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Abstract: Ultrafast pump–probe spectroscopic studies allow for deep insights into the mechanisms
and timescales of photophysical and photochemical processes. Extracting valuable information from
these studies, such as reactive intermediates’ lifetimes and coherent oscillation frequencies, is an
example of the inverse problems of chemical kinetics. This article describes a consistent approach for
solving this inverse problem that avoids the common obstacles of simple least-squares fitting that
can lead to unreliable results. The presented approach is based on the regularized Markov Chain
Monte-Carlo sampling for the strongly nonlinear parameters, allowing for a straightforward solution
of the ill-posed nonlinear inverse problem. The software to implement the described fitting routine is
introduced and the numerical examples of its application are given. We will also touch on critical
experimental parameters, such as the temporal overlap of pulses and cross-correlation time and their
connection to the minimal reachable time resolution.
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1. Introduction

Pump–probe spectroscopy is a powerful tool in the investigation of ultrafast kinet-
ics [1]. The basic scheme of pump–probe studies is the following [1]. First, we initiate the
system’s dynamics with a pump laser pulse, then wait some time for the excited molecular
system to evolve, and then with a second probe laser pulse, we turn otherwise unobservable
(due to their short lifetimes) metastable species into something new and observable by the
detectors. By varying the delay time between pump and probe pulses (so-called pump–
probe delay), we can measure the real-time photochemical dynamics of the molecules.
Under the umbrella term “pump–probe spectroscopy”, multiple experimental methods
hide that differ by what kind of observable is being monitored in the experiment [1–4].
The measured experimental parameters can be the absorption of the probe photons [5],
mass spectra [6–8], photoelectron spectra [6,9], ion velocity map imaging [6,7,10], fluores-
cence [11], and so on [2,3]. We can extract viable information about the rates of various
molecular processes from these pump–probe experimental results. To do that, we need to
perform the experimental data analysis, which is at the center of this article.

The current manuscript presents a novel approach and its software implementation for
performing such data analysis. It is based on mixed linear and nonlinear optimization [12],
Monte-Carlo sampling [13,14], and regularization of fitting parameters [15–17], solving
many issues of the ill-posed inverse problem of pump–probe experimental data analysis.
First, we will formally examine the basic experimental data analysis and the least-squares
fitting. Then, we will discuss the model of the pump–probe spectroscopy. This will be
followed by a detailed description of the proposed data analysis algorithm and a short
description of the implementation of such a method. In the end, a few numerical examples
will be given. In the electronic supporting information (ESI), we also provide a user manual,
an up-to-date software version, and the numerical examples described in the last section of
this article.
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2. Inverse Problem of Experimental Data Analysis
2.1. Formulation of the Problem

We can consider the following set of concepts to formalize the experimental data
analysis treatment [14,16]. The experimental results are always interpreted through the
prism of a model (M) that presents a concise and simplistic way to explain whatever
happens in the experiment. In our case of pump–probe spectroscopy, it is the interaction of
the observed molecular system with the pump and probe pulses, the internal dynamics of
the molecule, and the production of the experimental observables that comprise the model.
This model naturally has some set (vector) of numerical parameters (P) that are the intrinsic
characteristics of the investigated molecule and of the experimental observation. In our
case, these are the rates of the different molecular conversion processes, the laser pulses’
characteristics, and the experimental setup’s detection capabilities [6,18]. By applying
the parameters P to the model M, we can produce a set of model observables (Omodel),
which are the full analog of the real experimental observables (Oexp). Such a procedure of
computing the Omodel from P and M, can be represented as follows:

P → M → Omodel (1)

which we will call a direct problem .
The goal of the experimental data analysis is to provide the best representation of

the experimental data (Oexp) by a combination of the model (M) and the set of parame-
ters Pexp. The “best representation” means that, upon substitution to the direct problem
(Equation (1)), experimental parameters Pexp produce the experimentally observed results
(Oexp). Here, we can assume that the model is fixed since the investigated process is either
known in advance, the model can be adjusted by trial and error, or the model can be guessed
using some heuristic knowledge from how the observed pump–probe dependencies look.
This assumption of the fixed model boils experimental analysis down to the search for the
optimal set of parameters Pexp. With a fixed model, we can compress the direct problem
(Equation (1)) to treat the modeled observables as a function of the set of parameters given,
that is:

Omodel = Omodel(P). (2)

Upon such formulation, the search of the Pexp can be written as the following equation:

Omodel(Pexp) = Oexp, (3)

This problem of experimental analysis is the inverse problem or fitting. The term
“inverse problem” relates to the fact that we want to get parameters Pexp from observables
Oexp as Oexp → Pexp, in some sense inverting the direct problem given in Equation (1). The
term “fitting” implies that we want to fit the model to the experimental observations by
varying the parameters. In this paper, we will use these two terms (“inverse problem” and
“fitting”) interchangeably. In the case of pump–probe spectroscopy, we try to find a set of
rates and frequencies of molecular processes, cross-sections of various channels, and other
parameters for reproducing the observed pump–probe experimental measurements. In
some sense, this can be thought of as finding the best and simplest numerical representation
of the experimental data.

2.2. Least-Squares Formulation of the Inverse Problem

The inverse problem given in Equation (3) in pump–probe spectroscopy, like in many
other experimental methods, is an ill-posed problem [12,14,16]. The term “well-posed
problem” was introduced by Jacques Hadamard [19], who postulated such a problem to
have the following three properties: (1) the solution to the problem should exist, (2) the
solution should be unique, (3) the behavior of the solution should change continuously
with the change of the initial conditions. The problem that does not meet at least one
of these three criteria is ill-posed [16]. Unfortunately, for the real datasets, the simplest
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formulation of the inverse problem (Equation (3)) does not fulfill even the first criterion of
the well-posed problem since (a) in the real-life pump–probe data, there are unavoidable
experimental errors and (b) the models usually do not account for all possible variables in
the experiment; thus, they have some systematic flaws.

