi-analytical ETC model, together with the mixture laws, enables
the homogenization of the thermophysical properties of the composite PCM. This in turn
facilitates the detailed investigation of the effect of a wide variety of geometric parameters
on the thermal behavior of the composite. This section is dedicated to the investigation of
such an effect, isolating each parameter from the others.

5.1. Strut Radius

In Figure 18, the effective thermal conductivity in the 3- and in 1,2-directions for all
considered unit cells at varying porosity is shown. The effective thermal conductivity (λe f f )
is normalized against the bulk material from which the lattice structure is made (λs). A
variation in porosity can be obtained by varying any of the geometric parameters while
keeping the others constant. For the case shown in Figure 18, the unit cell size is fixed
at 5 mm and the angle ϕ is kept at 45°, thus maintaining a cubic or regular hexagonal
prismatic unit cell.

Figure 18 shows that, clearly, unit cells exhibiting struts in the 3-direction (z struts)
are also the ones that exhibit the highest effective thermal conductivity in this direction.
Face-centered unit cells for both cuboids and hexagonal prisms exhibit the highest thermal
conductivity in the 3-direction. Body-centered unit cells exhibit the lowest thermal conduc-
tivity. Body-centered struts have a smaller strut angle Ω than face-centered ones with the
same aspect ratio. Thus, due to the resulting longer struts, represented by space diagonals
instead of face diagonals, the cells with predominantly body-centered struts perform worse
than the cells with face-centered struts. For the 1,2-direction, different conclusions can be
made. The gap between the effective thermal conductivity of one unit cell and the next
is reduced as the z struts are ineffective in this direction. In this case, face-centered cells
with z struts exhibit the lowest effective thermal conductivity, while body-centered ones
demonstrate the highest effective thermal conductivity. The cells with a smaller number of
struts and fewer intersecting struts at the nodes, i.e., f2cc and bcc, overtake the previously
better-conducting cells with decreasing porosity. This can be explained by the fact that the
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struts overlap more in the cells with many struts as the radius increases and the conductiv-
ity no longer increases as effectively. The hp f cz cell has an advantage over the f2ccz cell.
Although both cells have the same strut types, the ratio of z struts to fc struts is higher in
the hp f cz cell (δz/δ f c = 1/4 to δz/δ f c = 2/6). In addition, the number of intersecting struts
at the nodes of the top and bottom cell interfaces is lower for hp f cz. This also explains the
lower ETC for the tp f cz cell. This cell has a ratio δz/δ f c = 3/18, the lowest of the three
hexagonal cells, and the struts at the interfaces meet with seven other struts.
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Figure 18. Effective thermal conductivity of all considered cells for varying porosity obtained by
varying only the strut radius.

5.2. Effect of Aspect Ratio (Angle ϕ)

Figure 19 shows the effect of varying the angle ϕ for the f2ccz unit cell. At high porosity,
high values of ϕ are beneficial to the ETC. The trend is reversed for decreasing porosity. The
accumulation of material at the strut nodes becomes ever more relevant with decreasing
porosity. A low value of ϕ increases the material accumulation for a given porosity. When
the porosity is high, material accumulation at the nodes plays a marginal role and the heat
conduction path is shortened if the angle ϕ is increased. Cells with a high δz to δ f c/bc ratio
and high strut angles achieve high ETC at high porosity. Figures 20 and 21 show the effect
of ϕ for all considered cells in a range of different porosities obtained by keeping the cell
size h fixed at 5 mm and varying the strut radius r. The porosity corresponding to each
angle and strut radius combination is reported as a dashed line. In Figure 20, the ETC in
the 3-direction is reported for strut radii r = 0.1, 0.2, 0.3 mm, respectively. The variation in
the angle ϕ at a constant strut radius implies porosity variations. One can notice that the
lowest ETC is obtained for the cells in which the variation in ϕ has the least effect on the
porosity of the unit cell. However, as shown in Figure 21 for the 1,2-direction, exceptions
can be noticed for cells that exhibit few intersections.
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Figure 19. Effect of angle (i.e., aspect ratio) variation for the f2ccz unit cell at varying porosities, in the
3-direction.
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(a) r = 0.1 mm (b) r = 0.2 mm (c) r = 0.3 mm

Figure 20. Effect of varying the aspect ratio angle on the effective thermal conductivity (continuous
lines) and on the porosity (dashed lines), respectively, in the 3-direction. Three different radii and
thus different porosity ranges are considered. The cell size is fixed at 5 mm.

