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Abstract: Accurate soil heat transfer models are needed to predict and adapt to a warming arctic. A 

numerical model to accurately predict temperatures and thaw depths in soils, both with depth and 

with horizontal distance from features such as cliffs, was developed in Matlab using the finite ele-

ment method. The model was validated against analytical solutions to simple versions of the 

problem and experimental temperature data from borehole thermistor strings on the 

north shore of Alaska. The current model is most useful for short term (on the order of 

days) predictions of thaw depth and near surface temperatures in homogeneous soils with 

existing data to allow the calibration of soil thermal parameters. These are exactly the time 

scales and capabilities that would integrate well with erosional models to predict the ero-

sion during storm events and summer thaw conditions. Comparisons with analytical so-

lutions show the model to be fairly accurate in predictions of temperatures thaw-depth 

and temperatures, within about 0.25 °C and 0.02 m respectively, for reasonable arctic soil 

parameters. Differences between predicted temperatures and thaw-depth against bore-

hole data from Barter Island, Alaska are within about 1 °C and 0.5 m respectively. Com-

parison to commercial software, which does not directly track and move the phase change 

boundary, shows that this moving-mesh model has much better agreement. The model 

developed in this work is flexible and can be modified to model a wide variety of prob-

lems, but is efficiently set up to take a surface and thaw-boundary profile (not necessarily 

horizontal) and use soil parameters and surface boundary conditions appropriate to Arc-

tic regions. It has been verified to appropriately model cliffs, which are particularly vul-

nerable to erosion. 
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1. Introduction 

Permafrost temperatures have increased by up to three degrees Celsius from the 

early 1980s to the mid-2000s in parts of northern Alaska and near-surface permafrost ex-

tent is predicted to decrease substantially in high northern latitudes by the end of the 21st 

century [1]. Increased coastal erosion [2,3] from higher sea levels, increased ocean tem-

perature, and longer sea-ice-free season and infrastructure failure, as well as other envi-

ronmental changes such as changes in wetlands may be expected from melting perma-

frost and other facets of the warming Arctic. 

Soils are resistant to coastal erosion when frozen [4], thus the thermal state and evo-

lution of the soil profile is important in understanding and predicting the erosion of these 

sediments. Water affects the soils it is in contact with both thermally and mechanically 

[5]. An added factor in the erosion of thawed soils is that frozen soils in the arctic may be 
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predominantly ice-soils in the five-meter zone of erosion (bluffs to two meters below 

grade) in the Beaufort Sea coast are up to 75% ice [6]. 

In a warming Arctic, degradation of permafrost and increased coastal and thaw pond 

erosion is expected. In order to predict and mitigate the harm to infrastructure, commu-

nities, and the environment, one must develop accurate models of the thermal behavior 

of soils. These models can be used to investigate the effects of warming boundary condi-

tions, the addition of active or passive soil cooling devices, or they can be paired with 

models of the mechanical interaction between soils and water in which they are in contact. 

While there exist sophisticated open source models to look at the mechanical interactions 

of water and soil, currently available thermal modeling software is overly complex, not 

easily integrated with mechanical and other models, and prohibitively expensive. A pre-

vious effort to develop an accurate soil thermal model to work with the open source sed-

iment transport model Xbeach [5] used a one-dimensional model that would not accu-

rately represent a cliff face or other complex geometry. To couple the thermal model to 

the erosional model, a highly accurate and precise depth of recently thawed soils (on short 

timescales of minutes to hours) is desirable to accurately predict ongoing erosion and evo-

lution of the thermal and physical profile of the soil. 

The main contribution of this work is development of a finite element model which 

will be useful in predicting thaw depth for short term which will be useful for erosional 

models to predict the erosion during storm events and summer thaw conditions. 

This paper presents an experimentally verified numerical model that could accu-

rately predict thaw depth and temperatures in arctic soils, primarily considering conduc-

tion of heat and phase change. The model developed in this work considered processes 

that are important such as latent heat of phase change, two-dimensional geometries, and 

simplified but useful boundary conditions. Because the depth to the boundary between 

thawed and frozen soils is the most important factor in the erodability of soils by water, 

the model aimed for maximum accuracy in this prediction. 

