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Abstract: Under irradiation, the formation of fission products in the (U,Pu)O2 fuel with time has a
substantial effect on its chemistry. In particular, migration of the most volatile fission products (Cs,
Te, I, Mo) from the center to the periphery of the fuel pellet is induced by the large radial thermal
gradient. To predict the thermodynamic properties of the irradiated fuel, thermodynamic modeling
of the complex multi-component (Cs-I-Te-Mo)–(U-Pu)–O system is performed using the CALPHAD
method. In this work, the thermodynamic assessment of the U–Te sub-system is performed. The
literature review reveals a lack of experimental data as well as scattering and inconsistency of some
of the data. In particular, no thermodynamic data exist on the liquid. From this review, input
thermodynamic and phase diagram data are carefully selected. The Gibbs energy functions are then
adjusted by fitting these data. An overall good agreement is obtained with all the selected data
except for the enthalpy of formation for UTe which is underestimated by 13% by our model. This
could be due to an inconsistency between the enthalpy of formation and vapor pressure data. In
a second step, the uncertainties on the thermodynamic parameters and their propagation on the
calculated thermodynamic and phase diagram data are estimated using a Bayesian approach. The
analysis shows that there are too many parameters (22) for too few data points (120 points). The
uncertainties are thus large on some of the calculated data. Moreover the inconsistency of some
of the data and the lack of thermodynamic data for the liquid makes the model uncertain. New
experimental data such as heat capacity, enthalpy of formation for the compounds, and chemical
potentials or activities for the liquid phase would improve the reliability of our model. Measurements
of phase diagram data in the U–UTe2 region are also required. However this work provides the
first detailed uncertainty analysis of the U–Te CALPHAD model. Moreover our approach, contrary
to other Bayesian methods, provides an analytical posterior probability distribution and analytical
credible intervals for the calculated thermodynamic quantities. It also speeds up the simulation of
the uncertainty estimations on the phase diagram.
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1. Introduction

In sodium-cooled fast reactors (SFR), the fuel pins are made of uranium and plutonium
dioxide (U,Pu)O2 pellets stacked in steel cladding. These fuel pellets undergo a large radial
thermal gradient with a temperature of about 2200 K in the center and 850 K in the rim.
Numerous fission products (FPs) are produced in the fuel through the fission nuclear
reactions. Among these fission products, the most volatile ones such as iodine, cesium,
tellurium, and molybdenum migrate from the center to the periphery of the fuel pellet
and form a layer enriched in these fission products, the so-called “Joint-Oxyde-Gaine”
or JOG [1,2]. With time, these fission products can attack the steel cladding to form the
so-called “Reaction-Oxyde-Gaine” or ROG, which is a limiting factor for the cladding
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lifetime. To supply the models predicting the JOG and ROG layer thickness, the TAF-ID
(Thermodynamics of Advanced Fuels–International Database [3]) thermodynamic database
is being developed on the (U-Pu-O)–(I-Cs-Te-Mo)–(Fe-Cr-Ni) system using the CALPHAD
method [2,3].

In the CALPHAD method [4], the Gibbs energies of all the phases (solids, liquid,
gas) in the binary and ternary sub-systems are described as a function of temperature,
composition, and pressure (only for the gas phase). By extrapolation from the sub-systems,
the thermodynamic equilibrium in a multi-component system can then be calculated by
minimizing the total Gibbs energy of the system. This powerful method has been exten-
sively used since the ’80s to calculate phase equilibria and thermodynamic properties of
multi–component systems. In these models, the thermodynamic parameters are assessed
by fitting the available phase diagram and thermodynamic data. Nevertheless, the propa-
gation of these fitting data uncertainties onto the thermodynamic parameters featured in
the Gibbs energy functions in the CALPHAD models are rarely estimated. A few works
have been published on this topic, see [5–7] for the most recent analyses. Moreover the
propagation of these uncertainties on the calculated phase diagram and thermodynamic
data are almost never determined. However it is crucial to estimate these uncertainties, in
particular when these models are used in multi-physics codes like for instance the Fuel
Performance Codes (ALCYONE and GERMINAL) which is used to simulate the thermo-
mechanical behavior of a fuel pin [1,2]. The influence of these uncertainties on the physical
properties and the behavior of the fuel (margin to the melting, thermal conductivity, . . . )
has to be studied.

In the present work, the thermodynamic modeling of the U–Te binary sub-system is
first performed using the PARROT module in the Thermo-Calc software [8]. In a second
step, a Bayesian approach is applied to estimate the uncertainties on the thermodynamic pa-
rameters and their propagation on the calculated phase diagram and thermodynamic data.

The state of the art on the crystal structure data of the UxTey compounds, the phase
diagram, and thermodynamic data is first presented in Section 2. The models to describe the
Gibbs energy of the phases are described in Section 3. From these selected data and Gibbs
energy models, a least-square method is applied to assess the Gibbs energy functions of the
phases. In Section 4, the results of the fitting procedure are presented and the uncertainties
on the assessed thermodynamic parameters are estimated using a Bayesian approach. Their
propagation on the calculated thermodynamic and phase diagram data is then described.
Finally, all the results are discussed.

2. State of the Art on the U–Te System and Selection of the Data for the Assessment

In this section, the crystal structure and thermodynamic data on the UxTey compounds
and the phase diagram information are reviewed. From this critical review, the input data
for the optimization procedure are selected.

2.1. Crystal Structure Data

Numerous compounds exist in the U–Te system: U10Te, UTe, U3Te4, U2Te3, U3Te5,
U7Te12, β-UTe2, α-UTe2, U2Te5, UTe3, U2Te7, UTe5. In 1993, Okamoto [9] reviewed the
crystal structure data on the compounds. The data are reported in Table 1 based on the
most recent works of Hermannsdörfer et al. [10] for UTe, Tougait et al. [11] for U2Te3 and
U3Te5 and Stöwe [12] for α-UTe2 and UTe3.

In the review by Okamoto [9], U7Te12 is reported instead of U3Te5 in the phase
diagram. The author argued that the structure of U3Te5 was not well defined. Later, Tougait
et al. [11] investigated the crystal structure of both U3Te5 and U2Te3 by neutron diffraction.
Thus based on these updated data, the compound U3Te5 is finally considered instead of
U7Te12. Nevertheless, it is not clear whether this compound is stoichiometric or exhibits a
small composition range. Due to the lack of reliable data, U3Te5 will be considered as a
stoichiometric compound in the present work.
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The high temperature β-UTe2 form was reported in the phase diagram of Slovyan-
skikh et al. [13] whose experimental work clearly showed an allotropic transition for this
compound. However, the crystal structure of the β form is not known.

The possible existence of U2Te7 was reported in the phase diagram of Okamoto [9].
However, due to the lack of data, it is not considered in the present work.

