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Abstract: Biomarker detection is imperative in the realms of modern medicine, biology,
and environmental science, owing to the numerous avenues for its application. The recent
scientific upsurge in the development of molecules, materials, and mechanisms for such
scientific development has garnered considerable attention among scientists. In this connec-
tion, excited-state intramolecular proton transfer (ESIPT) properties of photoluminescent
compounds provide considerable insights into the designing, development, and detection
of biomarkers. ESIPT molecules significantly show a Stokes-shifted emission due to their
sensitive nature and unique photophysical properties. Leveraging this photophysical
property and tunable nature, several fluorescent probes of this genre can be designed
and synthesized for a plethora of application spheres. Schiff bases encompass one such
category of functional molecules displaying ESIPT properties, which can be mitigated by
adding several other functionalities and desired optical characteristics. The current review
article spans the basics of ESIPT properties of certain photoluminescent molecules and also
envisages biosensing applications of recently developed imine–functionalized Schiff base
molecules with such properties as the prima-foci, along with other applications.

Keywords: proton transfer; excited state; sensor; biomarker; Schiff base; tautomer;
fluorescence

1. Introduction
Spectroscopy has been an intriguing methodology for scientists of various disciplines

to study different molecules. The absorption of electromagnetic radiation by photoactive
molecules is a fundamental phenomenon, and it can be applied for both qualitative and
quantitative analytical purposes. The photoexcitation of molecules by electromagnetic
radiation of suitable wavelengths in the ultraviolet and/or visible regions initiates various
significant photophysical and photochemical processes in the molecules. Photophysical
processes are those that bring the excited molecule intact down to the ground state, while
photochemical processes lead to the formation of new products. All these photophysical
processes occur within the natural radiative lifetime of the molecule. Radiative transitions
occur by the emission of light quanta or photons. The emission of a photon results from two
major phenomena depending on the spin multiplicity of the two states involved, namely,
Fluorescence and Phosphorescence [1–4]. Fluorescence spectroscopy is one of the most cov-
eted, cheap, sensitive, and simple techniques that offers a wealth of molecular information,
widely used in medical diagnostics, biotechnology, genetic analysis, physiology, biology,
pharmacology, DNA sequencing, forensics, and cellular and molecular imaging. They
have extensive applications, such as being used as chemical sensors, fluorescent labels,
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fluorescent dyes, biological detectors, fluorescent lamps, etc. [5–8]. Chemosensors, in many
instances, extrapolate fluorescence properties for the detection of analytes. These fluores-
cent receptors establish a non-covalent reversible host–guest interaction with the analytes,
thus aiding their detection [9–11]. Fluorescence imaging, owing to its sensitivity, finds
common applicability in the medical domain to sense and detect analytes of biological
importance [12–14].

Photoexcitation of molecules in solution induces several changes in the geometrical
and electronic structure/properties of molecules, which becomes significantly heightened
in the excited electronic states, ultimately leading to various photophysical and photo-
chemical processes within them [15,16]. Photochemistry delves into the emergence of
several interesting phenomena, such as charge transfer (CT), proton transfer (PT), energy
transfer (ET), etc., which are direct results of the charge redistribution on the different parts
of a molecular system [17–20]. The acidic or basic properties of a photoactive molecule
differ in the ground and excited states. The most interesting cases are those where acids
and bases are stronger in the excited state than in the ground state since, in these cases,
excitation may lead to the transfer of protons in the photoexcited state. PT, the simplest
chemical reaction where an actual displacement of an atomic nucleus occurs, is a notable
primary step in many chemical or biological reactions, especially in enzyme catalysis
reactions. A PT reaction, being associated with a charge separation along with a mass
transfer, gets remarkably modified in the excited state. Changes in dipole moment and
molecular geometry can lead to large dielectric relaxation effects on the spectroscopy and
transformation dynamics of the prototropic system [21–26]. Photoinduced proton transfer
reactions can be classified as either (i) Excited-State Intermolecular Proton transfer (ESPT)
or (ii) Excited-State Intramolecular Proton transfer (ESIPT), depending on the hydrogen
bond formation, as will be discussed vividly in the upcoming section. Both ESPT and
ESIPT have been of considerable interest and intrigue for scientists on account of their
applications in photovoltaics, sensors, chemodosimeters, biological imagers, molecular
switches, etc. Their applicability as suitable probes for biomarker detection is mainly due
to their structural adjustability, sensitivity, and fast response time [27–33]. This review will
primarily focus on the applicability of these photochemical proton transfer processes for
biological marker detection and imaging.