To allow for the existence of the inverse problem solution, we can replace the formu-
lation from Equation (3) with the least-squares (LSQ) fitting [12]. Let us assume that our

experimental observations Oexp are given as a set of N values O(exp)
i (i = 1, 2, . . . , N) with

corresponding uncertainties σi. For each of these values, we have a corresponding model
function O(model)

i (P), which produces the model analog from a given set of parameters
P. The transition to LSQ can be done from the perspective of the maximum likelihood
estimation [12,14]. For a given i-th data point, we can assume that the deviation of the

theoretical value O(model)
i from the actual experimental value O(exp)

i can be distributed
according to a normal distribution with a variance σi, that is:

pi = p(O(model)
i (P)) = Ni · exp

−

(
O(model)

i (P)− O(exp)
i

)2

2σ2
i

, (4)

where Ni is the normalization factor. By assuming all the data points to be independent of
each other, the total distribution for all N points is just:

p(Omodel(P)) =
N

∏
i=1

pi = N · exp(−Φ(P)), (5)

where N = ∏N
i=1 Ni is the total normalization factor, and Φ is the LSQ function of parame-

ters P:

Φ(P) =
N

∑
i=1

1
2σ2

i

(
O(model)

i (P)− O(exp)
i

)2
. (6)

The probability given in Equation (5) characterizes how likely it is that the set of
parameters P and experimental set of observations Oexp correspond to each other. Therefore,
we can assume that the desired set of parameters Pexp that presents the optimal solution of the
inverse problem is the set of parameters with the highest probability (p(Omodel(P)) → max),
which we can formally write as:

Pexp = arg max
P

p(Omodel(P)), (7)

where arg maxx y(x) denotes the argument x that maximizes the value of y(x). However,
since we know the form of the probability (Equation (5)), we can replace this problem
with an equivalent one, namely ln(p(Omodel(P))) = −Φ(P) + ln(N ) → max. Since N is
constant and Φ(P) ≥ 0 (see Equation (6)), we can replace the condition of maximizing
p(Omodel(P)) with a new LSQ definition of the inverse problem:

Φ(P) =
N

∑
i=1

1
2σ2

i

(
O(model)

i (P)− O(exp)
i

)2
→ min . (8)

In the best-case scenario of a perfect match between experiment and theory, this LSQ
problem reduces to Equation (3). In all other cases, the Pexp is defined as:

Pexp = arg min
P

Φ(P). (9)

The LSQ procedure also allows for the statistical interpretation of the minimization
results through connection to the maximal likelihood principle (Equation (7)) [12,20]. If
we represent the LSQ function in the vicinity of the solution (Equation (9)) as a second-
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order Taylor expansion, then we get Φ(P) ≈ Φmin + 1
2 ∆PTΦ(2)∆P, where Φmin = Φ(Pexp),

∆P = P − Pexp, and Φ(2) is the matrix of second derivatives of the Φ over parameters P at
a set of parameters Pexp. The linear term in this expansion is zero because we expand for
deviations from the minimum. Upon substitution of this expansion into Equation (5), we
get [12,20]:

p(P) ∝ exp
(
−1

2
∆PTΦ(2)∆P

)
. (10)

This equation is a normal distribution for parameters P with Pexp being the mean values
and Φ(2) being the inverse variance matrix. The diagonal elements of (Φ(2))−1 are the
squared standard deviations of the parameters P, and the off-diagonal elements correspond
to correlations between the parameters.

Using this methodology, we can solve virtually any inverse problem using the follow-
ing general iterative procedure [12]:

1. Initialize minimization procedure with a set of initial guess parameters Pini. Then, we
find the corresponding set of observables Oini by solving a direct problem (Equation (2))
and compute the LSQ function (Equation (6)) value Φ(Pini).

2. Using one of the minimization algorithms, such as the Conjugate Gradient Method [21]

or Powell’s algorithm [22], we first get iteration trial parameter values P(1)
trial. Depend-

ing on the chosen minimization algorithm, we may require either calculation of
the LSQ function’s gradient (∇Φ(Pini)), Hessian (∇2Φ(Pini)), or evaluate the LSQ
function’s values in a few neighboring points around Pini.

3. Then, we again compute the Φ(P(1)
trial) and find second (P(2)

trial), third (P(3)
trial), fourth

(P(4)
trial), and so on, values of the parameters, trying to minimize the value of the LSQ

function (Equation (6)).
4. We halt this iterative procedure when we reach a pre-defined convergence criterion.

For instance, if the change of the parameter value from iteration to iteration is smaller

than some small value (δ), e.g., as

√(
P(n+1)

trial − P(n)
trial

)2
≤ δ, then the convergence

criterion can be said to satisfy. In this case, we take the last value obtained in the
procedure to be our solution, and then we estimate the uncertainties of the parameters
and correlations between them using an approximate normal distribution computed
from the second derivatives of the LSQ function (see Equation (10)).