The Finite Element Method (FEM) uses integral formulations instead of the difference 

equations from local Taylor expansions used in Finite Difference Methods [7], which al-

lows for continuity at the boundaries of elements [8]. FEM handles problems with com-

plex geometries or boundary conditions and non-isotropic materials better than finite dif-

ference methods. 

Phase Change Modeling—Issues and Approaches to Latent Heat 

Accounting for the latent heat of freezing or melting in the heat conduction problem 

adds complexity to the numerical modeling, and there are many ways to account for it, 

with different strengths and weaknesses. Voller [9] and Huy and Argyropoulos [10] both 

give an overview of the various approaches, as summarized below. 

The phase change boundary in the case of solidification of a pure material (the Stefan 

Problem) is a sharp moving boundary. 

The Stefan Problem is characterized by the following equations: 

Heat transfer in the solid (s):  

𝑐𝑠
𝜕𝑇𝑠

𝜕𝑡
= ∇ ∙ (𝑘𝑠 ∇𝑇𝑠)  (1) 

Similarly; Heat transfer in the liquid (l): 

𝑐𝑙
𝜕𝑇𝑙

𝜕𝑡
= ∇ ∙ (𝑘𝑙 ∇𝑇𝑙)  (2) 

Equations (1) and (2) are essentially a 2D heat transfer equation without internal heat 

generation, where the dimensionality of the spatial derivatives of temperature has been 

generalized using the divergence of the gradient. The heat balance at the phase change 

boundary (known as the Stefan Condition) is: 

𝑘𝑠 ∇𝑇𝑠 ∙ �̂� −  𝑘𝑙 ∇𝑇𝑙 ∙ �̂� =   𝐿 𝐯 ∙ �̂�  (3) 
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where �̂� is the normal vector to the phase change interface, v is the velocity of the inter-

face, and L is the volumetric latent heat. 

Analytical formulations such as the Neumann solution to the Stefan problem can be 

used to check numerical models, with appropriate simple boundary conditions and ge-

ometries. The Neumann solution is the analytical solution to the 2-phase Stefan problem 

(thermal parameters c and k that are different, but constant, in each of the two phases) 

with a semi-infinite media and a constant temperature surface boundary condition.  

Solutions to more complex geometries and boundary conditions have also been de-

veloped [10].  

In numerical models, the ‘strong’ formulation of the phase change process involves 

locating the moving boundaries of phase change (similar to the analytical Stefan problem) 

and finding the temperatures at each step. Fixed grids or variable grids can be used in this 

numerical modeling—fixed grids are easier to formulate but break down if the boundary 

moves more than one grid space.  

Other authors have developed numerical soil thermal models for tailored for specific 

applications. Ling and Zhang [11] developed a two-dimensional model in cylindrical co-

ordinates, assuming no annular heat flow, to model thaw bulb (known as a talik) for-

mation under thaw lakes in arctic Alaska. Borisov [12] modeled permafrost melting under 

heated buildings in the arcticusing the finite element method and unstructured meshes in 

up to three dimensions with a phase transition smoothed with linear interpolation.  

Zottola [3] used SVHEAT to model soils at Drew Point, Alaska and investigate the 

feasibility of using thermosyphons to stabilize melting permafrost. The author develops 

an appropriate seasonal air temperature and n-factor function to model the air-ground 

boundary condition, presents appropriate soil heat capacities and conductivities from the 

literature for his location, and compares with borehole data to show good agreement. 

Liandi [13] compares moving and non-moving mesh solutions. The paper models the 

use of freeze pipes circulating brine to freeze mineshaft walls in soil. The moving mesh 

approach is considered more accurate and flexible, but computationally more difficult and 

slower. The authors note that results agree with other numerical simulations and la-

mented the lack of experimental data to compare to. 

Comparison of numerical results to experimental data (in-situ borehole soil temper-

ature data or lab data) is rare in the literature. In general, experimental data is costly and 

difficult to obtain in arctic environments, and the non-ideal, heterogeneous real-world 

conditions are difficult to verify with tractable models. However, the Alaska DOT has 

used the commercial Temp/W finite element software since 2006 or earlier [14] for 2D 

thermal modeling of embankments on permafrost soils, and compared results to borehole 

temperature data. Darrow [14] has published results for such comparisons, showing 

agreement between measured and modeled temperatures better than about 20F and thaw 

depths of around one to two feet. This agreement was considered acceptable for the engi-

neering purposes, generally slightly over-predicting embankment thaw bulbs that would 

allow for conservative solutions to protecting against thaw in engineering design. These 

were long model runs of ten-year intervals starting with simplistic initial conditions (con-

stant temperature soil) and n-factored surface boundary conditions based on air temper-

ature and reasonable assumptions or laboratory measurements of soil parameters. 