The compounds highlighted in bold in Table 1 are considered in our model. Due to
the lack of reliable data on compounds composition range, only stoichiometric compounds
are considered in the present work.

Table 1. Crystal structure data on the phases of the U–Te system. The compounds in bold are
considered in the present work. The compounds in italic gray? are not taken into account.

Compounds Composition At. % Te Space Group Reference

γ-U 0 Im3m Okamoto (1993) [9]
β-U 0 P42/mmm Okamoto (1993) [9]
α-U 0 Clcl Okamoto (1993) [9]

U10Te? 9 Fm− 3m Okamoto (1993) [9]
UTe 50 Fm-3m Hermannsdörfer et al. (2006) [10]

U3Te4 57.1 I-43d Solvyanskikh et al. (1977) [14]
U2Te3 60 Pnma Tougait et al. (2001) [11]
U3Te5 62.5 Pnma Tougait et al. (2001) [11]

U7Te12
? 63.2 P− 6 Tougait et al. (1998) [15]

β-UTe2 66.7 Unknown Okamoto (1993) [9]
α-UTe2 2 2 Stöwe (1996) [12]
U2Te5 71.4 C12m1 Tougait et al. (1997) [16]
UTe3 75 P121/m1 Stöwe (1996) [12]

U2Te7
? 77.8 Unknown Okamoto (1993) [9]

UTe5 83.3 Pnma Boehme et al. (1992) [17]
Te 100 P3121 Okamoto (1993) [9]

2.2. Phase Diagram Data

The phase diagram data coming from the literature are summarized in Table 2 and
reviewed in this section.

Slovyanskikh et al. [13] investigated the UTe–Te region using differential thermal
analysis (DTA) and X-ray diffraction. From the DTA measurements, a eutectic reaction
between UTe5 and Te and the peritectic decompositions of UTe5, UTe3, U3Te7, UTe2, and
U3Te5 were highlighted. A polymorphic transition for UTe2 was also found to occur at
1125 °C. The compounds U2Te3, UTe2, U3Te5, U3Te7, UTe3, and UTe5 were identified using
X-ray diffraction. A small region of homogeneity was assumed for UTe2 and U3Te5. Finally,
liquidus temperatures were carefully measured from UTe2 to Te.

The U rich region from 0 to 65 at. % Te was later investigated using the same methods
by Ellert et al. (1975) [18]. The melting point of uranium monotelluride was measured
at 1730 °C. The authors reported that the temperature of the eutectic between U and UTe
measured at 1180 °C was probably overestimated due to a partial dissolution of the crucible
material. Liquidus temperatures were also determined. In the UTe–Te region, the authors
mention that the results obtained in the range 50–57.2 at. % Te are uncertain. The U3Te4
compound was assumed to decompose by a peritectic reaction at 1540 °C. The range
57.2–60 at. % Te was found to be a single phase region (with Th3P4 crystal structure) with
U3Te4 and U2Te3 as boundary compositions. A peritectic decomposition temperature of
1500 °C was assumed for U2Te3. The peritectic decomposition of U3Te5 was measured
at 1300 °C instead of 1260 °C by Slovyanskikh et al. [13]. The authors in [13] suggest the
existence of a small composition range for U7Te12 between 63.2–63.8 at. % Te given their
results with X-ray diffraction.
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In 1985, Czechowicz [19] proposed a phase diagram based on the data of Slovyanskikh
et al. [13].

A phase diagram of the U–Te system was later proposed in the review by Okamoto
in 1993 [9], mainly based on the experimental data of Ellert et al. (1975) [18]. Only the
compounds U7Te12 and U2Te5 were considered instead of U3Te5 and U3Te7. A composition
range was also represented for the UTe2 compound.

Recently, in 2017, Wolf [20] performed a thermodynamic assessment of the U–Te
system using the Calphad method. The experimental data are not reported on the calculated
phase diagram in [20]. However the calculated liquidus curve and the experimental data
are not in good agreement.

Table 2. Phase diagram data on the U–Te system.

Composition Range At. % Te Method Reference Comments

58–100 DTA, XRD Slovyanskikh et al. (1968) [13] Selected
0–65 DTA, XRD Ellert et al. (1975) [18] Selected

0–100 Review Czechowitz (1985) [19] Not selected
0–100 Review Okamoto (1993) [9] Not selected

100 Calphad model Wolf (2017) [20] Not selected

In conclusion, the phase diagram is well established in the region from UTe2 to pure
Te based on Slovyanskikh et al. [13]. However, the decomposition temperatures of the
compounds and the liquidus data remain uncertain in the UTe–U3Te5 composition range.
Moreover the liquidus in the U–UTe part is still not well known. For the optimization
procedure, we selected only the experimental data measured by Slovyanskikh et al. [13]
and Ellert et al. [18]. The compounds (in bold in Table 1) were selected and considered as
stoichiometric in the present work.

2.3. Thermodynamic Data

All the data are reported in Table 3. No data exist on the liquid phase and very few
measurements were performed on the solid compounds.

Westrum [21] estimated the standard entropies of UTe, U3Te4, U2Te3, UTe2, U2Te5, and
UTe3 compounds.

There are not any heat capacity measurements. Only estimations are provided by
Czechowicz [19] and Wolf [20]. The estimation values from Czechowicz [19] are sig-
nificantly higher than those from Wolf [20] at high temperatures. Due to the lack of
experimental data, the Cp(T) data of Wolf [20] based on the Kopp–Neumann rule are
considered in the present work for all compounds.

All the enthalpy of formation data are reported in Figure 1. The enthalpy of for-
mation for UTe and U3Te4 was measured by direct-reaction calorimetry using a Calvet-
type high-temperature liquid metal (tin) solution calorimeter. The values are equal to:
−182.4 ± 11.3 kJ/mol for UTe and −228.0 ± 1.3 kJ/mol for UTe1.33. The enthalpy of for-
mation for UTe2 was also estimated to be −318 kJ/mol by the authors assuming a linear
relation to the Te/U ratio.

Czechowicz [22] reported uncertainties in the work of Baskin et al. [23] due to the
uncertain percentage of each phase in the samples for calorimetric measurements. Later
Mills [24] reviewed the data and assigned them larger uncertainties: −182.4 ± 20.9 kJ/mol
for UTe and −684.1 ± 83.7 kJ/mol for U3Te4. These solely experimental data of Baskin
et al. [23] for UTe, U3Te4 are selected in this work.
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Figure 1. Enthalpy of formation data of the UxTey compounds coming from the literature. The
uncertainty bars on the experimental data measured by calorimetry (in blue) are reported.