1.1. Principles and Mechanism of ESPT and ESIPT

Proton transfer reactions are associated with charge separation, where mass transfer
occurs within different atoms of the same molecule or between two different molecules
having differential charge centers. This charge separation gets dramatically modified upon
photoexcitation. For instance, a score of aromatic amines that are weakly basic in the
ground state becomes acidic in the excited state. Such an excited-state acidic molecule can
readily donate a proton to a proton-acceptor, thereby producing the corresponding anion
in the excited state, and the substrate is termed a photo acid. Similarly, a photo base is one
that displays pronounced basic properties in the photo-excited state relative to its ground
state [34–36]. In an ESPT process, the proton is transferred from one molecule to another.
The kinetics of the intermolecular ESPT process have been extensively studied over the
years, complementing and sometimes permitting the correction of previously existing
thermodynamic data or dissociation constants. Thermodynamic principles corroborate
the above-mentioned ESPT mechanism [37,38]. The detailed knowledge of intermolecular
ESPT involving O− acids and N− acids and their fast rates observed have stimulated
the use of these atomic centers as probes of increasingly complex structures. The review
work of Arnaut and Formosinho [39] focused on the thermodynamics and kinetics of
intermolecular proton transfer occurring in the lowest excited singlet state of organic
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compounds, followed by a discussion about the acidity constant (pK*), deprotonation,
and protonation rates in this electronic state. In the case of ESPT, a logical question is
whether the acid–base equilibrium is attained or not within the excited-state lifetime of the
photoacid or the photobase. If the acid–base equilibrium is attained in the photoexcited
state, pKa and pKb of the corresponding excited states are determined by steady state
or time-resolved emission spectroscopy. The ESPT mechanism is mainly found to occur
in p-conjugated organic flat heterocyclic moieties or molecules with biological relevance,
viz., DNA bases, photosystem II, green fluorescence protein (GFP), and bacteriorhodopsin.
Among these, the last two are invincible biomarkers in the realms of biotechnology, as is
evident from the work of Hong et al., where they mainly highlighted the ESPT mechanism
in a D-π-A molecular architecture [40]. A biomarker or biological marker is defined as a
measurable indicator of a biological state or condition, since biomarkers are critical kits in
precision medicine, enabling personalized treatment options for individual patients with
specific biological characteristics. Hence, their methods of detection through an array of
methodologies have a significant impact on the scientific fraternity.

ESIPT, on the other hand, proceeds within the same molecule along a preformed
hydrogen bond. ESIPT takes place in a molecule when the acidic or basic part of it becomes
stronger in the excited state, which ultimately leads to the formation of a tautomer. This
takes place via the formation of an intramolecular hydrogen bond between the two moieties
that provide the doorway for the intramolecular proton transfer process, as shown in
Scheme 1. The photo-tautomers are usually formed in the excited state and relax quickly to
the ground state (non-emissive) or fluoresce with a large Stokes-shift (emissive). Generally,
ESIPT reactions are followed by the rise and decay of the strong Stokes-shifted fluorescence
of the tautomer produced through the ESIPT process [41–45].
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Scheme 1. A schematic showing the reaction mechanism of ESIPT.