2. Method 

A moving mesh, two-dimensional finite element heat transfer model was written in 

Matlab R2017b that takes phase-change into account with a solution of the Stefan condi-

tion at the phase-change boundary. The physical model domain was first divided into 

thawed and frozen subdomains, which were separately meshed using a Delaunay trian-

gular mesh. Initial conditions were applied to the mesh nodes of the model. At each time 

step, a solution of the Stefan condition along the phase-change boundary determined the 

distance and direction that each phase change boundary node moved, and other nodes in 

the model domains were moved accordingly, with the original mesh retained. ‘Mass’, 
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‘Stiffness’ and ‘Velocity’ matrices for a Galerkin method solution of the finite element ap-

proximation of the governing heat transfer equation were assembled, and the nodal tem-

perature solution for the current time step was obtained from that of the last time step 

using simple matrix operations. Temperature or flux boundary conditions were applied 

at the start of the problem and at each time step, and could be a defined function of time. 

2.1. Meshing 

To allow for the strong formulation of the Stefan condition chosen as phase-change 

method the physical domain was broken into two separate sub-domains, a top (thawed) 

subdomain, and a bottom (frozen) subdomain. The sub-domains were individually 

meshed as detailed in the next paragraph, although they were designed so as to share 

common nodes along the phase change boundary. This boundary, also called the ‘thaw-

front’, is the bottom of the top domain and the top of the bottom domain (see Figure 1 

below). The model allows arbitrary piecewise-linear descriptions of the domain top, bot-

tom and phase-change boundary. The sides are defined as linear between the top and 

bottom of each subdomain. 

Two-dimensional triangular meshing was accomplished using a Matlab algorithm 

presented in the literature [15] and modified slightly for this application. Triangular mesh-

ing was used since built in Matlab functions for it already exist, and the robust algorithm 

[15] for generating and refining the triangular mesh was available in the literature. It also 

is easier to mesh non-rectangular geometries with triangles, and it allows for straightfor-

ward, elegant solutions to the Finite Element Method matrices given in Equations (12)–

(14) below. This algorithm starts with a reasonably uniform, staggered grid of nodes of a 

given distance. The nodes are pruned to allow a variation of mesh size defined across the 

model space. After using the Matlab function for Delaunay triangulation, the algorithm 

moves these nodes by solving for equilibrium in a simulated truss structure to produce a 

mesh of high quality using a fairly simple code (see Figure 1 for example). 

 

Figure 1. A meshed domain. The phase change boundary (in blue) separates the thawed and frozen 

subdomains, which are meshed and modeled separately, subject to the Stefan condition at the 

boundary. 
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2.2. Phase-Change Method 

Because the depth to the boundary between thawed and frozen soils is an important 

factor in the ability of soils to be eroded, the numerical model developed aimed for maxi-

mum accuracy in this prediction. Therefore, a strong formulation of the Stefan condition 

(refer to Section 2.4) was used to model latent heat, in which the Stefan equation was 

solved at each time step to calculate and track the phase change boundary. This was done 

on a moving/variable grid to allow for easy accounting of the thawed vs. frozen elements 

and current position of the phase change boundary. The implementation of this method 

was based on a one-dimensional method developed by Mori [16]. 

Mori’s solution divided the domain into frozen and thawed subdomains and solved 

the finite element matrix equations for nodal temperatures separately in each subdomain, 

first imposing the Stefan condition on the freeze-thaw boundary common to each subdo-

main for each time step [16]. The finite element solution for each subdomain was based 

on the standard Galerkin method, taking into account the moving node points. Mesh con-

nectivity between the nodes (i.e., elements defined by the nodes) was maintained as the 

nodes move. If θi is the temperature at elemental node i, {θ} is the column vector com-

posed of the nodal temperatures of the element, Si is the linear shape function correspond-

ing to node i and is dependent on the position coordinates, and [S] is an array of the shape 

functions for an element, then temperature anywhere in the element, T, is approximated 

by [8]: 

𝑇 =  [𝑆]{𝜃}  (4) 

The one-dimensional governing equation for conduction with no heat generation 

within the body, and assuming isotropic conductivity and volumetric heat capacity is: 

𝜕𝑇

𝜕𝑡
 =  𝛼 

𝜕2𝑇

𝜕𝑥2  (5) 

where α = k/c, or thermal conductivity divided by volumetric heat capacity. 