There are no other enthalpy of formation measurements. However in 1985, Czechow-
icz [19] published estimated thermodynamic data (∆H0

f ,298.15K, S0
298.15K, Cp(T), ∆H f usion)

on UTe, U3Te4, U2Te3, U3Te5, UTe2, U3Te7, UTe3, and UTe5. The authors only mentioned
that the thermodynamic data were obtained from the literature or estimated without any
further explanation. Recently Wolf [20] derived a Calphad model on U–Te. The authors
also reported thermodynamic data (∆H0

f ,298.15K, S0
298.15K, Cp(T)) for the compounds. For

all the compounds except UTe and U3Te4, the data of Czechowicz [19] were selected. The
data of Wolf [20] were discarded due to the disagreement with the data of Baskin et al. [23]
for U3Te4.

More recently, density functional theory (DFT) calculations were performed on U–Te
compounds by Qian et al. [25]. Additionally, other DFT data are available in the OQMD
database [26]. Very large discrepancies are found between both DFT studies. Moreover
none of these studies are in agreement with the experimental data of Baskin et al. [23] for
UTe, U3Te4, and UTe2. Therefore the DFT data were not used.

Measurements of Te2 equilibrium vapor pressure were performed in two phase regions:
UTe3-U2Te5 by Slovyanskikh et al. [27] using a manometer, UTe2/U3Te5 by Sevast’yanov
et al. [28] and in U3Te4/UTe by Czechowicz [22] by high temperature mass spectrometry.
Czechowicz [22] provided a detailed description of their experimental conditions and
results analysis. The authors reported the inconsistency of their results with the enthalpy
of formation data of Baskin et al. [23]. However the large uncertainties in the experimental
work of Baskin et al. [23] due to the unknown percentage of the phases in the calorimetric
products was mentioned. All the vapor pressure data were used in the present work.

In conclusion, for the optimization procedure, we selected the heat capacity functions
derived by Wolf [20], the experimental data of Baskin et al. [23] for the enthalpy of formation
of UTe and U3Te4 and the estimated data of Czechowicz [19] for the other compounds. The
only existing standard entropies estimated by Westrum [21] were also considered. Finally
all the Te2 partial pressure data measurements by Slovyanskikh et al. [27], Sevast’yanov
et al. [28], and Czechowicz [22] were used.
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Table 3. Thermodynamic data on the phases of the U–Te system. *: the condensed phases were not
characterized. The reported phases by Czechowicz 1986 [22] were proposed on the basis of the phase
diagram. The method DFT+U refers to the density functional theory + Hubbard model.

Thermodynamic Data Phases Method Reference Comments

S0
298.15K

UTe, U3Te4, U2Te3
UTe2, U2Te5, UTe3

Estimation Westrum 1962 [21] Selected

∆H0
f ,298.15K UTe, U3Te4

Direct reaction
calorimetry

Baskin and Smith
1970 [23] Selected

∆H0
f ,298.15K , S0

298.15K
Cp(T), ∆H f usion

UTe, U3Te4, U2Te3, U3Te5
UTe2, U2Te5, UTe3, UTe5

Estimation Solgasmix Czechowicz 1985 [19] ∆H0
f ,298.15K selected

except UTe and U3Te4

pTe2 *UTe3/U2Te5

Quartz membrane
null manometer

Chemical transport
reaction

Slovyanskikh et al.,
1967 [27] Selected

pTe2 *UTe2/U3Te5

Bourdon null
manometer

Chemical transport
reaction

Sevast’yanov et al.,
1971 [28] Selected

pTe, pTe2 U3Te4/UTe KEMS Czechowicz 1986 [22] Selected

∆H0
f ,298.15K , S0

298.15K
Cp(T)

UTe, U3Te4, U2Te3, U3Te5
UTe2, U2Te5, UTe3, UTe5

Calphad model Wolf 2017 [20] Only Cp(T) selected

∆H0
f ,0

UTe, U3Te4, U2Te3
U3Te5, U7Te12, UTe2
U2Te5, UTe3, UTe5

DFT+U Qian et al., 2021 [25] Not selected

∆H0
f ,0

UTe, U3Te4, U2Te3, U3Te5
UTe2, U2Te5, UTe3, UTe5

DFT OQMD [26] Not selected

3. Thermodynamic Modeling with the CALPHAD Method

The Gibbs energy functions for all the phases of the uranium–tellurium system are
described. Then the strategy for the optimization procedure with PARROT is explained.

3.1. Gibbs Energy Models

All the Gibbs energy functions are referred to the enthalpy of the pure elements in
their stable state at 298.15 K and 1 atm (designated as HSER

i ). For the pure elements U
and Te in their different states, the Gibbs energy functions are taken from the SGTE pure
database [29].

For all the stoichiometric compounds, the Gibbs energy function is expressed as
follows

Gφ
m −∑

i
bφ

i HSER
i = a0 + a1T + a2Tln(T) + a3T2 + a4T−1 (1)

where bφ
i is the stoichiometric factor of element i in the compound φ and an are unknown

parameters to be estimated. For the UxTey compounds, the an coefficients (with n = 2, 3, 4)
are fixed using the Cp(T) functions provided by Wolf [20] assuming a Kopp–Neumann law.

For the liquid phase, the ionic two-sublattice model [30] is chosen to keep the consis-
tency with the model for this phase in the TAF-ID database [3]. The sublattice model is the
following one

(U+4)P(Va−Q, Te, UTe)Q.

In this model, uranium cation U+4 is in the first sublattice and charged vacancies
(Va−Q), neutral Te and UTe species are introduced in the second sublattice. The site
numbers P and Q are defined as the average charges of the second and first sublattices,
respectively
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P = Q yVa−Q

Q = 4.
(2)

The charge electroneutrality of the liquid phase is maintained by varying the charge
–Q of the vacancies which varies with the composition in Te (or U). The Gibbs energy of the
liquid phase is then expressed by

Gliq
m = yVaGliq

(U+4)(Va) + yTeGliq
Te + yUTeGliq

UTe + QRT(yValnyVa + yTelnyTe + yUTelnyUTe)

+ yVayUTe

(
L0
(U+4)(Va,UTe) + (yVa − yUTe)L1

(U+4)(Va,UTe) + (yVa − yUTe)
2L2

(U+4)(Va,UTe)

)
+ yUTeyTe

(
L0
(UTe,Te) + (yUTe − yTe)L1

(UTe,Te) + (yUTe − yTe)
2L2

(UTe,Te)

)
.

(3)

The interaction terms have a linear dependence in temperature defined by

Li
(UTe,Te) = bi + ciT. (4)

There are three end-members in the model: (U+4)1 (Va−1)4 corresponding to pure
uranium liquid, pure tellurium liquid, and UTe liquid. The introduction of the UTe species
is necessary to reproduce the shape of the phase diagram with a high melting point for UTe
and a complex liquidus curve in the UTe–Te part. Moreover, a short-range ordering in the
liquid is often observed in the Te-based systems which also justifies the introduction of UTe
species even if there are no experimental evidence of its existence.