The pioneering research on ESIPT was reported by Weber [46], Förster [47,48], and
Weller [49–52], which have prompted the photochemists to study this phenomenon exten-
sively. While classifying ESIPT reactions, Kasha distinguished four operative mechanisms:
(i) those in which there is hydrogen bond between the H atom of the donor group and
the acceptor (intrinsic intramolecular transfers), (ii) those in which the proton is far away
from the acceptor and requires a mediator (concerted solvent assisted biprotonic transfer),
(iii) static and dynamic catalysis of proton transfer involving strong catalysis in doubly
H-bonded acetic acid complexes and (iv) proton relay transfer [53]. An extension of this
classification had also been presented later by Heldt et al. [54]. The dynamics of the ESIPT
process can be strongly dependent on the conformation of the molecule, temperature, pH,
and the nature of the solvent, particularly with respect to the capacity for the formation of
hydrogen bonds [55–58]. In the current scenario of fundamental and translational research,
the ESIPT phenomenon has been a stimulating realm for scientists, especially due to its
biological implications [59–64]. In the current study, we have decided to include relevant
literary works on the ESIPT of Schiff-base compounds in several application verticals.

1.2. Concept of Dual Emission

ESIPT molecules can be fairly classified under ‘Dual-State Emission’ (DSE) molecules,
with two different emitting forms, viz., normal and tautomer, where the tautomeric emis-
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sion is largely Stokes-shifted compared to the normal. ESIPT evidently corresponds
to a photoinduced tautomerization between the excited enol/normal (E) form and the
keto/tautomer (K) form. The general mechanism of an ESIPT reaction depicting the
dual emission is shown below in Scheme 2. The ESIPT reaction is a four-level photo-
chemical process that induces a significant dynamicity to the excited state properties of a
molecule [65–67]. This phenomenon prevents the π—π-stacking processes, which in some
instances might be unfavorable. ESIPT molecules generally show dual emission under
the influence of solvation and some electronic effects. In such cases, E*/K* emissions are
notably visible. Nitrogen-containing heterocycles are prospective candidates for showing
such prototropic properties where an intramolecular hydrogen bond is seen with the for-
mation of five/six/seven-membered ring structures. A strong reorganization of molecular
geometry is noticed in these types of molecules in the excited state, which actually leads to
the large Stokes-shifted (up to 12,000 cm−1) tautomeric emission, thus ultimately limiting
the other deactivation mechanisms such as reabsorption, inner filter effect, etc. [68–70]. In a
recent study by Durgo-Maciag et al. [71], they clearly demarcated the plausible disagree-
ments between ESIPT and DSE probes. They showed that the majority of DSE probes are
non-ESIPT fluorophores owing to their semi-co-planarity, rigidity, and solubility.
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dual emission.

Recent literature reports ESIPT fluorophores with Near Infrared Radiation (NIR) emis-
sion due to large Stokes-shifted tautomeric emission, which paves the gateway towards
intracellular sensing of heavy metal ions and fluorescence imaging [72–75]. Optical ab-
sorption/emission tuning in ESIPT active fluorophores serves as a colossal important
methodology for addressing major applicative avenues. Biomedical research and the devel-
opment of biomaterials constitute the major domains where these ESIPT-based functional
compounds find their apt applications.
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1.3. ESIPT Reaction in Schiff Bases

Schiff bases are specially designed imine-functionalized derivatives with an innumer-
able number of applications in the context of modern chemical, biological, and material
research. These molecules present promising ESIPT properties with tunable luminescence.
The proton transfer in these compounds is catered through the —C=N bond, which creates
a charge difference within the molecule and thus makes it prone to IPT in the excited state.
A significant number of such promising ESIPT-based Schiff bases are reported in the litera-
ture, and they have diverse application avenues. Several such luminescent ESIPT-based
Schiff bases were reported by Bose et al., who reported that hydroxy-naphthaldehyde
was the parent homolog [21,41,42]. In another article, Shang et al. discussed the effects
of substituents on the photophysical properties of seven ESIPT-based Schiff bases with
a 4-(Dimethylamino)salicylaldehyde core [76]. Salicylaldehyde hydrazone-based Schiff
bases with ESIPT properties find promising applications as photoswitches, as studied by
Zhang et al. [77]. In another article, Moraes et al. demonstrated white light generation from
two ESIPT active Schiff bases, salicylidene-4,6-(dimethylamino)-pyridine and salicylidene-
5-bromo-4,6-(dimethylamino)-pyridine. He, through the ESIPT mechanism, showed the
influence of near-attack conformation, which ultimately forms the IMHB (Intramolecular
Hydrogen Bond), conferring stability to the tautomer [78].