In one dimension, using the product rule, from Equation (4) we get: 

𝜕𝑇

𝜕𝑡
 =

𝑑[𝑆]

𝑑𝑡
 {θ} + [𝑆]

𝜕{θ}

𝜕𝑡
   (6) 

It is important to retain the time derivative of the shape functions to account for the 

moving nodes. If Xi is the coordinate of node i, we can expand the derivative of [S] with 

respect to t [17]: 

𝑑𝑆𝑖

𝑑𝑡
=  −

𝜕𝑆𝑖

𝜕𝑥

𝜕𝑋𝑖

𝜕𝑡
  (7) 

Note that Equation (7) is most helpful when generalized to two-dimensions. Mori 

[16] does a straightforward time derivative of the linear, one-dimensional shape functions 

to get directly at dS/dt. The term given by Equation (7) can be seen to be a correction for 

the convective effects of mesh motion [17]. 

For the Galerkin method, we use the shape functions as the weighting functions, mul-

tiplying Equation (5) by the transposed shape function array, [S]T, and integrating over 

the element area. To evaluate the term involving the second spatial derivative (the Lapla-

cian in higher dimensions), the second terms were converted into first-order terms using 

the chain rule, and rearranging terms (see Moaveni Ch. 9 [8]): 

[𝑆]𝑇 𝜕2𝑇

𝜕𝑥2 =  
𝜕

𝜕𝑥
([𝑆]𝑇 𝜕𝑇

𝜕𝑥
) −

∂[𝑆]𝑇

𝜕𝑥

𝜕T

𝜕𝑥
  (8) 

The area integral of the first resultant term in Equation (8) becomes an integral 

around the element boundary, accounting for derivative boundary conditions, using 

Green’s Theorem. However, we ignore domain boundaries in this part of the analysis and 

apply these boundary conditions later. For now, we drop this term and use the second, 

noting that: 
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𝜕T

𝜕𝑥
=  

𝜕[𝑆]

𝜕𝑥
{θ}  (9) 

Putting all of this together, pulling functions of only the nodal temperatures out of 

the integrals and arranging, we get: 

(∫[𝑆]𝑇[𝑆]𝑑𝐴) 
𝜕{θ}

𝜕𝑡
+ (∫[𝑆]𝑇 𝜕[𝑆]

𝜕𝑡
𝑑𝐴) {θ} + 𝛼 (∫

𝜕[𝑆]𝑇

𝑑𝑥

𝜕[𝑆]

𝜕𝑥
){θ} = 0  (10) 

which gives the matrix form of the moving mesh finite element equation: 

 [𝑀]
𝜕{θ}

𝜕𝑡
+ ([𝑁] + 𝛼[𝐾]){θ} = 0  (11) 

where: 

                      [𝑀] =  ∫[𝑆]𝑇[𝑆]𝑑𝐴   (12) 

[𝐾] =  ∫
𝜕[𝑆]𝑇

𝜕𝑥

𝜕[𝑆]

𝜕𝑥
𝑑𝐴  (13) 

[𝑁] =  ∫[𝑆]𝑇
𝜕[𝑆]

𝜕𝑡
𝑑𝐴  (14) 

The matrices are commonly known as M—mass matrix, K—stiffness matrix (by anal-

ogy with mechanics problems), and N is a matrix associated with the movement of the 

mesh, or a velocity matrix. Note that the spatial derivatives of the shape functions are not, 

themselves, dependent on the spatial variables, and are pulled out of the integrals and 

easily evaluated from the nodal coordinates. Similarly, the derivative of Xi with respect to 

time also comes out of the integral and can be calculated from the difference between 

nodal coordinates from the current and last time step. Elemental matrices are assembled 

into subdomain matrices separately for each of the two subdomains, leading to an ordi-

nary differential equation of this form for each subdomain. The remaining integrations 

involve only Si or SiSj terms. These are easily solved as well, either using the form of the 

shape function in one dimension or relationships for the area integration of triangular 

shape functions (S1, S2 and S3) [18]: 

∫  (𝑆1)𝑚  (𝑆2)𝑘(𝑆3)𝑙𝑑𝐴 =
𝑚!𝑘!𝑙!