However, this procedure can still be an ill-posed problem. Because of the strong
nonlinearity of the inverse problem in pump–probe spectroscopy, there might be several
local minima in the LSQ function, which means nonuniqueness of the inverse problem
solution [13,14,16]. A schematic illustration of such a generic case is given in Figure 1. In
this figure, we can see multiple solutions of the inverse problem, each of those will be
obtained dependent on the choice of the initial guess Pini. Then, upon obtaining one of the
solutions with the previously described iterative algorithm, we will get an estimation of
the parameter uncertainty based on Equation (10), which in the multivariate case will be
much smaller than the actual width of the whole multivariate distribution (Equation (5)).
Therefore, each of the possible solutions Pk ± σk (k = 1, 2, 3) will be a poor estimate of the
actual distribution for the system [13,14].
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Figure 1. A schematic illustration of the ill-posed LSQ problem. The bottom plot illustrates a LSQ
function Φ(P) (solid curve) with multiple local minima (#1, #2, and #3). The circles illustrate different
initial sets of parameters (Pini) that converge to different solutions (P1, P2, P3), shown with stars.
The dashed parabolas in each of the minima represent a local approximation of the nonlinear LSQ
function (Equation (6)) with a Taylor expansion up to the second order (see Equation (10)). The top
plot shows the corresponding probability distributions p(P) ∝ exp(−Φ(P)). The three Gaussian
functions represent the approximations of the localized solutions (Equation (10)) with standard
deviations σ1, σ2, and σ3. The solid curve in the back represents an actual multivariate probability
distribution according to Equation (5).

2.3. Regularization of the Least-Squares Inverse Problem

The main method of how to deal with ill-posed inverse problems is the so-called
regularization [14–16]. The idea of this method is simple: since our experimental data do
not provide a single solution to the problem, and we cannot decide which of the solutions
is the correct one, we need to get some a priori information to decide on this. In other
words, we take some external information on the system and modify the inverse problem
to account for this constraining information. We can have pre-known estimate values for
some subset of the parameters p ∈ P, or even for all of the parameters (p = P). Let us
denote our known parameters as preg. To impose soft constraints from these parameters
to the LSQ minimization problem (Equation (8)), we can add a penalty function Φreg(P)
modifying the inverse problem to:

Φ(P) + Φreg(P) → min . (11)

The two most common ways to define the regularization term are based on the
L1 or L2 norms in parameter space. The first one is the so-called L1-regularization (or
lasso regression) with the penalty function defined as the scaled absolute deviation of the
minimized subset of parameters p from the pre-known regularization parameters preg (i.e.,
Φreg(P) = λ · |p − preg|) [23,24]. The second term is the so-called L2-regularization (or
ridge regression) [15,17]. In this case, the penalty function is defined as a squared deviation
of the minimized parameters from the regularization values:

Φreg(P) = λ ·
(
p − preg

)2, (12)
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where λ ≥ 0 here (and also in the L1 case) is a regularization parameter. This free param-
eter determines how strongly the inverse problem in Equation (11) is penalized, i.e., it
measures the “softness” of constraints. The effect of the regularization parameter choice
is visualized in Figure 2. Let us assume that the LSQ inverse problem has two equivalent
solutions. Adding the penalty term skews the results towards one of the two solutions
in the regularized inverse problem (Equation (11)). If the regularization parameter is too
small, we still may end up with two solutions, and this case is the so-called underregu-
larized inverse problem. If the parameter λ is too large, the penalty term becomes larger
than the initial experimental LSQ function (Φ(P)), which results in the final solution of
the inverse problem to be close to the regularization parameters (i.e., pexp ≈ preg). This
case is called overregularized inverse problem. The sweet spot between underregularized
and overregularized cases results in the best possible solution. However, this requires a
proper choice of the regularization parameter λ. The recipes for the choice of λ are called
regularization criteria, and they are widely discussed in the scientific literature [16,25].

P

Φ(P)

Unregularized case Regularized cases
properly regularized overregularizedunderregularized

Φreg(P) vs. P

Φ(P)+Φreg(P) vs. P

Figure 2. A schematic illustration of the effect of regularization on the ill-posed LSQ problem. The
unregularized case on the left shows a pure unregularized LSQ function (Φ(P)) with two equivalent
solutions. The three regularized cases on the right show plots of the regularization function Φreg(P)
(bottom plots) and total function, as a sum of the Φ(P) + Φreg(P) (top), as functions of parameter
values (P).

An alternative to regularization in the ill-posed nonlinear inverse problems is fixing
some of the parameters in P to the pre-computed or pre-known values, e.g., by forcefully
setting p = preg. This reduction of parameter space, in some cases, can make the ill-posed
problem to be well-posed. Depending on the field, this approach may have different
names [26], but we will call it rigid constraints. This can also be considered an extreme
case of regularization, where the regularization parameter is infinite (λ → ∞). The less
widely discussed problem of the regularization and rigid constraints is if the constraints’
values (preg) do not come from the experiment but from theoretical calculations or even as
arbitrary assumptions. In this case, the nonexperimental assumptions will strongly influ-
ence both the resulting parameters’ values and their uncertainty estimations, as given by
Equation (10), making the inverse problem solution only partially experiment-based [20,27].
In the worst case scenarios, the approach of fixing parameters can even lead to nonphysical
solutions [28].

2.4. Monte-Carlo Importance Sampling of the Parameter Space

A more direct approach to obtaining a reliable estimation of the parameters than the
LSQ fitting is the Monte-Carlo (MC) sampling of the associated probability distribution, de-
scribing the discrepancy between the experimental observations and the model prediction
(Equation (5)) [13,14]. In this case, we try to obtain a valid representation of the probability
distribution rather than using a local normal distribution (Equation (10)) to approximate
the uncertainties of and correlations between the model parameters (see Figure 1).

An effective approach of MC, compared to the naive direct sampling of the whole
parameters’ space, is the Metropolis algorithm [29], which is a kind of Markov chain MC [30]
method developed for usage in computational physics [31]. In general, the algorithm works
as follows [12].
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1. We start from the initial set of parameters Pini, which we assign to be the current state
of the simulation Pcurrent (i.e., we set Pcurrent = Pini). Generally, we can use any set of
parameters for the initial guess, but a faster simulation convergence is reached if we
provide initial values in the desired solution region, e.g., as the solution of the LSQ
fitting problem (Equation (9)).