The interaction terms Li
(U+4)(Va,UTe) and Li

(UTe,Te) allow the description of U–UTe and
UTe–Te parts of the phase diagram, respectively.

Finally, the gas phase is described by an ideal mixing of gaseous species (Te, Te2, Te3,
Te4, Te5, Te6, Te7, UTe, U) whose Gibbs energy functions oGgas

i come from [31] for all species
except for UTe [32]. The Gibbs energy is expressed as

Ggas = ∑
i

yi

[
oGgas

i −∑
j

bijHSER
j + RTlnyi

]
+ RTln

(
p
p0

)
(5)

where yi are the constituent fractions. Their sum is thus unity. bij is the number of atoms j
in the species i. The standard pressure p0 is set to 105 Pa. The partial pressure of species i
pi is related to the constituent fraction by

pi = yi p (6)

where p is the total pressure.

3.2. Optimization Procedure

As previously mentioned, the Cp(T) functions provided by Wolf [20] were selected
which allowed the a2, a3, and a4 coefficients to be fixed for all the compounds. As there
are no experimental data on the melting enthalpy of UTe, the value from the Solgasmix
database published by Czechowicz (1985) [19] was taken.

A first set of parameters (a0, a1) for UTe was assessed as well as the entropy of melting
of the compound using the following data: ∆H0

f ,298.15K, S0
298.15K, ∆H f usion, and Tmelting. The

other compounds were progressively introduced and interaction parameters in the liquid
were assessed to have a starting set of variables. All the compounds were forced to be
stable at 298.15 K by setting their driving forces to be equal to 0. The optimization was
then performed with PARROT to reproduce both the thermodynamic and phase diagram
data. The weights on the different experimental data had to be adjusted to get a final good
agreement with all the data within the error bars provided by the authors.
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4. Use of Conjugate Prior Distribution for CALPHAD Modeling

In this section, the uncertainty quantification on the parameters is studied through a
Bayesian approach for the CALPHAD modeling quantities. In the context of the CALPHAD
modeling, the integration of the uncertainty study is still at its early stage. However we
can quote the works of [5–7,33,34] in which the authors propose different methods to deal
with uncertainty management using the Bayesian approach. A wider list of references can
be found in ([35] Section III.3.3) as well as a more global description of the methods used in
these works.

In the following, we will consider the unknown parameters to be real random quanti-
ties and we will denote them with capital letters, that is A0 and A1 for the random unknown
quantities in the Gibbs energy model (1) and Bi and Ci for the parameters in the interaction
term Li. In the following, E[X] denotes the expectation (or mean value) of a real random
variable X and Var(X) its variance, that is respectively the average value of X and the
average of the squared distance (X−E[X])2. We also recall that the covariance between
two real random variables X and Y is defined by

Cov(X, Y) = E
[
(X−E[X])(Y−E[Y])

]
. (7)

When considering a set of several random variables, one can extend the definitions
of variance and covariance for this group of variables. This defines the covariance matrix,
which is the matrix that features the variance of each random and the pair-wise covariances.

4.1. Bayesian Inference

Before getting to the details of the method used in this work, some general description
of the Bayesian framework is presented in this section. Notice that we do not provide a
comprehensive description here. The interested reader is referred to Robert’s book [36] for
a more complete description of the Bayesian framework.

Parametric models such as Gibbs energy models (1) are fitted with a sample of data.
One can measure the goodness-of-fit with respect to such data via the so-called likelihood
function. As we consider a parametric model, the goodness-of-fit value is calculated for
given values of the unknown parameters An and given the fitting data values.

In the Bayesian approach of such parametric models, we consider that there exists a
prior knowledge on the parameters of interest An, that is to say that there exists an expert
advice about the values that An can take. The Bayesian inference allows the integration of
such anterior knowledge on An. Such knowledge is called the prior probability distribution
of the random variables An.

Thanks to Bayes’ theorem, these two quantities—the prior probability distribution and
the likelihood function—enable to determine the posterior probability distribution. This
posterior probability distribution gives the distribution of the parameters values, provided
that the experiments results are known. Put in another way, this posterior probability
distribution determines what values of the parameters have the most likely outcome when
knowing the values of the experiments and their experimental uncertainty.

4.2. Conjugate Prior Probability Distribution

The specificity of the approach used here is the use of the so-called conjugate prior
probability distribution. Usually, the determination of the posterior probability distribution
can be difficult and or numerically expensive. However, there exists some prior probability
distribution that works well with some models. It is the case when considering a Gaussian
prior probability distribution with a linear model: the Gaussian distribution remains Gaus-
sian when a linear transformation is applied, see for example [37] for more details. This
famous result from statistics is well adapted to the case of the CALPHAD modeling as the
Gibbs energy model (1) is linear with respect to the parameters An. In this specific case, we
can get a Gaussian posterior probability distribution. Notice that, apart from some cases,
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there is no guarantee to obtain an analytical posterior probability distribution. In [35] the
author studies the specific use of conjugate prior for the CALPHAD models.

Another interesting result is that a Gaussian distribution is entirely defined by its
mean value and its variance. In the case of conjugate prior probability distribution, a closed
form expression is known for the posterior mean ν and the posterior covariance matrix S.
They are given by the following matrix expressions

S =
(

DtsZ
−1D + s0

−1
)−1

(8)

and
ν = S

(
DtsZ

−1Z + s0
−1m0

)
(9)

where t denotes the matrix transposition operator and where sZ
−1 represents the inverse of

the matrix sZ. In the above expressions, the prior mean and the prior covariance matrix are
denoted by m0 and s0 respectively, the fitting data are denoted by Z and the experimental
uncertainties are denoted by sZ. Finally, D is the design matrix, that is the evaluated
functions that multiply each parameter. See [35] for more details about the conjugate prior
probability distribution approach for the CALPHAD models.

Finally, the adequacy between the number of model parameters and the degree of
freedom of the fitting data has been tackled in this work. This study relies on well-known
results from linear algebra and is beyond the scope of this paper. However, some details
can be found in the Appendix A.

4.3. Uncertainty on the Calculated Thermodynamic Quantities

In this section, we explain how to get the posterior probability distribution on calculated
thermodynamic data once we obtain the posterior probability distribution of the unknown
parameters. We specify how the posterior probability distribution is determined for some
specific quantities. Such quantities are the enthalpies of formation for the compounds UTe,
U3Te4, U2Te3, U3Te5, UTe2, U2Te5, UTe3 and UTe5; the entropies for UTe, U3Te4, U2Te3,
UTe2, U2Te5 and UTe3 compounds and the partial pressures for the two-phases regions
(UTe + U3Te4), (U3Te5 + UTe2) and (U2Te5 + UTe3). The results given in the following
subsections will be used in Section 5 for the comparisons of the posterior prediction and the
posterior prediction error with the experiments.