(𝑚+𝑘+𝑙+2)!
2𝐴  (15) 

where m, k, and l are any integer exponents. 

The Stefan condition is imposed at the interface (phase change boundary) between 

the two subdomains at the beginning of each time step to determine the displacement 

(and thus velocity) of the boundary. The general Stephan condition is, where subscript s 

refers to the solid, or frozen, region, and subscript l to the liquid, or thawed, region: 

𝑘𝑠∇𝑇𝑠 ∙ �̂� − 𝑘𝑙∇𝑇𝑙 ∙ �̂�  =  𝐿�̅� ∙ �̂�  (16) 

In one dimension, v is dSn/dt, where dSn is the change in position of the boundary, or 

thaw-front): 

𝐿
  𝑑𝑠

𝑑𝑡
=

−𝑘𝑙 𝜕𝑇𝑙(𝑎𝑡 𝑡ℎ𝑎𝑤 𝑓𝑟𝑜𝑛𝑡)

𝜕𝑥
+

𝑘𝑠 𝜕𝑇𝑠(𝑎𝑡 𝑡ℎ𝑎𝑤 𝑓𝑟𝑜𝑛𝑡)

𝜕𝑥
  (17) 

where ks is the thermal conductivity in the solid/frozen region, and kl is the thermal con-

ductivity in the liquid/thawed region. 

Mori [16] presented clearly the algorithm for solving this problem in one dimension 

with the freeze-thaw boundary moving as given by a numerical solution of this Stefan 

condition and the rest of the subdomains then equally divided into a fixed number of 

elements. Mori also gave the forms of the assembled matrices. 

Time is discretized using an equal mesh of spacing Δt. The time derivative in the 

equations above are replaced by time differences, for example: 
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𝜕θ𝑖

𝜕𝑡
≈

θ𝑖
𝑛𝑒𝑤− θ𝑖

𝑜𝑙𝑑

∆𝑡
  (18) 

The discretization of the time derivative may be done with a mixing ratio, µ, of from 

fully forward to fully backward. Although the code retains this ability, all runs were done 

with a fully backwards difference method (µ = 1 in the equation below. µ = 0 would be 

fully forward). 

The equation solved to give nodal temperatures at the current time step is (Equation 

(14) from Mori, note x = A\B is the solution to Ax = B): 

{𝜃𝑛𝑒𝑤} = ([𝑀] + 𝜇 ∙ 𝑑𝑡(𝛼[𝐾] + [𝑁]))\(([𝑀] − (1 − 𝜇) ∙ 𝑑𝑡(𝛼[𝐾] + [𝑁])){𝜃𝑜𝑙𝑑})  (19) 

Mori’s algorithms were first coded in 1-D and then generalized to two dimensions 

using triangular elements and barycentric coordinates (Ai/A), following a similar ap-

proach to the method of Beckett et al. [17]. 

Mori used the simpler, one-dimensional Stefan condition given in Equation (17) 

above. Equation (16) above gives the general, multi-dimensional Stefan condition. To use 

this equation for the two-dimensional case, the slope of the normal to the thaw-front curve 

was found at each node using the coordinates of neighboring nodes on the front and used 

to calculate a unit normal. Then the nearest nodes in the normal direction to each node on 

the front were found. The actual direction of the vector between these nearest nodes and 

the thaw-front node was found, and also their temperatures from the last time step. This 

allowed the magnitude and direction of movement of each thaw-front node to be deter-

mined. Then all nodes were moved (except those on the top and bottom of the domain) in 

the same direction and magnitude as that of the nearest thaw-front node. This helped to 

avoid geometry issues including triangular mesh flipping and nodes moving past other 

nodes. 