2. From the current state, we generate a new trial set of parameters Ptrial, and then we
compute the transition probability p(current → trial). This value describes a chance of
changing our current state Pcurrent to a new state Ptrial (i.e., reassigning Pcurrent = Ptrial).
The probability p(current → trial) should be related to the probabilities given in
Equation (5), and we will discuss it in detail further in the text (see Equation (21)).

3. Then, we draw a random value p̃ ∈ [0; 1) from a uniform distribution between 0 and
1, and compare the p̃ with p(current → trial).

• If p̃ ≤ p(current → trial), then Ptrial becomes the new state of the system, i.e., we
reassign Pcurrent = Ptrial. This state we will call an accepted step.

• If p̃ > p(current → trial), this means that the transition does not happen (we
disregard the Ptrial). The new state of the system becomes the same old value
Pcurrent. We will call this state a declined step.

4. By repeating steps #2 and #3 for a sufficient amount of iterations (N), we generate a
trajectory of states P(n), where index n = 1, 2 . . . , N denotes the state Pcurrent at the
n-th iteration of the algorithm. Naturally, some sets of parameters will be repeated
multiple times throughout the trajectory. Furthermore, this trajectory {P(n)}N

n=1 will
encode inside the desired distribution given in Equation (5). In practice, the initial
part of the trajectory (e.g., first 10% of steps) is disregarded as an equilibration phase.
The acceptance ratio refers to the accepted steps in algorithm step #3 (Nacc) to the total
number of steps (Ntot = Nacc + Nrej, where Nrej is the number of rejected steps). A
general requirement for the simulation to be reasonably good is that this ratio should
not be too big or too small. A simple rule of thumb can be that the acceptance rate
Racc = 100% · Nacc/Ntot should be in the range 10% ≤ Racc ≤ 50%.

5. From the obtained trajectory {P(n)}N
n=1, we can compute all the required parameters.

For instance, the mean value of parameter Pk (from the set of parameters P) can be
computed as:

⟨Pk⟩ =
1
N

N

∑
n=1

P(n)
k , (13)

where P(n)
k is the value of Pk in the parameter set P(n). Similarly, we can compute the

standard deviation σk of parameter Pk from the mean value as:

σ2
k = ⟨P2

k ⟩ − ⟨Pk⟩2 =
1
N

N

∑
n=1

(
P(n)

k

)2
−
(

1
N

N

∑
n=1

P(n)
k

)2

. (14)

The covariance between the parameters Pk and Pl will be given similarly, as:

cov(Pk, Pl) = ⟨PkPl⟩ − ⟨Pk⟩ · ⟨Pl⟩ =

=
1
N

N

∑
n=1

(
P(n)

k · P(n)
l

)
−
(

1
N

N

∑
n=1

P(n)
k

)
·
(

1
N

N

∑
n=1

P(n)
l

)
. (15)

From standard deviations (Equation (14)) and covariances (Equation (15)), we can
also calculate the Pearson’s correlation coefficients between parameters Pk and Pl as:

ρ(Pk, Pl) =
cov(Pk, Pl)√

σk · σl
. (16)
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Using this algorithm, we can effectively sample the possible solutions and provide a
more general estimation of parameter values and their uncertainties.

The only aspect missing in the algorithm is the actual expression for the transition
probability p(current → trial). For that, we need to consider a condition of the detailed
balance. In order for Equations (13)–(15) to work, the probability from Equation (5) should
be inherently contained within the trajectory {P(n)}N

n=1 of N steps. It means that for a given
state P, it should be contained within the trajectory N(P) times, which should be given
through the probability of this state:

p(P) = N · exp(−Φ(P)) ≈ N(P)
N

, (17)

according to Equation (5). Note that, in general, we do not know the normalization factor
N . Since we have a random procedure, if we take two possible parameter sets, say P
and P′, and consider that we have a possibility to go from one to another, and vice versa,
these jumps between P and P′ should not spoil the inherent probability in the trajectory
(Equation (17)). This can be fulfilled if we balance the number of jumps from P to P′, and
back, to be equal. The number of transitions from P to P′ (N(P → P′)) is simply the total
number of points with state P times the transition probability p(P → P′), that is:

N(P → P′) = N(P) · p(P → P′) = N · N · exp(−Φ(P)) · p(P → P′). (18)

A similar expression can be derived for the number of transitions from P′ to P:

N(P′ → P) = N(P′) · p(P′ → P) = N · N · exp(−Φ(P′)) · p(P′ → P). (19)

By setting N(P → P′) = N(P′ → P), we can assure that the MC procedure will not
change the proper probability distribution. This condition is called the detailed balance.
If the MC procedure follows this principle, it produces the desired trajectory with the
probability encoded inside the distribution of points within the trajectory. Substitution of
Equations (18) and (19) to the detailed balance results in:

exp(−Φ(P)) · p(P → P′) = exp(−Φ(P′)) · p(P′ → P). (20)

Any transition probability p(P → P′) fulfilling the detailed balance given in Equation (20)
is suitable for the MC simulations [12]. The simplest choice for the transition probability is
the following [29]:

p(P → P′) = S · min
{

exp
(
Φ(P)− Φ(P′)

)
, 1
}
=

= S ·
{

1, if (Φ(P)− Φ(P′)) ≥ 0,
exp(Φ(P)− Φ(P′)), if (Φ(P)− Φ(P′)) < 0

. (21)

Let us comment on Equation (21). The parameter S > 0 is just an arbitrary scaling
factor that could be used to change the acceptance rate Racc in the MC simulation. We will
consider it for now to be S = 1. If Φ(P) > Φ(P′), i.e., the LSQ function (Equation (6)) for the
new set of parameters P′ is smaller than for the old set P, we get exp(Φ(P)− Φ(P′)) > 1,
which will give us the probability p(P → P′) = 1. In other words, if a trial set of parameters
is better than the previous one, we definitely accept the new parameters. If the new set
of parameters is worse than the old one (Φ(P) < Φ(P′)), the probability of accepting the
new configuration will be exp(Φ(P)− Φ(P′)) < 1, and the worse the new parameters are
compared to the old ones, the less probable their acceptance will be.