4.3.1. Enthalpy of Formation

Recall the chosen model (1) for the Gibbs energy functions of each compound, it is
well known that the enthalpy of formation at temperature T0 = 298.15 K of such compound
is given by

∆H0
f ,T0

= A0 − a2T0 − a3T2
0 + 2a4T−1

0 . (10)

Recall that the parameters a2, a3, and a4 are fixed using Cp(T) data, one can get the
posterior average value and a 95% credible set for ∆H0

f ,T0
thanks to well-known results

coming from statistics.
The posterior average value of the enthalpy of formation is given by

E
[
∆H0

f ,T0

]
= ν0 − a2T0 − a3T2

0 + 2a4T−1
0 (11)

where ν0 denotes the posterior mean of random parameter A0. The posterior variance of the
enthalpy of formation is given by

Var
(

∆H0
f ,T0

)
= Var(A0) = σ2

0 (12)

where σ2
0 denotes the posterior variance of random parameter A0.

The two previous quantities can then be used to express a 95% credible set for the
enthalpy of formation. Such intervals allow to display the uncertainty on the calculated
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quantity. The 95% credible interval is built by using the 2.5% and the 97.5% quantiles of
the Gaussian standard distribution, namely −1.964 and 1.964, respectively. The following
interval is then obtained for ∆H0

f ,T0[
ν0 − a2T0 − a3T2

0 + 2a4T−1
0 − 1.964σ0 ;

ν0 − a2T0 − a3T2
0 + 2a4T−1

0 + 1.964σ0

]
.

(13)

The credible interval (13) is centered and symmetrical with respect to the posterior
mean of ∆H0

f ,T0
(11). This interval is such that it includes the 95% of ∆H0

f ,T0
posterior values

that have the most likely outcome.

4.3.2. Entropy

Recall the chosen model (1) for the Gibbs energy functions of each compound φ, the
entropy at temperature T0 = 298.15K of such compound is given by

S0
T0

= −A1 − a2(1 + lnT0)− 2a3T0 + a4T−2
0 . (14)

Using the same method as for ∆H0
f ,T0

, one gets the following expressions

E
[
S0

T0

]
= −ν1 − a2(1 + lnT0)− 2a3T0 + a4T−2

0 (15)

and
Var
(

S0
T0

)
= Var(A1) = σ2

1 (16)

where ν1 and σ2
1 are respectively the posterior mean and the posterior variance of parameter

A1. In the same way, one defines the 95% credible set for the entropy[
− ν1 − a2(1 + lnT0)− 2a3T0 + a4T−2

0 − 1.964σ1 ;

− ν1 − a2(1 + lnT0)− 2a3T0 + a4T−2
0 + 1.964σ1

]
.

(17)

4.3.3. Partial Pressures for the Two-Phase Regions

The Gibbs energy function is related to the partial pressure by the relation

∆Gr = −RTln(pi) (18)

for each value of temperature T. The specificity of the partial pressures data is that they
are related to several compounds. For example, in the case of the partial pressures for the
two-phase region (UTe + U3Te4), the parameters of UTe and U3Te4 are both involved. In
this example, we have

∆Gr = 3GUTe + GTe(g) − GU3Te4 . (19)

As in the case of the enthalpy of formation and the entropy, the posterior mean of ∆Gr

is simply obtained by replacing the unknown random parameters by their posterior means.
This is due to the linearity of the expectation. However, the variance expression is slightly
more complicated. Given a temperature T1, we denote by F the following line-vector

F =
(
3 3T1 −1 −T1

)
. (20)
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For this given temperature, the variance of ∆Gr is given by

Var(∆Gr) = FS(UTe+U3Te4)Ft (21)

where the matrix S(UTe+U3Te4) is the covariance matrix related to the unknown parameters
for phases UTe and U3Te4.

As the assessor is usually interested in the uncertainty for an interval of temperatures,
the previous expression must be computed for each targeted temperature within the
interval range.

4.4. Uncertatinty on the Calculated Phase Diagram

Once having at hand the posterior probability distribution of all parameters An, the
uncertainty for phase diagram data can be estimated through Monte-Carlo simulations.
The method consists in sampling a great number N of the parameters An values from
the posterior probability distribution. For each set of parameters values, the associated
phase diagram can be computed. The uncertainty on each phase transition can then be
experimentally determined.

Notice that, unlike the uncertainty on the thermodynamic quantities, one can not give
an analytical credible interval for the phase transitions. This is due to the fact that the phase
transitions are obtained by minimizing the Gibbs energy functions for a given experimental
condition. The phase diagram does not depend linearly on the model parameters and
therefore, it is not possible to obtain an analytical posterior probability distribution for the
phase transitions.

5. Results and Discussion
5.1. CALPHAD Assessment

The assessed thermodynamic parameters of the phases using PARROT are reported in
Table 4.

The calculated phase diagram is compared to the experimental data in Figures 2 and 3.
In the UTe–Te region (Figure 3), a very good agreement is obtained with the experimental
data. The liquidus curve and the invariant reactions are very well reproduced from UTe2 to
Te. Only the plateau related to the polymorphic transition of UTe2 was not described in the
present assessment as the transition enthalpy of the compound is unknown. The liquidus
curve from UTe to UTe2 and the temperature of the peritectic decomposition of U3Te4 and
U2Te3 remain uncertain due to very few scattered experimental data in this region. In
the U–UTe region, the experimental data are scarce so the liquidus curve shape remains
quite uncertain. Moreover, the experimental eutectic temperature between U and UTe was
overestimated in the measurements due to a chemical interaction between the sample and
the crucible. Thus the discrepancy with the model was expected. New measurements shall
be performed to improve the phase diagram knowledge in the U–UTe2 composition range.

Concerning the thermodynamic data, the enthalpy of formation and standard en-
tropies of the compounds are calculated in Figures 4 and 5, respectively.

The available data from the literature are reported for comparison. The model is in
very good agreement with the experimental data of Baskin et al. [23] for U3Te4 whereas
it is less good for UTe and UTe2. However, the value for UTe2 was not measured but
estimated. Our calculated data are in good agreement with the data derived from the
Calphad model of Wolf [20], except for UTe and U3Te4. Our data are much higher than
the values coming from the Solgasmix model of Czechowitz [19]. Finally, as expected, our
model is in disagreement with the DFT data which are very far from the experimental data
of Baskin et al. [23]. Concerning the entropies, our model is in reasonable agreement with
the estimations by Westrum [21] and the model of Wolf [20] who considered a mixing law
between U and Te. New measurements of thermodynamic data for the compounds would
be very useful to improve the reliability of the model.
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Figure 2. Calculated phase diagram. Comparison with the experimental data from Czechowitz [19],
Slovyanskikh et al. [13] and Ellert et al. [18].