In the present context, 2-hydroxy-1-naphthaldehyde deserves special mention as the
parent homolog of many ESIPT-based Schiff bases, which have been widely explored in
various sensor and biological applications. The examples of such Schiff bases along with
their application verticals are tabulated below in Table 1.

Table 1. Schiff bases with 2-hydroxy-1-naphthaldehyde backbone showing varied applications.

Sl. No. Name of the Schiff Base Structure of the Schiff Base Applications Reference No.

1.

N-Phenyl-2-(2-
hydroxynaphthalen-1-
ylmethylene) hydrazine
carbothioamide
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Table 1. Cont.

Sl. No. Name of the Schiff Base Structure of the Schiff Base Applications Reference No.

4.
1-[(1H-tetrazol-5-
ylimino)methyl]
naphthalen-2-ol
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Table 1. Cont.

Sl. No. Name of the Schiff Base Structure of the Schiff Base Applications Reference No.
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2. Principle of Biosensing
A biosensor is a device combining a biological recognition element like nucleic acid,

antibody, enzyme, etc., with a transducer to detect analytes through optical, electrochem-
ical, or mechanical systems [91,92]. The recognition element interacts with the analyte,
and the transducer converts this interaction into an electrical signal for further analysis.
Biosensors serve as artificial receptors, similar to human sensory organs, detecting specific
stimuli and transmitting signals. They are precise or highly specific, capable of sensing
even low analyte concentrations, and have diverse applications, including DNA manipula-
tion, drug development, security, clinical diagnostics, healthcare monitoring, food quality
control, and environmental monitoring [93–95]. Selectivity is crucial for biosensors to detect
target analytes in complex samples, minimizing false positives. Antibodies use binding
domains, enzymes rely on specific pockets, and nucleic acids face reduced selectivity from
electrostatic interactions, addressable with peptide nucleic acids. Biosensor sensitivity
measures the signal response to changes in analyte concentration, with detection limits
defining the range. High sensitivity allows responses to minor concentration fluctuations,
often in the pico- to nanomolar range. The reproducibility of biosensors is the ability to
consistently produce the same results for a sample, defined by precision and accuracy.
Antibodies and enzymes, sensitive to pH and temperature, face reproducibility challenges,
especially in low-resource settings. Aptamers, polymers, and some specific nanoformu-
lations offer highly reproducible outcomes, benefiting from cost-effective and consistent
chemical synthesis. The stability of biosensors, critical for continuous monitoring, depends
on bioreceptor affinity and resistance to degradation over time [96,97]. The structure and
construction of biosensors are shown below in Figure 1.

With reference to the categorization of biosensors, the optical biosensors or “Op-
topodes” is one of the simplest in terms of construction, working, and versatility. Optical
biosensors, being hyphenated, integrate an optical technique with a biological element to
identify the required chemical or biological species. Optical biosensors are mainly devel-
oped based on surface plasmon resonance and optical spectroscopy, such as luminescence,
fluorescence, phosphorescence, etc. [98]. Fluorescence-based optical biosensors rely on
different photo processes like CT, PT, ET, etc., for signal transduction. In this connection, it
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is pertinent to state that biosensors based on changes in fluorescence intensity are the most
accepted and universally used owing to their sensitivity, simplicity, and adaptability for
different measurements [99]. One example is the transfer of energy through the routing of
fluorescent signals from NADH to quantum dots (QDs), which has been a comprehensive
subject of extensive research for Fluorescence Resonance Energy Transfer (FRET) -based
applications. The dipolar interaction between CdTe QD and NADH may lead to an effi-
cient energy transfer, enhancing the fluorescence intensity of the QD and the subsequent
quenching of the fluorescence of tagged NADH [100]. The mechanistic procedure is shown
in Figure 2.
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In context to the present review, ESIPT-based biosensors would be the primary point of
consideration here. Many researchers across the globe ventured upon the biosensing mecha-
nism, extrapolating ESIPT on account of its excellent characteristics and tunable properties.