(a) r = 0.1 mm (b) r = 0.2 mm (c) r = 0.3 mm

Figure 21. Effect of varying the aspect ratio angle on the effective thermal conductivity (continuous
lines) and porosity (dashed lines) in the 1,2-direction. Three different radii and thus different porosity
ranges are considered. The cell size is fixed at 5 mm.

5.3. Scale Variance: Effect of Cell Size and Number of Cells

The cell size has no direct effect on the effective thermal conductivity. If the cell size is
increased, keeping the porosity constant, i.e., by accordingly increasing the strut radius,
the effective thermal conductivity is not affected, as evident from Figure 22. Here, the cell
size of each unit cell is varied in a range between 5 and 30 mm, while the strut radius is
accordingly varied between 0.5 and 3 mm, respectively. The porosity of each cell is reported
in Table 10. The result shown in Figure 22 is in good agreement with results presented in
the literature regarding the effect of the cell size for metal foams [12,20].

Table 10. Porosity of the unit cells considered in the stationary case, with cell size ranging from 5 to
30 mm and radius from 0.5 to 3 mm.

f2cc f2ccz bcc bccz f2bcc f2bccz hp f cz hpbcz tp f cz

ε 0.85 0.83 0.82 0.80 0.71 0.68 0.90 0.84 0.74
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Figure 22. Cell size effect on the effective thermal conductivity obtained by scaling the strut radius
according to the cell size variation.

However, while the values obtained correctly predict the effective thermophysical
properties, this is not sufficient to describe the transient behavior of a composite made
of a PCM and a cellular solid. In particular, lattice structures manufactured via additive
manufacturing or investment casting can be designed with a wide range of cell sizes.
In realistic applications, both the cell size and the number of cells can be changed depending
on a variety of boundary conditions, especially if the volume of a system is constrained.
Thus, it is relevant to investigate the effect of the scale variance on the transient thermal
behavior of such systems. To do so, a numerical investigation is performed. Both a
discrete model and a homogenized one are generated and tested under the same boundary
conditions, as schematically sketched in Figure 23. A range of geometric parameters are
varied for all considered cells.

q q

Discrete model Homogenised model

T=80°C T=80°C

λeff

Cpeff

ρeff

Hfeff

50
 m

m

50 mm 50 mm

50 m
m

B

A

Figure 23. Schematic view of the compared numerical models to investigate the scale variance.

With reference to Figure 23, the value of q̇ is 1000 W/m2 and represents one boundary
condition for the numerical problem. The other boundary condition is on the opposite
side of the domain and is represented by a temperature boundary condition fixed at
80 °C. The considered materials are n-octadecane paraffin wax and aluminium alloy 6061.
The properties are reported in Appendix A. Each tested geometry represents a cube with a
50 mm side and varying geometric properties of the lattice structures embedded within
such a domain. The simulation time is fixed at t = 1800 s so that, for all porosities, a
steady-state condition is reached. The cell sizes are chosen so that an integer number of
cells fit within the same domain of 50 mm size, as, for demonstrative purposes, shown in
Table 11. The radius is adapted to obtain constant porosity for all cell sizes.
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Table 11. Example of the geometric variables for the study of the scale variance considered for the
case of a f2ccz cell with porosity 0.95.