As was discussed above, the optimal acceptance rate of the MC sampling (Racc) should
be in the range of 10% ≤ Racc ≤ 50%. This rate is being controlled by two factors: (1) gener-
ation procedure of the trial parameters Ptrial and (2) transition probability (Equation (21)).
Therefore, we have two ways of controlling the Racc in the MC sampling procedure. First,
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we can adjust the trial parameters generation, e.g., reducing/increasing the size of the steps
from the current configuration to increase/decrease Racc, respectively. Secondly, we can
decrease/increase the scaling factor S value in Equation (21) to decrease/increase Racc,
respectively. However, the second approach is less delicate than the first one.

3. Fitting Model of Pump–Probe Spectroscopy
3.1. General Considerations

As explained in the previous section (2), we require a model of the experiment to
solve both the direct (Equation (1)) and inverse problems (Equation (3)). The pump–probe
experiment can be imagined as shown in Figure 3. It consists of multiple experiments that
only differ in the delay time between pump and probe pulses (pump–probe delay, tpp). With
the pump pulse, we initiate the reactions, and with the probe pulse, we change the stable
and metastable intermediate products of interaction into the observable results [1,2,4,18].
In all the further discussion here, we will use a convention shown in Figure 3, that is:

• If both the pump and the probe pulses act on the molecule simultaneously, then
tpp = 0 (this temporal overlap of the pump and probe pulses is also called t0);

• If the probe pulse interacts with the molecule before the pump pulse, then tpp < 0;
• If the probe pulse interacts with the molecule after the pump pulse, then tpp > 0.

experiment time

pump pulse

p
u
m

p
-p

ro
b
e
 d

e
la

y
 (t

p
p )

unexcited
molecule

Pump onlyexcitation of the molecule

by the

pumpprobe

tpp<0

pump
probe

tpp≈0

pump probe

tpp>0

Pump-probe

detectionevolution of the molecule

Figure 3. A schematic illustration of the idea of the pump–probe spectroscopic experiment. The
(top) part of the image illustrates what happens in time in the experiment if only the pump pulse
is given. First, we introduce the molecular system in the apparatus, then we excite our molecular
system with the pump pulse, and then the photochemically induced changes happen in the system
on various timescales. In the end, we collect the signal produced by the molecular system at an
infinitely distant time. In the pump–probe case (bottom), we perform multiple experiments of
such sort, but introducing the second pulse, the probe, with some delay with respect to the pump
pulse (pump–probe delay, tpp). The changes in the observed signal as a function of tpp form the
pump–probe signal, potentially carrying information of the intermediate species.

We can model all the photochemical processes happening in the pump–probe ex-
periment with chemical kinetic equations, where we define the cross-sections of various
processes, such as the interaction with light, branching ratios, and rate constants for var-
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ious relaxation processes, and then integrate the resulting set of first-order differential
equations in time to get our observables [32,33]. In the cases with quantum beating be-
tween different states, we also can switch from simple chemical kinetics equations to
the Maxwell–Bloch equations formulated in terms of the density matrix of the molecular
system [4,34]. The general shape of the equations is very similar, but in Maxwell–Bloch
equations, the evolution of the off-diagonal density matrix elements is added. Both explicit
dynamics approaches successfully disentangled complex dynamics in various pump–probe
experiments [5,10,35,36].

However, modeling the rate dynamics explicitly is rather complicated and time-
consuming. First, the cost of solving the differential equations is higher than many other
numerical problems. This can be a significant drawback, especially for inverse problems
where we are trying to evaluate multiple parameters. In the case of standard LSQ mini-
mization (see Section 2.2), where we need a lot of calculations with various parameters
at each minimization iteration, a slow direct model can drastically limit the number of
varying parameters. It is even worse in the case of MC sampling (see Section 2.4), where
we need as many steps as possible to get the best possible sampling of the parameter space.
Second, solving the differential equations can be nontrivial. For instance, the rates of the
intramolecular relaxation processes can be on the order of a few tens of femtoseconds,
while the isomerization and formation of the fragments that are observed with the mass
spectrometer can take multi-picosecond timescales [10]. Such a large variety of timescales
requires a careful choice of integration techniques, especially for large pump–probe delays.
Another complication for explicit kinetic modeling is the existence of parasitic processes, in
which the molecular system’s dynamics is initiated not by the pump but by the probe pulse
and then probed by the pump pulse [6,37]. Such processes require additional integration of
the kinetic equations in the “backward” time direction.

Therefore, in the cases of many observables and parameters, the model-based ap-
proaches that describe observables in terms of given functions are more advantageous for
solving the inverse problem [38]. Here, we will, thus, only consider such a model approach.
We will generally follow the classical work of Pedersen and Zewail [18], but try to show
these well-known results from a simpler perspective and also extend the classical equations
to the case of coherent oscillations in pump–probe observables [8,10].

3.2. Delta-Shaped Pump–Probe Model
3.2.1. Assumptions of the Model

First, we will consider an ideal case of the pump–probe experiment in which pump
and probe pulses have zero temporal width. Both pump and probe pulses instantly convert
the molecular system into something else upon interaction. We will also consider the
pump–probe delay tpp to be exactly known without any imperfections. In this case, we can
try to devise what the results of our pump–probe experiment will be that we will observe.
We will use photochemical reaction schemes and chemical kinetics equations to obtain
numerical expressions for the pump–probe delay-dependent signals [39,40]. In all cases, we
will assume that all the chemical reactions induced are monomolecular first-order reactions.
Such an assumption is certainly true for all gas-phase experiments and usually also holds
for ultrafast pump–probe processes in the medium [33,38].