Figure 3. Calculated phase diagram from 50 to 100 at. % Te. Comparison with the experimental data
from Czechowitz [19], Slovyanskikh et al. [13] and Ellert et al. [18].

The calculated partial pressure data in the two phase regions (UTe + U3Te4), (U3Te5 +
UTe2), and (U2Te5 + UTe3) are compared with the available experimental data in Figure 6.
Our model is in very good agreement with the experimental data for the three two-phase
regions. On the contrary, the data calculated with the model of Wolf [20] lead to a systematic
underestimation of the partial pressure data.
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In conclusion, the CALPHAD model reproduces most of the selected data. However,
the enthalpy of the formation of UTe is underestimated. This could be due to the inconsis-
tency between the enthalpy of formation of UTe and the partial pressure data as already
pointed out by Czechowitz [22].

Figure 4. Calculated enthalpy of formation of UTe, U3Te4, U2Te3, U3Te5, UTe2, U2Te5, UTe3, and UTe5.
Comparison with the experimental data from Baskin et al. [23], the models from Czechowitz [19] and
Wolf [20], and the DFT calculations from Qian [25] and the OQMD database [26].

Figure 5. Calculated standard entropy at 298.15 K of UTe, U3Te4, U2Te3, UTe2, U2Te5, and UTe3.
Comparison with the estimated data from Westrum [21] and the model of Wolf [20].

To improve the reliability of the model, new measurements of the following data would
be useful: Te activity, mixing enthalpy of formation in the liquid, enthalpy of formation, and
heat capacity data for the compounds, phase diagram data in the U–UTe2 region.
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Figure 6. Calculated partial pressure of Te and Te2 in (UTe + U3Te4), (U3Te5 + UTe2), and (U2Te5

+ UTe3) in plain lines. Comparison with the experimental results in [22,27,28], and the model of
Wolf [20] in dotted lines.
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Table 4. Posterior mean and standard deviation of the U–Te system parameters. The correlation
matrix of the system parameters can be found in Appendix B.

Phase Parameter Name Assessment Value Posterior Mean Value Posterior Standard Deviation

Liquid

L0
(UTe,Te) B −171,903.278 −171,903.269 1.000

L0
(UTe,Te) C 81.899 81.836 0.840

L1
(UTe,Te) B 111,518.216 111,518.211 1.000

L1
(UTe,Te) C −55.379 −55.635 0.965

L2
(UTe,Te) B −69,986.365 −69,986.364 1.000

L2
(UTe,Te) C 46.920 47.115 0.994

UTe A0 −221,461.935 −221,461.944 1.000
A1 198.439 198.314 0.236

U3Te4
A0 −736,731.990 −736,731.991 1.000
A1 689.583 689.274 0.478

U2Te3
A0 −514,925.773 −514,925.777 1.000
A1 494.721 494.781 0.379

U3Te5
A0 −808,509.276 −808,509.286 1.000
A1 796.312 796.470 0.686

UTe2
A0 −272,474.416 −272,474.408 1.000
A1 288.876 288.996 0.160

U2Te5
A0 −556,197.559 −556,197.562 1.000
A1 656.416 656.504 0.402

UTe3
A0 −283,794.079 −283,794.075 1.000
A1 367.797 367.730 0.250

UTe5
A0 −312,579.609 −312,579.607 1.000
A1 557.353 557.329 0.269

5.2. Uncertainty Propagation with the Bayesian Approach

In this section, the uncertainty propagation with the Bayesian approach is studied in
the UTe–Te part of the phase diagram only, as there are too few data in the U–UTe part of
the diagram to perform an uncertainty analysis. The final parameter values obtained in the
assessment with PARROT as well as the posterior average and standard deviation values
are reported in Table 4 .

Figures 7 and 8 show the plot matrices of the parameters posterior probability distri-
bution: for the liquid phase and UTe in Figure 7 and for the solid compounds entropy
parameters in Figure 8. Notice that it is possible to build such plot matrices for the whole
set of parameters. However, for clarity purposes, small groups of parameters are selected.
The groups selected are those showing more dependencies.

We briefly recall how to read such graphs. In Figure 8 the eight diagonal plots are
the histograms of each entropy parameter. The scatterplots above the diagonal show
the correlations between all parameters. For example in Figure 8, the first row gives the
correlations between UTe and the other compounds. Ellipses and circular correlation
scatterplots are a direct consequence of the Gaussian distribution. A thin ellipse means that
there exists a strong relationship between the two parameters values. On the contrary, a
circular scatterplot is the result of a low dependency.

Figure 8 shows strong correlations for the compounds that have close compositions.
For example, the correlation values are above 0.97 for the pairs U2Te3–U3Te5, U2Te5–UTe3,
and UTe3-UTe5. Conversely, the correlation values decrease as the compositions become
more distant. The pair UTe–UTe5 has the lowest correlation value, which is below 0.01. The
complete correlation matrix is given in the Appendix B.
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The other parameters are not very correlated. Figure 7 shows no correlation between
the liquid parameters. The only strong correlation that can be observed on this graph is the
one between the parameter C for the order 0 interaction term and the entropy parameter
for UTe with a correlation value slightly above −0.7.

Using the methodology described in Section 4, the uncertainty of the different calcu-
lated thermodynamic quantities are compared with the experimental data in Figure 9 for
∆H0

f ,298.15K, Figure 10 for S0
298.15K, and Figure 11 for the partial pressure corresponding to

the two-phases regions (UTe + U3Te4), (U3Te5 + UTe2), and (U2Te5 + UTe3). The prediction
errors show a rather good agreement with the partial pressure data. The obtained credible
intervals are in adequacy with the experimental results; circa plus or minus 0.1 bar for
UTe–U3Te4 and UTe2–U3Te5, plus or minus 0.05 bar for UTe3–U2Te5. In addition, for the
partial pressure in the UTe–U3Te4 region which shows the largest experimental uncertainty,
the posterior credible interval length corresponds to half of the value of the experimen-
tal uncertainty. In Figures 9 and 10, the obtained propagated uncertainties appear to be
rather small compared to the fitting data error bars and the obtained propagated uncer-
tainty for the partial pressure in Figure 11. Such differences could be explained by the
fact that the determination of partial pressure confidence sets involves several parameters
whereas the confidence sets for ∆H0

f ,298.15K and S0
298.15K depend on a single parameter. Both

Figures 4 and 9 show the same trend and the same strong discrepancy for the ∆H0
f ,298.15K

value of UTe. Despite such a gap with the thermodynamic data, the assessed model is in
better agreement with the phase diagram.

In Figure 10, one can observe especially small credible intervals for UTe and UTe2.
This observation is contrary to the expected result as very few fitting data were used.
Considering the mismatch in the experimental data of ∆H0

f ,298.15K, S0
298.15K and the partial

pressure, this unexpected result could be caused by inconsistent data. Meaning that it
appears to be difficult to find parameters values that are in adequacy with all the fitting data.