2.3. Boundary Conditions 

Temperature (Dirichlet) and flux (Neumann) boundary conditions were used at the 

physical boundaries of the models. Soil in contact with air (the top surface and cliff faces) 

was modeled using a factored seasonal sinusoid temperature boundary condition with 

coefficients applicable to the north coast of Alaska as determined by Zottola [3] based on 

seasonal average highs and lows from the temperature record. It would have been much 

more challenging to implement a fully physical air-ground boundary condition account-

ing for long and short wavelength radiation, air convection and the latent heat of evapo-

ration. Although using this method for ocean-cliff face erosion would involve a water 

boundary condition as well, we did not implement this boundary condition for this paper. 

Soil in contact with water will generally have a convective boundary condition only, alt-

hough radiative heat transfer is possible where significant radiation is able to travel 

through the depth of the water. However, water-soil boundary conditions could also be 

modeled with a suitable temperature boundary condition. The underground sides of the 

model domain were modeled as a no-flux boundary. For ease of modeling, and because it 

was reasonably consistent with the data used, a constant temperature boundary condition 

was used at the bottom of the domain. Nodes on the freeze-thaw boundary had an im-

posed temperature boundary condition (0 °C) to enhance the stability of the solution. 

2.4. Initial Conditions 

Initial conditions were generally set based on the depth of the node only. Depending 

on the problem to be solved, they are either generated by an initial analytical solution to 

a simple Stefan Problem or derived from borehole thermistor temperature data. In the 

latter case, a fit was made to the data in each of the two regions (thawed and frozen), 

giving an equation of temperature vs. depth for each region. Nodes in the two regions 

were set to an initial temperature based only on their depth in the soil profile.  
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3. Results 

3.1. Analytical Check  

An analytical check was run on the two-dimensional version of the model, compar-

ing results to those obtained from the Neumann Analytical solution to the Stefan problem. 

Table 1 gives the parameters used in this comparison. First, a one-dimensional analytical 

solution was obtained after a time period of three days (259,200 s) to use as an initial con-

dition to the numerical model (Figure 2). A limitation of the finite element model is that it 

cannot start with the phase change boundary at the surface—it must have finite thawed 

and frozen sub-domains to start with. From this initial solution, an initial depth of the 

phase-change boundary was established for the finite element model, as well as initial 

temperatures of nodes as a function of depth. Then the finite element model was run for 

one day (86,400 s) and compared to results from a purely analytical solution over the same 

time period. 

Table 1. Parameters used in numerical and analytical comparison. 

Total length, l = 2 m 

Thermal conductivity of thawed soil, k1 = 1.6 J/(s m C) 

Thermal conductivity of frozen soil, k2 = 1.2 J/(s m C) 

Volumetric heat capacity of thawed soil, c1 = 2.55 × 106 J/(m3C) 

Volumetric heat capacity of frozen soil, c2 = 2.35 × 106 J/(m3C) 

Volumetric latent heat of water, Lw = 3.34 × 108 J/m3 

Volumetric moisture content of soil, W = 40% 

Volumetric latent heat of soil, L = W∗Lw 

Phase change temperature, Tm = 0 C 

Boundary temperature at soil surface, Ts = 4 C 

Boundary temperature at bottom, Tb = −4 C 

Number of divisions in thawed and frozen regions, n1 = n2 = 5 

Total time of numerical simulation, t = 86,400 s 

time step, Δt = 0.1 s 
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Figure 2. Initial temperature conditions at nodes for the numerical model. 

Figure 3 shows good agreement of the temperature solution for all nodes after one 

day of simulation. 
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Figure 3. Comparison of Stefan analytical solution (‘exact’) with 2-D numerical solution at end of 

one-day simulation. 

Comparisons of the analytical results for the depth to thaw with the results of the 

one-day two-dimensional simulation (Figures 4 and 5) show that the deviation of the an-

alytical and numerical solution for the depth of thaw increases with time, reaching about 

1.4% at one day of simulation This is a small fraction of the nodal spacing, and shows 

good agreement over short timescales (on the order of hours or days). However, this de-

crease in accuracy with time recommends this technique to these shorter timescales of 

modeling 

 

Figure 4. Deviation of analytical solution (blue) from 2-D numerical solution (red) for thaw depth 

with time for one-day simulation. 
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Figure 5. Percent difference between analytical and 2-D numerical solution of thaw depth with time 

for one-day simulation. 