3.2.2. Step Function Dynamics

First, let us consider this simple pump–probe reaction scheme:{
M + pump → A
A + probe → B

, (22)

where we have our initial molecule (M), which interacts with photons of the pump pulse
to produce the initially unexistent stable chemical A. Then, this newly formed product
A can interact with the photons of the probe pulse to produce compound B. Such a
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pump–probe reaction scheme is quite ubiquitous in real-life experiments. For instance, in
the case of polycyclic aromatic hydrocarbons (PAHs), upon interaction with high-energy
extreme ultraviolet (XUV) photons, stable mono- or dications can be formed, which then
can fragment into smaller ions upon interaction with the probe pulse (see, e.g., [6] or [7]).

Let us now discuss what would be observed in the reaction scheme (22) for species A
and B, and the number of unabsorbed probe photons. At tpp < 0 (i.e., when the probe acts
before the pump), we would see a constant amount of the product A, no molecules B, and
a fully unabsorbed probe pulse. Then, for tpp > 0, we would also see a constant amount of
molecules A, but smaller than it was for tpp < 0, since now some of the A would be lost by
the second reaction in the reaction scheme (Equation (22)). A similar behavior would be
observed for the probe pulse: its intensity would be constant but depleted since some of
the probe photons would be lost in interaction with A. For B, we would see some constant
amount of signal. At tpp = 0, we would have an instant switch of behavior for all of the
observables. Therefore, we can formalize the signal observed for all species (A, B) and the
probe pulse intensity as follows:

f (tpp) = f0 +

{
0 , tpp < 0
f1 , tpp ≥ 0

= f0 + f1 · θ(tpp), (23)

where f0 and f1 are constants, f0 indicates the initial/final amount of the given species,
and f1 characterizes the cross-section for the interaction between A and probe photons.
Function θ(t) is the Heaviside step function, defined as:

θ(t) =

{
0 , t < 0
1 , t ≥ 0

. (24)

For the amount of A and intensity of the probe pulse, we will get f0 > 0, f1 < 0, and
for B, it will be f0 = 0 and f1 > 0. Although, theoretically, the magnitude of f1 for A and
B in the reaction scheme (22) should be equal, in practice, the signal magnitude can be
different due to the various factors, such as parasitic reactions, different detector efficiency,
or even differences in the integration windows for the signal (e.g., in the mass spectra).
Nevertheless, the general shape of the signals will be similar.

3.2.3. Instant Dynamics

Another simplistic pump–probe behavior is the instant dynamics, in which the observ-
able product A can be produced from the initial molecule M only if pump and probe pulses
simultaneously act on M. This type of photochemical reaction can be formally written as:

M + pump + probe → A. (25)

Processes of this type can also be found in real-life experiments. For instance, the
dynamics of the formation of photoelectron side bands follows this kinetic scheme (see
Refs. [6,41]). Such instant dynamics processes are useful in ultrafast experiments with X-ray
free electron lasers (FELs) because they allow for precise determination of the temporal
overlap between pump and probe pulses (t0 or tpp = 0).

Since both the pump and probe pulses in our model have zero duration, the only
possible way to formally write the yield of A as a function of pump–probe delay tpp is as
follows:

f (tpp) = f0 · δ(tpp), (26)

where f0 is a constant, characterizing the cross-section of reaction (25), and δ(t) is the Dirac
delta function (i.e., δ(0) → ∞ and δ(t) = 0 for t ̸= 0).
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3.2.4. Transient Pump–Probe Signatures of Metastable Species

The pump–probe studies’ desirable products are the metastable species’ signatures.
The basic model of their dynamic behavior can be described with the following reaction
scheme: 

M + pump → A∗

A∗ kr−→ C
A∗ + probe → B

, (27)

where we again denote the initial molecule as M and the final observable species as C
and B, but now we have a metastable species A∗ that spontaneously converts into C with
a first-order reaction rate kr. We assume this decay rate to be too fast for A∗ itself to be
detectable with the experimental setup. However, while we still have A∗ present in the
system, we can convert it into the observable species B.

For the reaction scheme (27), we now need to consider the evolution of A∗ in real
experimental time, which we will denote as t ≥ 0. At t = 0, we obtain [A∗]0 as the initial
concentration of A∗, which is created by the pump pulse. Then, at t > 0, A∗ decays
into C with the rate constant kr. The rate equation for the concentration of A∗ molecules
([A∗] = [A∗](t)) from the scheme (27) is written as [39,40]:

d[A∗]

dt
= −kr[A∗] , (28)

which results in the following solution (see Appendix A.1):

[A∗](t) = [A∗]0 · exp(−krt) = [A∗]0 · 2
− t

τ1/2 = [A∗]0 · exp(−t/τr) , (29)

where we provide the three most common ways to write the result, using the rate constant
kr, half-life time τ1/2 = ln(2)/kr, which gives the time at which the concentration [A∗]
becomes half of which it was initially, and decay time:

τr =
1
kr

=
τ1/2

ln(2)
, (30)

which indicates the time at which the concentration [A∗] becomes e ≈ 2.72 times smaller
than initially. In further discussions, we will only use the decay time τr.