2.1. Different Types of Sensing

Biosensors, with their reliable performance, convert analyte–receptor interactions
into measurable signals through various transduction methods. Optical systems measure
changes in luminescence, absorption, or surface plasmon resonance, utilizing techniques
like fluorescence, Raman spectroscopy, and refractive angle measurement. Electrochemical
systems detect impedance, current, or potential changes and can combine with optical
methods for enhanced sensitivity, achieving detection limits comparable to fluorescent
biosensors. Mass-based systems employ piezoelectric crystals, where oscillation frequency
shifts due to analyte binding are measured electrically to evaluate mass changes. Each
method offers unique advantages tailored to specific detection needs.

ESIPT probes offer a multitude of sensing applications across various domains. Ne-
jadmansouri et al., in their review article, walked through five years of history and com-
prehensively explained the use of ESIPT-based biosensors to analyze antioxidants in food
samples [101]. In this connection, mention might be made of electrochemical and optical
biosensors with ESIPT probes serving as the prime components. These are the “Aptamers”
in which biomolecules like DNA and RNA, etc., are used as receptors and are linked to the
ESIPT probes for detecting and improving the sensing level [102]. Detection of progressive
disease-causing analytes like carcinogens, mutagens, and allergens can also be aided using
such biosensors [103,104]. The electrochemical assays and measurements like conductome-
try, amperometry, voltammetry, impedance measurement, etc., serve colossally important
roles in ESIPT-based biosensors for point-of-care applications to diagnose critical diseases
in patients suffering from COVID-19, Leukaemia, etc. [105]. Illustrations of the different
structural forms of Schiff-base compounds displaying ESIPT, which is deployed in various
instances of biomarker detection for certain disease types, can be summarized in Table 2.

Table 2. Different ESIPT-based Schiff bases deployed in biomarker detection for certain diseases.

Name of the Biomarkers Abbreviation Disease Type Structure of Schiff Bases Reference No.

Acid and Base pH Cancer
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Table 2. Cont.

Name of the Biomarkers Abbreviation Disease Type Structure of Schiff Bases Reference No.
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2.1.1. ESIPT-Based Schiff-Bases in Heavy Metal Detection

Schiff bases with ESIPT characteristics present enhanced selectivity towards binding
metal ions and establish themselves as excellent sensor materials for the detection of
such metal ions. Metal detection approaches can broadly be classified into two types:
‘recognition’ and ‘reactivity’, as exemplified by Aron et al. [115]. The general mechanism
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of identification/sensing metal ions by ESIPT-based Schiff bases can be represented by
Scheme 3.
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Zhao et al. synthesized a rare tri-responsive fluorescent probe with ESIPT charac-
teristics, which successfully identified the presence of Ag+, Pb2+, and Fe3+ in different
solvent systems [104]. This same probe emerged to be an excellent bioimager of Fe3+ ions
in Hela cells [104]. In another article, Yang et al. showed a Schiff base probe synthesized
by linking rhodamine 6G with a pyrazole derivative to detect the toxic Hg2+ metal ion in
an aqueous solution [115]. Though ESIPT renders this probe weakly fluorescent, binding
to Hg2+ produced a new conjugated structure, leading to a turn-on reaction and a distinct
color change from colorless to pink [116]. Wu et al. prepared a substituted ESIPT-based
Schiff base benzothiazole for the turn-on detection of Zn2+ [117]. This ratiometric probe
utilizes the benzothiazole moiety as the donor and the Schiff base moiety as the receptor.
Kaur et al. reported the synthesis of a novel hydroxy benzothiazole-based fluorophore
featuring ESIPT-coupled AIE characteristics for the selective detection of Cu2+/Cu+ in
aqueous media, real water samples, and live cells [118].