As an interesting comparison, Figure 6, below, presents results of the same two-di-

mensional simulation as Figure 3, but without using the N matrix (the nodal-velocity ma-

trix, correcting for the effects of the moving mesh), showing the small but helpful addition 

of its correction on the full temperature solution, although its effect on thaw depth solu-

tion is negligibly small for this simulation: 
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Figure 6. Comparison of Stefan analytical solution (‘exact’) with 2-D numerical solution at end of 

one-day simulation neglecting the moving-mesh correction. 

3.2. Check against 15 Days of Barrow Data and Finite Difference Model Results 

Ravens et al. [5] used borehole temperature data from Barrow to calibrate thawed 

and frozen soil volumetric heat capacities, c, and thermal conductivity, k, for an earlier, 

one-dimensional finite difference model. Figure 7 below shows that original calibration 

using 15 days of available borehole thermistor-string temperature data as initial condi-

tions and a comparison between model results and final borehole temperatures to cali-

brate heat capacities and conductivities. The values arrived at are reasonable values for 

high-moisture content soils.  
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Figure 7. Barrow borehole thermistor data compared to model results. Initial thermistor data is in 

blue and used as initial conditions for the models. Thermistor temperature data after 15 days is in 

orange and was used to calibrate soil thermal parameters for the 1D Finite difference model, in red. 

Results of this 2D finite element model, using these soil parameters, are in black. 

The two-dimensional finite element model was run using these physical parameters 

(Table 2) and a sinusoidal surface boundary condition for Barter Island given in Zottola’s 

2016 thesis [3]. Excel’s fit function was used to determine a polynomial fit of initial tem-

peratures with depth in the two regimes (thawed and frozen) and those equations were 

used to determine initial conditions at model nodes. The results of this model are also 

plotted on Figure 7 and show good agreement with data and the previous finite difference 

model. It should be noted that, in previous work, the soil parameters were varied to give 

a good fit between the one-dimensional finite difference model and data, while the pa-

rameters so arrived at were used as-is in the two-dimensional FEM model. Thus, one 

would expect the FEM agreement to be less good. Given the real-world intricacies of the 

problem (non-ideally sinusoidal surface temperatures, varying soil characteristics and pa-

rameters, varying phase-change temperatures, etc.), the fit with data of the FEM model 

results is still considered very good. 

Table 2. Parameters used in numerical comparison to Barrow data (also used for comparison to 

Barter Island data with slightly modified d, t, Ts and Tb). 

Total horizontal dimension of model, l = 4 m 

Total depth of model, d = 9 m 

Node spacing at phase change boundary, 0.05 m 

Thermal conductivity of thawed soil, k1 = 1.6 J/(s m C) 

Thermal conductivity of frozen soil, k2 = 1.2 J/(s m C) 

Volumetric heat capacity of thawed soil, c1 = 2.55 × 106 J/(m3C) 

Volumetric heat capacity of frozen soil, c2 = 2.35 × 106 J/(m3C) 

Volumetric latent heat of water, Lw = 3.34 × 108 J/m3 

Volumetric moisture content of soil, W = 40% 

Volumetric latent heat of soil, L = W∗Lw 

Phase change temperature, Tm = 0 C 

Boundary temperature at soil surface, Ts = −6.8 − 13.5cos(2π((i Δt/86.4 × 103) + 165 − 26)/365) 1 

Boundary temperature at bottom, Tb = −7.787 C 

Total time of numerical simulation, t = 15 days 

time step, Δt = 10 s 
1 Ts = −6.8 − 13.5cos(2π((i Δt/86.4 × 103) + 165 − 26)/365)—temperature at soil surface for each time 

step, i, is functionally the same as the surface temperature condition given by Zottola [3], in that I = 

0 corresponds with Julian day 165. 

3.3. Check against 49 Days of Barter Island Data 

Thermistor temperature data from a borehole near a shore-cliff in Barter Island (see 

Figure 8) was simulated with this two-dimensional FEM model using parameters given 

for the Barrow 15-day calibration above (Table 2).  
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Figure 8. Map of data location for Barter Island borehole temperature data, borehole location in 

yellow. 