Knowing the decay of A∗, we can also find the evolution of C in the experimental
real time. The rate equation for the concentration of C ([C]) from the reaction scheme (27)
is [39,40]:

d[C]
dt

= +kr[A∗]. (31)

At the initial time, we do not have any C, and thus, [C](0) = 0. Integration of Equation
(31) with [A∗] given by Equation (29) (see Appendix A.1) is as follows:

[C](t) = [A∗]0 · (1 − exp(−t/τr)). (32)

Knowing the dynamics of A∗ and C (Equations (29) and (32)), we can describe how
the change in yields of C and B would behave as a function of the pump–probe delay
tpp. At tpp < 0, A∗ is produced after the probe pulse has already passed the system.
Thus, the total amount of B is zero. As for C, we assume that the time of detection by
the experimental instrument tinstr is infinite compared to the internal dynamics time τr
(tinstr ≫ τr). This means that the amount of registered C molecules at tinstr from Equation
(32) is [C](tinstr) ≈ [A∗]0, i.e., all A∗ intermediate is fully converted into C before the
detection. At tpp ≥ 0, the probe pulse will instantly convert part of A∗ into B according
to the last equation in the reaction scheme (27). If we denote the conversion efficiency
of the probe pulse interaction as 0 ≤ p ≤ 1, then the resulting concentration of B is
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[B] = p · [A∗](tpp) = p · [A∗]0 · exp(−tpp/τr). The amount of C at tpp ≥ 0, that we will
register at tinstr, will be the difference between the full conversion result and the part of
A∗ lost upon conversion into B by the probe, i.e., [C](tinstr, tpp) = [A∗]0 − [A∗](tpp) =
[A∗]0 · (1 − p · exp(−tpp/τr)).

We can combine the described yields of B and C as functions of pump–probe delay
tpp using the Heaviside function (Equation (24)) as:{

[B](tpp) = [A∗]0 · p · θ(tpp) exp(−tpp/τr) ,
[C](tpp) = [A∗]0 ·

(
1 − p · θ(tpp) exp(−tpp/τr)

) . (33)

The yield of C resembles the formation kinetics of C in real experimental time (Equa-
tion (32)), while for B it resembles the real experimental time dynamics of the unstable
intermediate A∗ (Equation (29)). Nevertheless, we can summarize both of these dependen-
cies with a general expression of the form:

f (tpp) = f0 + f1 · θ(tpp) exp(−tpp/τr), (34)

where f0 and f1 are again constants proportional to the cross-section of the pump/probe
photons interacting with the molecular species.

Equation (34) has an intriguing similarity with Equation (23), describing the pump–
probe dynamics according to reaction scheme (22). This similarity is not a coincidence,
since if A∗ is stable (i.e., kr = 0, or τr → ∞), the reaction scheme (27) collapses into the
reaction scheme (22). Equation (34) will be transferred into Equation (23), if |tpp| ≪ τr,
since in this case exp(−tpp/τr) ≈ 1. Similarly, the reaction scheme transforms into reaction
scheme (25) if A∗ is too unstable (i.e., kr → ∞, or τr → 0). In this case, the decay exponent
becomes localized near tpp = 0, which can be approximated by Equation (26).

3.2.5. Coherent Oscillations without Decay

We worked with standard chemical kinetics equations in the previous model (Equation (27)).
However, if we want to discuss periodic oscillation features that are being observed in
some pump–probe experiments [8,10,42], such semiclassical description turns out to be
insufficient, and a quantum-mechanical model has to be used. Here, we will provide the
simplest model for such behavior based on a two-level quantum system. First, we will
discuss a basic model without the decay dynamics, and then we will modify our model to
include the decay effects [43,44].

Let us imagine that our molecular system is described with a Hamiltonian Ĥ, which
has eigenstates |0⟩ and |1⟩, that are solutions to the stationary Schrödinger equation
Ĥ|k⟩ = Ek|k⟩ (k = 0, 1). These states will be considered to be orthonormal, i.e., ⟨k|l⟩ = δkl
for k, l = 0, 1. We will take the energy E0 of the ground state |0⟩ as a reference, i.e., as
zero (E0 = 0). The energy of the excited state |1⟩ will be denoted as E1 = h̄ω, where h̄ is
the reduced Planck constant and ω is the angular frequency of the photon that provides
excitation from the ground to the excited state (|0⟩ → |1⟩). Note that ω is related to the
normal frequency ν as ω = 2πν. Now, we will consider the evolution of this system in
real-time t with explicit inclusion of the effects of the pump and probe pulses.

Suppose now that the system was initially in the ground state, i.e., before the pump
pulse acted on the system, the wavefunction of the system was as follows:

|ψini⟩ = |0⟩. (35)

After instant action, the pump pulse at real-time t = 0 has created a superposition
state, transferring some population to the excited state. The new state of the system right
after the pump pulse at t = 0 is described as:

|ψ(0)⟩ = c0|0⟩+ c1 exp(−iφ)|1⟩ , (36)
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where c0 and c1 are the coefficients, showing the amount of the system in the ground and
excited states as |c0|2 and |c1|2, respectively, with a condition of |c0|2 + |c1|2 = 1, and φ is
the phase of the excited state related to the ground state, which is imposed, e.g., by the
phase of the excitation pump pulse [45,46].

To propagate the dynamics of the state after interaction with the pump pulse (Equation (36)),
let us switch to the density matrix formalism. The density matrix ρ̂ for our two-level system
in the basis of states |0⟩ and |1⟩ is written as:

ρ̂ = ρ00|0⟩⟨0|+ ρ01|0⟩⟨1|+ ρ10|1⟩⟨0|+ ρ11|1⟩⟨1|, (37)

where the coefficients ρkl (k, l = 0, 1) describe the state of the system. This form can be
rewritten in the form of an actual matrix by placing the coefficients accordingly as:

ϱ =

(
ρ00 ρ01
ρ10 ρ11

)
. (38)

The elements of this matrix should fulfill two requirements. First, the trace of this
matrix should be equal to one (tr(ϱ) = ρ00 + ρ11 = 1). Second, the matrix ϱ should be
Hermitian, which means ρ01 = ρ∗10.