ESIPT is often conjoined with AIE or Aggregation-Induced Emission to produce sen-
sors with a high Stokes’ shift and a selectivity towards analytes. Currently, AIE-assisted ES-
IPT probes are receiving considerable attention, owing to their enhanced fluorescence emis-
sion and applicability as sensors and bioimagers [119–121]. Hydroxyphenyl-Benzothiazole
(HBT) derivatives, Tetraphenylethylene based ESIPT probes, Phenol-Pyridine deriva-
tives, Cyanohydroxychalcone-based probes, Benzimidazole-Phenol derivatives, Boron
Dipyrromethene (BODIPY)-ESIPT probes, etc., can be tuned into effective sensors for heavy
metal ion detection in conjugation with AIE assisted probes. ESIPT–AIE-based Schiff bases
conjoined with fluorescent organic nanoparticles are also deployed to detect metal ions like
Al3+, forming a complex, which ultimately has applications in cell imaging [122].

Musikavanhu et al., through their comprehensive review of fluorescent Schiff bases
showing ESIPT characteristics, suggested several strategies for enhancing their sensitivity
towards heavy metal ion detection [123]. Through their article, structural modifications
of the binding pockets of the molecules, along with augmented strategies to amplify the
signals for detection, were suggested with several illustrations in the already existing
literature [123]. ESIPT-based Schiff bases can be used as pH molecular switches to sense
heavy metal ions using their ratiometric responses [124].
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2.1.2. ESIPT-Based Schiff-Bases in Biomolecule Sensing

Schiff base molecules, owing to their dual emission characteristics and polarity-
sensitive nature, offer numerous avenues for the detection of biomolecules both in vitro and
in vivo. Schiff bases, through the aid of their photophysical ESIPT fluorescence properties,
can sense proteins like serum albumins, enzymes, antibodies, etc., interact with nucleic
acids (DNA/RNA) through intercalation, and help in their detection. Immense applications
of ESIPT-based Schiff bases as biomolecule sensor molecules are significantly scattered in
the literature. Jadhao et al. synthesized a plausible amyloid-targeted heterocyclic Schiff
base molecule ((E)-2-((6-chlorobenzo[d]thiazol-2-ylimino)methyl)-5-(diethylamino)phenol
(CBMDP)), which can potentially address Alzheimer’s disease [125]. Yang et al. de-
signed a ratiometric probe for ALP detection by deploying the ESIPT fluorophore N-(3-
(benzo[d]thiazol-2-yl)-4-hydroxyphenyl) benzylamide [126]. Chen et al. introduced an
acetoxymethyl ether on 2-(2′-hydroxyphenyl)-benzothiazole (HBT) as a recognition group
to detect the enzyme esterase [127]. In a similar fashion, Leucine aminopeptidase (LAP)
was detected by Zeng et al., who developed the first tetraarylimidazole-based AIE flu-
orophore by substituting different aryl groups of a Schiff base [128]. This probe, with
the conjoined effects of ESIPT and AIE, traced the precise detection of LAP [128]. The
generalized mechanism of working of such ESIPT probes to detect various enzymes may
be represented as Scheme 4.

Photochem 2025, 5, x FOR PEER REVIEW 12 of 20 
 

 

ESIPT probes are receiving considerable attention, owing to their enhanced fluorescence 

emission and applicability as sensors and bioimagers [119–121]. Hydroxyphenyl-Benzo-

thiazole (HBT) derivatives, Tetraphenylethylene based ESIPT probes, Phenol-Pyridine de-

rivatives, Cyanohydroxychalcone-based probes, Benzimidazole-Phenol derivatives, Bo-

ron Dipyrromethene (BODIPY)-ESIPT probes, etc., can be tuned into effective sensors for 

heavy metal ion detection in conjugation with AIE assisted probes. ESIPT–AIE-based 

Schiff bases conjoined with fluorescent organic nanoparticles are also deployed to detect 

metal ions like Al3+, forming a complex, which ultimately has applications in cell imaging 

[122]. 

Musikavanhu et al., through their comprehensive review of fluorescent Schiff bases 

showing ESIPT characteristics, suggested several strategies for enhancing their sensitivity 

towards heavy metal ion detection [123]. Through their article, structural modifications of 

the binding pockets of the molecules, along with augmented strategies to amplify the sig-

nals for detection, were suggested with several illustrations in the already existing litera-

ture [123]. ESIPT-based Schiff bases can be used as pH molecular switches to sense heavy 

metal ions using their ratiometric responses [124]. 