Parameters differing from those given for the Barrow calibration above were that the 

total depth modeled was 15 m, the constant bottom temperature condition was Tb = −5.5 

C to match the Barter Island borehole data, and that the surface temperature boundary 

condition function was modified slightly to better match the initial and final surface tem-

peratures in the model: 

Ts = −6.33 − 13.5(2π((i Δt/86.4 × 103) + 170 − 26)/365), for model start at Julian day 170  

An initial simulation was run with a horizontal surface boundary condition and no-

flux (infinite) side boundary conditions. This did not match well with the top part of the 

data near the end of the run (Figure 9), and an analysis of all of the thermistor data (Figure 

10) showed daily temperature swings were strongly affecting the top five to six meters of 

the borehole, indicating the near-by presence of the beach-cliff. The height and distance 

to the cliff are within one to three meters of the cliff, and five meters is the height. There-

fore, a cliff was modeled on the left side of the model by imposing the surface boundary 

temperature condition to a depth of five meters. As seen in Figure 10, the results of this 

simulation compare favorably with the data. A more exact match with thaw depth and 

other features could be acquired by varying soil parameters (c, k, percent moisture) and 

perhaps the geometry of the model. A simpler set up of the model parameters (a constant 

surface temperature with no ‘cliff’ in the model, as in the other Neumann analytical solu-

tion checks) agreed with an analytical solution to within about 0.02 m. This indicates that 

the model is working well, and parameters may not match perfectly with field conditions 

or actual boundary conditions. Figure 11 shows the geometry of the mesh (left) and how 

it changes by the end of the simulation (right).  
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Figure 9. Data and modeling results for Barter Island. 

 

Figure 10. Thermistor data showing daily temperature effects evident to at least 5 m in depth. 
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Figure 11. Initial (left) and final (right) meshes for 49-day Barter Island Simulation. The thawed 

region is shown separately from, and above the frozen region in each case. The gap between the 

regions is not physical, the top is spatially continuous with the bottom, the discontinuity represents 

the phase-change boundary accounted for in the model. 

3.4. ANSYS Comparison 

ANSYS Mechanical is commercial software that can model heat transfer using the 

finite element method. 

ANSYS models were set up and ran with parameters as close as possible to those 

used in the moving mesh models. ANSYS uses enthalpy and conductivity functions, these 

were made sharp (frozen values of k and c constant to −0.01 °C, thawed values constant 

from 0.01 °C) to match the moving mesh model. A purely backwards difference time de-

rivative was used as in the models above for unconditional stability. ANSYS does not 

allow the use of linear triangular elements for 2-D thermal solutions, so linear quad ele-

ments were used. The moving mesh model used smaller elements near the phase change 

boundary and larger elements further away, partially to help keep geometric problems to 

a minimum at the domain boundaries.  

As a check on the relative accuracies of ANSYS and this model, both were run with 

the analysis parameters in Table 1, above. The results compared with the analytical solu-

tion are plotted in Figure 12 below and show that the moving mesh model tracks the phase 

change boundary and temperatures near that boundary much more accurately. In the one-

day run, a reasonable interpolation between nodes to find the depth to thaw would over-

predict this depth by almost 0.1 m. By ten days, the depth of thaw can be more accurately 
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inferred from the ANSYS results than it could be at one day, but the predicted tempera-

tures are up to about 0.5 °C off of expected. For the moving mesh model, thaw depth 

agreement is within about 0.0025 m and temperatures within about 0.25 °C. 

 

Figure 12. Temperature with depth results for one and ten day runs of the moving mesh and ANSYS 

models compared with the Neumann Analytical Solutions. 

4. Conclusions 

In this work a numerical model was developed and verified.  

1. One-dimensional formulation of the models were checked and compared well with 

those presented in the reference used for the algorithm [16]. 

2. One-dimensional and the two-dimensional version of the model were verified, with 

constant temperature boundary conditions, against the Neumann solution to the 

Stefan problem (a classic analytical solution to a simple two-phase phase change 

problem). 

3. Temperatures with depth agreed reasonably well, and thaw depths agreed to within 

a few percent at all times in simulations up to 60 days in length, or within 0.02 m, 

often an order of magnitude better. 

4. Thaw predictions of the moving mesh model agreed well with two borehole thermis-

tor data sets collected for 15 days of from Barrow, and for 49 days from Barter Island. 
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