Figure 7. Parameter posterior probability distributions and correlations matrix plot for the liquid
phase on UTe–Te side and UTe. The posterior correlation values can be found in Appendix B.
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Figure 8. Parameter posterior probability distributions and correlations matrix plot for the compounds
entropic parameters. The posterior correlation values can be found in Appendix B.

Figure 9. Uncertainty estimation given by the 95% credible interval of the posterior probability
distribution for the calculated enthalpies of formation for UTe, U3Te4, U2Te3, U3Te5, UTe2, U2Te5,
UTe3, and UTe5. The experimental error bars are in dotted black lines. The propagated uncertainties
(95% credible interval) for each computed quantity are in bold red lines.
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Figure 10. Uncertainty estimation given by the 95% credible interval of the posterior probability distri-
bution for the calculated entropies for UTe, U3Te4, U2Te3, UTe2, U2Te5, and UTe3. The experimental
error bars are in doted black lines. The propagated uncertainties (95% credible interval) for each
computed quantity are in bold red lines.

Figure 12 displays N = 100 simulations of the phase diagram. Each phase diagram
has been computed with the fifth version of the open-source software OpenCalphad [38,39].
Each simulation has been obtained by computing the phase diagram with a sample drawn
from the posterior probability distribution of the whole set of parameters. Despite the small
posterior uncertainty of the thermodynamic data, large posterior uncertainty can be observed
on the right side of the diagram for the liquidus curve and the melting temperatures
of U3Te4, U2Te3, U3Te5, U2Te5, and UTe3. The estimated uncertainty for the melting
temperature of U2Te3, U3Te5, U2Te5, and UTe3 is around 50 K and 100 K for the melting
temperature of U3Te4.

Notice that, for some parameters values drawn from the posterior probability distribu-
tion, the compounds U2Te3, UTe2, and U2Te5 may not be stable at 298.15 K. Such results
lead to the existence of an invariant transition below 350 K for these compounds. In the
phase diagrams found in the literature, these compounds are assumed to be stable at room
temperature [9,13,18,19]. However, more enthalpy of formation data are required to con-
firm this assumption. Moreover, these compounds have very close compositions, and even
small variation of parameters values can lead to unstable compounds at room temperature.
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Figure 11. Uncertainty estimation given by the 95% credible interval of the posterior probability
distribution for the calculated partial pressure. Plain lines are the posterior means. Dotted lines
correspond to the 95% upper and lower bounds of the credible interval for each temperature value.
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Figure 12. Simulation of N = 100 phase diagram from the parameters posterior probability
distribution.

6. Conclusions

In a first step, the thermodynamic assessment of the uranium–tellurium system has
been performed using the CALPHAD method. Experimental phase diagram and thermo-
dynamic data have been used as input data to optimize the Gibbs energy functions for UTe,
U3Te4, U2Te3, U3Te5, UTe2, U2Te5, UTe3, and UTe5 and for the liquid phase.

It should be noted that there do not exist any thermodynamic data on the liquid phase.
Moreover, for the compounds, measurements of enthalpy of formation data at 298 K are
only available for UTe and U3Te4, for which large error bars were assigned due to the large
uncertainties in the measurements. Only estimations exist for the other compounds and
all the enthalpy data show very large discrepancies. Unfortunately, the DFT calculations,
which are very tricky on uranium tellurium compounds, did not help to make a choice as
the results are far from the few experimental existing data.

For the standard entropy data at 298 K, only estimations are available. Due to the
absence of experimental data, the Kopp–Neumann law was used for the heat capacity
function for the compounds. The only other experimental data available are vapor pressure
measurements in two phase regions: UTe–U3Te4, UTe2–U3Te5, and U2Te5–UTe3. Input
thermodynamic data for the model were carefully selected. The phase diagram from pure
U to UTe2 is quite uncertain. In fact, only a few liquidus data were measured. On the
contrary, the phase diagram is very well established from UTe2 to pure Te.

The CALPHAD model reproduces very well the experimental vapor pressure data
and enthalpy of formation for U3Te4. However, the calculated enthalpy of formation for
UTe is underestimated by 13% compared to the measured value. The agreement with
Westrum estimations for the entropies of U3Te4 and U2Te3 is very good. Higher values
are obtained for the other compounds with deviations from 5% (for UTe, UTe2) to 12% for
UTe3. The calculated phase diagram is in very good agreement with the experimental data.
For comparison, the CALPHAD model of Wolf leads to a very good agreement with the
enthalpy of formation for UTe whereas it overestimates the enthalpy for U3Te4. Moreover,
it tends to underestimate systematically the vapor pressure data and the liquidus curve
are not well reproduced compared to the experimental points. It clearly shows that in
both CALPHAD assessments, it was finally not possible to get a good agreement with all
the experimental data. One of the reasons is the inconsistency between the experimental
enthalpy of formation data and the vapor pressure measurements.

In a second step, the uncertainty analysis was performed on the CALPHAD model.
The prediction error shows a good agreement with the partial pressure experimental
uncertainty and small confidence intervals. The prediction model shows more discrepancies
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with the entropy data and the enthalpy of formation data. The prediction error however
remains very small (less than 0.1%) for the enthalpy of formation and quite small (between
1% and 4%) for the entropy.

Despite the global little uncertainty on the predicted thermodynamic data, one can
observe rather large estimated uncertainty on the phase diagram. In particular the estimated
uncertainty for the melting temperature of U3Te4 is around 100 K.

From a global perspective, the whole system lacks a sufficient amount of fitting
data. The system complexity and the number of parameters are too important for the too
few numbers of fitting data (120 points versus 22 parameters) and we do not have any
thermodynamic data on the liquid. New experimental data, like heat capacity, enthalpy of
formation measurements for the different compounds, and chemical potential values for
the liquid phase could improve the model.

Given our results, we have little confidence in the assessed model and recommend
additional measurements to improve the knowledge on the UTe–Te side of the system.

From a wider perspective, we renew with this study the advantages of the conjugate
prior approach. Contrary to other Bayesian methods, such an approach allows us to have
an analytical posterior probability distribution and, therefore, closed-form expressions for
the uncertainty of the calculated thermodynamic quantities. Having an analytical posterior
probability distribution also speeds up the simulation of the system parameters which
makes easier the study of the uncertainty propagation to the phase diagram. In further work,
we will apply this methodology to the study of a ternary system and to the propagation of
the system parameters uncertainty when coupling with a multi-physics code.
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Appendix A. Reduction of the Number of Parameters

Appendix A.1. Degree of Freedom and System Dimension Reduction

The system modeling proposed in this work features 22 parameters (6 interactions of
UTe–Te parameters for the liquid and 2 parameters for each of the 8 solid compounds).