2.1.2. ESIPT-Based Schiff-Bases in Biomolecule Sensing 

Schiff base molecules, owing to their dual emission characteristics and polarity-sen-

sitive nature, offer numerous avenues for the detection of biomolecules both in vitro and 

in vivo. Schiff bases, through the aid of their photophysical ESIPT fluorescence properties, 

can sense proteins like serum albumins, enzymes, antibodies, etc., interact with nucleic 

acids (DNA/RNA) through intercalation, and help in their detection. Immense applica-

tions of ESIPT-based Schiff bases as biomolecule sensor molecules are significantly scat-

tered in the literature. Jadhao et al. synthesized a plausible amyloid-targeted heterocyclic 

Schiff base molecule ((E)-2-((6-chlorobenzo[d]thiazol-2-ylimino)methyl)-5-(diethyla-

mino)phenol (CBMDP)), which can potentially address Alzheimer’s disease [125]. Yang 

et al. designed a ratiometric probe for ALP detection by deploying the ESIPT fluorophore 

N-(3-(benzo[d]thiazol-2-yl)-4-hydroxyphenyl) benzylamide [126]. Chen et al. introduced 

an acetoxymethyl ether on 2-(2′-hydroxyphenyl)-benzothiazole (HBT) as a recognition 

group to detect the enzyme esterase [127]. In a similar fashion, Leucine aminopeptidase 

(LAP) was detected by Zeng et al., who developed the first tetraarylimidazole-based AIE 

fluorophore by substituting different aryl groups of a Schiff base [128]. This probe, with 

the conjoined effects of ESIPT and AIE, traced the precise detection of LAP [128]. The gen-

eralized mechanism of working of such ESIPT probes to detect various enzymes may be 

represented as Scheme 4. 

 

Scheme 4. General mechanism of enzyme detection with ESIPT-based Schiff bases. 

2.1.3. ESIPT-Based Schiff-Bases in Imaging or Diagnosis 

ESIPT-based Schiff bases can be selectively employed for staining cellular structures 

like mitochondria or nuclei owing to their enhanced contrast and deeper tissue penetra-

tion in bioimaging. The Schiff base compound synthesized by the condensation of 5-

phenylsalicylaldehyde and 2-aminobenzohydrazide showed comprehensive selectivity 

and sensitivity towards Zn(II) ions [129]. The bioimaging studies of this probe with A549 

Scheme 4. General mechanism of enzyme detection with ESIPT-based Schiff bases.

2.1.3. ESIPT-Based Schiff-Bases in Imaging or Diagnosis

ESIPT-based Schiff bases can be selectively employed for staining cellular structures
like mitochondria or nuclei owing to their enhanced contrast and deeper tissue pene-
tration in bioimaging. The Schiff base compound synthesized by the condensation of
5-phenylsalicylaldehyde and 2-aminobenzohydrazide showed comprehensive selectiv-
ity and sensitivity towards Zn(II) ions [129]. The bioimaging studies of this probe with
A549 cells containing Zn(II) ions were visualized through live-cell imaging [130]. The
lipophilicity and surface charge characteristics of ESIPT-based Schiff bases prove them
to be important candidates for visualizing mitochondria and lysosomes. The phenolic
proton in these Schiff bases becomes acidic, which turns on their fluorescence, thus mak-
ing them suitable for visualizing lysosomes whose environmental pH ranges between 4
and 5 [131]. A 2-(2′-hydroxyphenyl)benzothiazole (HBT)-based ESIPT fluorophore with
a near-infrared enhanced emission at 836 nm and a large Stokes shift (286 nm) was ap-
plied to image SO2 derivatives in mitochondrial cells in vivo [132]. ESIPT-based Schiff
bases can also find extensive applications in theranostics. The Schiff base derivatives of 4-
Hydroxybenzylidene, 2-Hydroxy-1-naphthaldehyde, and 4-(Diethylamino)salicylaldehyde
are extensively used in Reactive Oxygen Species (ROS) detection and ultimately prove
to benefit cancer/tumor therapy [133–135]. Pang et al. developed a lysosome tracker
which is functional at pH 5 [135]. This ESIPT Schiff base probe exhibits a NIR tautomeric
emission band at ~ 700 nm [135]. In Table 3 we present a list of ESIPT-based Schiff bases
used in diagnosis.