Number of Cells Cell Size [mm] Radius [mm] Aspect Ratio Angle ϕ [°] ε

20 2.5 0.129 45 0.95
10 5 0.259 45 0.95
5 10 0.517 45 0.95
4 12.5 0.647 45 0.95
2 25 1.294 45 0.95
1 50 2.587 45 0.95

The considered porosity range is varied between ε = 0.95 and ε = 0.7 with steps of
0.05. The simulations are performed for both orientations, i.e., 3-direction and 1,2-direction
for each cell type. This leads to a matrix of 36 simulations for each orientation of each cell
type. The temperature variation ∆T between point A and point B of Figure 23 is measured.
The value for a time t = 1800 s is considered so that full melting is reached for all samples.
A normalized ∆T is considered, i.e.,

Γ =
∆Tdiscrete(t = t∗)

∆Thomogenised(t = t∗)
(37)

The results for the unit cells f2ccz, f2cc, bcc, bccz are reported in Figures 24 and 25.
One can notice that the cell size and the consequent reduction in the number of cells

in the domain lead to a deviation from the results obtained with the homogenized model.
The homogenized model correlates well with the discrete model only for a large amount of
cells, which, in this case, implies small cell sizes. However, the deviation is not independent
of the other cell parameters. As one can notice, for all unit cells, high porosities, i.e.,
low-effect thermal conductivities, lead to a lower to null deviation, indicating that the
thermal behavior is similar to the one of a pure PCM and the metallic matrix has a minimal
influence on it. With decreasing porosity, the deviation increases and its quantitative value
is strongly dependent on the cell type. An additional general trend that can be recognized
is that the deviation tends first to increase, to later slightly decrease again with increasing
porosity. Furthermore, additional analyses are performed to differentiate the influence of
the cell size from that of the number of cells. Figure 26 shows the results of an additional
parametric study in which the size of the domain is varied accordingly with the cell size
and the number of cells. The porosity of ε = 0.85 for cell type bccz is chosen to guarantee
that for, large cell sizes and a small number of cells, a deviation is present.
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Figure 24. Scale variance for face-centered cells.
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Figure 25. Scale variance for body-centered cells.
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Figure 26. Isolated effect of varying the number of cells.

A large number of cells within a domain always leads to accurate predictions of the
homogenized model, independently of the cell size. However, with a reduction in the
amount of cells, a different trend is evident. Although large deviations exist between the
discrete modeling and the homogenized one already at small cell sizes (5 mm in Figure 26),
the deviation tends to increase with the cell size. Thus, one can conclude that reliable
estimations with the presented model are possible as long as a sufficient number of cells
with the same geometric parameters is present within the domain.

6. Conclusions

In this work, the effective thermophysical properties of composites based on PCMs
embedded with metallic lattice structures are described. Generic geometric parameters are
introduced in order to allow the free treatment of all geometric variables and the future
topology optimization of such composites. For this purpose, a semi-analytical model for
the calculation of the effective thermal conductivity is introduced. The nodes at which
the lattice struts cross are described via semi-analytical expressions derived from the use
of Steinmetz’s solids. This allows an accurate description of both the porosity of the unit
cells and their effective thermal conductivity for a variety of geometric parameters. In the
general case, empirical factors must be introduced as analytical solutions for the description
of Steinmetz’s solids are limited. Additionally, due to wide manufacturing tolerances, the
structures will exhibit non-negligible deviations from the theoretical volume, especially
at the nodes where the struts cross. Thus, the empirical factors introduced here can be
calibrated in the future depending on the different manufacturing parameters. The model
is validated against the existing literature of both previously existing models, which are,
however, limited in the number of geometric parameters and experimental results.
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A variety of unit cells are considered in a wide range of porosities, i.e., from ε = 0.65 to
ε = 0.99. The main findings of this work are listed below.

• The cells exhibiting the highest effective thermal conductivity in the 3-direction, i.e., the
direction of the z struts, at a given porosity, are the face-centered ones, i.e., f2cc, f2ccz,
hp f cz, tp f cz.