The degree of freedom for the thermodynamic data is equal to 15. This value is ob-
tained as follows. There are 8 observations for the enthalpy values (one for each compound)
and 6 observations for the entropy values (no values for U3Te5 and UTe5). The partial pres-
sure observations give linear relations between the enthalpy and the entropy parameters
for compounds involved in the reaction. One degree of freedom (corresponding to the
entropic parameter of U3Te5) is added due to these partial pressure relations.

No information is provided on the UTe5 entropic term and the liquid parameters by
the thermodynamic data. The use of the invariant transitions is necessary to determine the
entire set of parameters probability distributions. Such invariant transitions are the melting
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of compounds U3Te4, U2Te3, U3Te5, UTe2, U2Te5, UTe3, and UTe5. The melting of U3Te4
involves liquid parameters and UTe and U3Te4 parameters. The other melting conditions
involve 4 compounds parameters, the UTe parameters, and the liquid parameters.

The 7 melting conditions involve the UTe5 entropic parameter and the liquid parame-
ters which give sufficient conditions to identify the parameters probability distributions.

Appendix A.2. Reduced Prior Probability Distribution and Relations with the Initial Set
of Parameters

In this section, p denotes the number of system parameters, k is the degree of freedom
for the thermodynamic data and h is the number of invariant transitions (melting condi-
tions). In the U–Te system, we have p = 22, k = 15 and h = 7. Notice that p = k + h is a
necessary condition for the study. We denote by θ the Rp-vector featuring the vector of
system parameters.

More formally, the invariant transition conditions can be written as the following
equation to be satisfied by the parameter θ

Mθ = c (A1)

where M ∈ Rh×p and c ∈ Rh.
We denote by ker M the subset of vectors u ∈ Rp that are such that Mu = 0. Provided

that it exists θ0 ∈ Rp that is such that

Mθ0 = c (A2)

then, for all u ∈ ker M, all vectors defined as u + θ0 satisfy (A1).
Let k be the dimension of ker M. Let P ∈ Rp×k be the matrix formed by the k eigen

vectors in columns of M related to the eigen value 0. Then all the random vectors generated
by the prior probability distribution Np(θ0, PPt) satisfy the conditions (A1). Notice that
PPt is a p× p matrix with rank (PPt) = k. Therefore, we can generate the random vectors
in a reduced subspace of dimension k.

In this reduced subspace, the prior probability distribution is the Gaussian standard
Nk(0, Ik). Then, the posterior probability distribution is the Gaussian probability distribution
Nk(vk, sk) with

sk =
(

PtDts−1
Z DP + Ik

)−1

vk = skPtDts−1
Z Z

(A3)

where D is the design matrix corresponding to the thermodynamic observations Z (enthalpy,
entropy, and partial pressures data) and sZ are the observations uncertainties.

The posterior probability distribution in the initial space of parameters can be deter-
mined given the relation

θ = Pv + θ0. (A4)

Therefore the posterior probability distribution in Rp is the Gaussian distribution
Np(θp, sp) with

sp = P
(

PtDts−1
Z DP + Ik

)−1
Pt

θp = PskPtDts−1
Z Z + θ0.

(A5)

Finally, the value calculated by the assessment with Thermocalc is chosen as the value
θ0 of condition (A2).
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Appendix B. Additional Table: Correlation Values for the Posterior
Probability Distribution

Table A1. Posterior correlation matrix.

L0B L0C L1B L1C L2B L2C UTe0 UTe1 U3Te40 U3Te41 U2Te30 U2Te31

L0B 1 −0.015 −0.010 −0.012 −0.046 0.030 0.034 0.028 −0.010 0.034 0.052 0.031
L0C 1 −0.009 0.036 −0.078 −0.033 −0.002 −0.688 −0.012 −0.368 −0.018 −0.100
L1B 1 0.021 −0.006 0.002 0.039 −0.007 0.020 −0.006 0.055 −0.006
L1C 1 −0.033 −0.040 0.018 −0.296 −0.024 −0.002 0.061 0.137
L2B 1 0.012 0.074 0.063 0.055 0.032 −0.018 0.008
L2C 1 0.030 −0.143 0.019 0.013 −0.010 0.047

UTe0 1 −0.014 0.036 −0.003 0.020 0.000
UTe1 1 0.008 0.854 −0.010 0.661

U3Te40 1 −0.002 −0.011 −0.006
U3Te41 1 −0.003 0.953
U2Te30 1 −0.003
U2Te31 1

U3Te50 U3Te51 UTe20 UTe21 U2Te50 U2Te51 UTe30 UTe31 UTe50 UTe51

L0B 0.020 0.027 −0.015 0.017 −0.044 0.016 −0.018 0.014 0.020 0.017
L0C −0.011 0.121 −0.034 0.463 0.021 0.615 −0.007 0.687 0.004 0.682
L1B 0.001 −0.008 0.037 −0.012 0.005 −0.017 −0.014 −0.020 0.027 −0.022
L1C 0.010 0.147 −0.023 0.093 0.017 −0.133 −0.055 −0.292 0.022 −0.389
L2B 0.015 −0.010 0.013 −0.036 −0.031 −0.041 −0.011 −0.041 −0.009 −0.037
L2C 0.020 −0.001 −0.015 −0.094 0.001 −0.052 0.038 −0.009 0.010 0.104

UTe0 −0.008 −0.002 0.013 −0.005 0.035 −0.008 −0.004 −0.009 0.083 −0.008
UTe1 0.030 0.514 0.067 0.245 −0.055 0.126 0.010 0.037 0.003 0.008

U3Te40 −0.009 −0.010 0.003 −0.013 −0.005 −0.008 −0.006 −0.004 −0.009 0.000
U3Te41 0.045 0.870 0.063 0.648 −0.059 0.489 −0.003 0.351 0.018 0.295
U2Te30 −0.020 −0.004 −0.020 −0.013 −0.036 −0.029 0.037 −0.039 0.001 −0.045
U2Te31 0.047 0.975 0.053 0.826 −0.054 0.674 −0.011 0.530 0.023 0.462
U3Te50 1 0.043 −0.039 0.034 0.002 0.025 0.040 0.018 0.021 0.017
U3Te51 1 0.046 0.931 −0.049 0.810 −0.014 0.680 0.024 0.606
UTe20 1 0.029 −0.009 0.026 0.003 0.020 −0.016 0.017
UTe21 1 −0.038 0.955 −0.015 0.869 0.021 0.797
U2Te50 1 −0.034 −0.018 −0.027 0.033 −0.025
U2Te51 1 −0.001 0.977 0.014 0.937
UTe30 1 0.006 −0.070 0.021
UTe31 1 0.009 0.987
UTe50 1 0.003
UTe51 1
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