Recent advancements in fluorescence mechanisms have integrated ESIPT with other
systems, enhancing its benefits and addressing some of its drawbacks. AIE or aggregate-
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induced emission works alongside ESIPT by boosting fluorescence during aggregation,
which helps mitigate ESIPT’s sensitivity to the environment. Combining ESIPT with FRET
enables the development of probes for detecting longer wavelengths or near-infrared
signals, which is beneficial for in vivo biological analysis. Photoinduced electron transfer-
based fluorescent probes incorporating ESIPT provide improved sensitivity and selectivity,
with fluorescence alterations in the presence of specific analytes. Additionally, ESIPT-
based probes allow for ratiometric detection, providing direct measurement of analyte
concentration without the need for calibration. However, ESIPT emission is highly sensitive
to its surroundings, with polar or hydrogen-bonding solvents hindering the process and
preventing keto-emission-throwing challenges.

Table 3. Different ESIPT-based Schiff bases used in diagnosis.

Types of Schiff Bases Used In/As Reference No.

2-(2′-Hydroxyphenyl)benzothiazole (HBT)
based Schiff bases Tracking CORM-3 in body fluids, living cells, and Zebrafish [136]

Salicylaldehyde-derived Schiff Bases Binds to DNA possessing antimicrobial properties [137]

Naphthalimide Schiff Bases Bioimaging of Fe3+ cells [138]

Coumarin-based Schiff Bases Theranostic agents for diagnosis and therapy [139]

Hydroxyquinoline Schiff Bases Anticancer activity [140]

Benzimidazole Schiff Bases DNA binding and cleavage [141]

Phenanthroline Schiff Bases Anticancer and antimicrobial activity [142,143]

Pyrene Schiff Bases Antibacterial activity [144]

Thiazole-based Schiff Bases Antioxidant activity [145]

Indole Schiff Bases Antimicrobial activity [146]

3. Conclusions
This current review comprehensively discusses the excited-state intramolecular proton

transfer behavior in Schiff bases with applicative demonstrations across different biomarker
detection methods. Investigations on the ESIPT properties of photoactive fluorophores
have received enlivening interest from researchers working in varied fields. Tuning the
photophysical properties of such ESIPT active imine-functionalized derivatives or Schiff
bases has been quite intriguing for scientists in the past few years. These ESIPT-active
Schiff-base compounds, owing to their polarity sensitive nature and large Stokes-shifted
fluorescence, find extensive applications as sensors in chemical, biological, and material
science domains. In this review, we closely monitored such illustrative applications in
a number of Schiff-base compounds, such as heavy metal ion detectors, biomolecule
sensors, bioimagers, therapeutic intervention, and diagnostics. Schiff bases with ESIPT
characteristics augmented with other photophysical/photochemical processes, like FRET,
PET, AIE, etc., are better instruments in their applications as chemosensors in biomedical
applications and bioimaging.

4. Future Direction
The future perspective for studies about ESIPT-based Schiff bases for their potential

applications to detect biomarkers is quite relevant and promising due to their unique
photophysical properties and advancements in their design and application. ESIPT-based
Schiff bases are increasingly being explored for their potential in theranostics, combin-
ing therapeutic and diagnostic capabilities in a single platform. Their large Stokes shifts,
environmental sensitivity, and multi-channel fluorescence make them ideal for precise
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and sensitive biomarker detection, even in complex biological systems, considering their
plethora of application verticals. These Schiff bases, which leverage their ESIPT properties,
can be tailored to detect individual and specific biomarkers that can play a critical role
in precision diagnostics. The ESIPT properties of Schiff bases hyphenated with electro-
chemical measurements can be successfully augmented to produce portable point-of-care
application devices that are expected to enable rapid, onsite biomarker detection, especially
in resource-limited settings. Leveraging OMICS like Proteomics, Genomics, Metabolomics,
and Lipidomics with the ESIPT properties of Schiff bases can be extrapolated to detect and
revolutionize disease diagnosis and monitoring.
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