• In the 1,2-direction, the effective thermal conductivity is obviously reduced for all
cells presenting a z strut, and the trends are partially inverted. Body-centered lattices
exhibit higher effective thermal conductivity than face-centered ones. Hexagonal
cells exhibit the peculiarity of showing the highest and the lowest effective thermal
conductivities. The hp f cz consistently shows the highest value in the 3-direction,
while the hpbcz exhibits the lowest value. In the 1,2-direction, the trend is reversed
and the hpbcz shows the highest effective thermal conductivity.

• In general, an increase in the aspect ratio, i.e., increasing the strut angle, leads to higher
effective thermal conductivities for unit cells with porosity within ca. 75%.

• The effect of the cell size, also called scale variance, indirectly affects the accuracy
of the proposed analytical equations. Indeed, if the domain volume is fixed, the
variation in the cell size directly influences the number of cells that can fit within
such a volume. The number of cells directly affects the transient thermal behavior. A
minimum number of cells of 10 is identified as appropriate to describe the transient
thermal behavior of the analyzed composites via homogenized models based on
effective thermophysical properties. If this threshold is maintained, the cell size has no
effect on the transient thermal behavior of the composite. Otherwise, a coupled effect
of the reduction in the number of cells and of increasing the cell size can be evidenced.
Additionally, the porosity has a direct influence on the scale variance. Indeed, at high
porosities, the scale variance, related to the variable Γ of Equation (37), is reduced,
while it increases with decreasing porosity.

All in all, the relations delivered in the present work can be flexibly used to estimate
the effective thermophysical properties of a variety of composite PCMs. Care should be
taken when dealing with a low number of cells and large cell sizes, as homogenization
techniques start to fail.

Future works shall address the extension of the presented methodology to additional
strut-based cellular solids, in order to extend the comparability of the thermal performance
among the different manufacturable geometries. Additionally, prospective activities shall
focus on developing methods to perform the same analysis with surface-based lattices,
i.e., TPMS. Furthermore, it is well known that natural convection in the melt does have
a measurable effect on the speed and shape of the expanding melting front of the PCM,
thus affecting the transient thermal performance of the composite. With variable geometric
parameters and, in particular, varying the cell size, the influence of natural convection
becomes increasingly relevant due to the variation in the permeability of the lattice structure.
Future works should extend the presented homogenization approaches to include this
additional phenomenon.
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PCM Phase Change Material
ETC Effective Thermal Conductivity
BC Body-Centered
BCC Body-Centered Cubic
BCCZ Body-Centered Cubic with Z Strut
FC Face-Centered
F2CC Face-Centered Cubic
F2CCZ Face-Centered Cubic with Z Strut
F2BCC (Combined) Face-Centered and Body-Centered Cubic
F2BCCZ (Combined) Face-Centered and Body-Centered Cubic with Z Strut
HPFCZ Hexagonal Prism Face-Centered with Z Strut
HPBCZ Hexagonal Prism Body-Centered with Z Strut
TPFCZ Triangular Prism Face-Centered with Z Strut

Nomenclature

Ω Strut angle with respect to the horizontal
ϕ Aspect ratio angle of the unit cell
h Unit cell height
L Unit cell width
r Strut radius
α Angle generated by the intersection of two crossing struts
ε Porosity of the unit cell
χ Volume fraction of the unit cell
δi Number of struts of type i in a unit cell (i.e., face-centered, body-centered, or z struts)
Fi i-th empirical factor for the calculation of the volume of the i-th Steinmetz’s solid
tn Edge length of the equivalent prismatic volume of the Steinmetz’s solid for ETC calculation
Ri Thermal resistance of the i-th element (node or strut) of the unit cell
σi Empirical parameter for the calculation of the ETC
λ Thermal conductivity
ρ Density
Cp Specific heat capacity
H f Latent heat of fusion

Appendix A. Material Properties

Table A1. Material properties considered for the numerical studies.

λ [W/mK] ρ [kg/m3] Cp [J/kgK] Melting
Point [°C]

Latent Heat
[kJ/kg]

n-Octadecane (solid) 0.358 814 2150 29 244
n-Octadecane (liquid) 0.152 774 2180 - -

Al-6061 170 2700 1100 - -
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