The density matrix ρ̂ for our system at time t = 0 can be obtained from the initial state
|ψ(0)⟩ (Equation (36)) as:

ρ̂(0) = |ψ(0)⟩⟨ψ(0)| =
= |c0|2︸︷︷︸

ρ00(0)

|0⟩⟨0|+ c0c∗1 exp(+iφ)︸ ︷︷ ︸
ρ01(0)

|0⟩⟨1|+ c∗0c1 exp(−iφ)︸ ︷︷ ︸
ρ10(0)

|1⟩⟨0|+ |c1|2︸︷︷︸
ρ11(0)

|1⟩⟨1| . (39)

Let us consider c0 and c1 as real values, concealing all the complex behavior into the
phase φ. We can also denote c2

1 = p and c2
0 = (1 − p), where 0 ≤ p ≤ 1 is the efficiency of

the pump pulse excitation |0⟩ → |1⟩. In this case, the initial parameters of the matrix from
Equation (38) will be: 

ρ00(0) = 1 − p ,
ρ01(0) =

√
p · (1 − p) exp(+iφ) ,

ρ10(0) =
√

p · (1 − p) exp(−iφ) ,
ρ11(0) = p.

(40)

As can be seen, the diagonal elements (ρ00 and ρ11) encode the population in a given
state, and the off-diagonal elements (ρ01 and ρ10) encode coherence between the levels.

The density matrix ϱ evolves according to the von Neumann equation [44]:

ih̄
dϱ

dt
= [H, ϱ], (41)

where [a, b] = ab − ba is the commutator and H is the Hamiltonian matrix composed of the
elements ⟨k|Ĥ|l⟩, which in our basis of orthonormal eigenstates looks as follows:

H =

(
⟨0|Ĥ|0⟩ ⟨0|Ĥ|1⟩
⟨1|Ĥ|0⟩ ⟨1|Ĥ|1⟩

)
=

(
0 0
0 h̄ω

)
. (42)

Substituting the density matrix (Equation (38)) and the Hamiltonian matrix (Equation (42))
into the von Neumann equation (Equation (41)), we find the following equations for the
evolution of each of the density matrix elements (details in Appendix A.2):
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dρ00

dt = 0 ,
dρ11

dt = 0 ,
dρ01

dt = +iωρ01 ,
dρ10

dt = −iωρ10 .

(43)

Solutions of these equations (see in Appendix A.2) with initial conditions given in
Equation (40) are: 

ρ00(t) = 1 − p ,
ρ11(t) = p ,
ρ01(t) =

√
p · (1 − p) · exp(+iφ + iωt) ,

ρ10(t) =
√

p · (1 − p) · exp(−iφ − iωt) .

(44)

These results describe the state of the free-evolving molecular system at experiment
times t ≥ 0 after the pump excitation. Based on this solution, we want to numerically
quantify the observables that we will get upon interaction with the probe pulse.

Let us consider that observables O in quantum mechanics are given in the form of
operators Ô. Therefore, we can assume that the result of measurement by the probe will be
given by an observable operator Ô. In the case of our two-level system, we can represent
this operator in the matrix form similar to the Hamiltonian (Equation (42)):

O =

(
O00 O01
O10 O11

)
, (45)

where the matrix elements are the following integrals:

Okl = ⟨k|Ô|l⟩ , k, l = 0, 1. (46)

We will assume that all these integrals are real, and thus, O01 = O10.
The mean result of the observable measurement ⟨O⟩ of the system described by the

density matrix ϱ (Equation (38)) is given as a trace of the product between matrices O and
ϱ:

⟨O⟩ = tr(Oϱ) = O00ρ00 +O01ρ10 +O10ρ01 +O11ρ11. (47)

By measuring the state described by the density matrix with elements from Equation (44)
in real time equal to the pump–probe delay (t = tpp), and taking into account that
O01 = O10 as well as Euler’s formula (exp(ix) = cos(x) + i sin(x)), we obtain the pump–
probe signal at tpp ≥ 0 to be:

⟨O⟩(tpp) = O00 ·

(1−p)︷ ︸︸ ︷
ρ00(tpp) +O01 ·

√
p·(1−p)·exp(−iφ−iωtpp)︷ ︸︸ ︷

ρ10(tpp) +

+

O01︷︸︸︷
O10 ·

√
p·(1−p)·exp(+iφ+iωtpp)︷ ︸︸ ︷

ρ01(tpp) +O11 ·

p︷ ︸︸ ︷
ρ11(tpp) =

= O00 · (1 − p) +O11 · p︸ ︷︷ ︸
f1

+ 2O01

√
p · (1 − p)︸ ︷︷ ︸
f2

· cos(ωtpp + φ) =

= f1 + f2 · cos(ωtpp + φ) (48)

At pump–probe delay times tpp < 0 (i.e., when the probe acts before the pump),
the probe pulse will observe the initial state of the system (Equation (35)), which can be
represented (similarly to that in Equation (39)) by a density matrix:

ϱini =

(
1 0
0 0

)
, (49)
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which upon substitution to Equation (47) will provide us with probe results at delays
tpp < 0:

⟨O⟩(tpp) = tr(Oϱini) = O00 = f0 . (50)

Now, we can merge the results of the pump–probe experiment result ( f (tpp) =
⟨O⟩(tpp)) for our two-level molecular system for pump–probe delays tpp < 0 (Equation
(50)) and tpp ≥ 0 (Equation (48)) to obtain:

f (tpp) = f0 + f1 · θ(tpp) + f2 · θ(tpp) · cos(ωt + φ) . (51)

In this equation, the coefficients fk (k = 0, 1, 2) are again proportional to the cross-
sections of pump/probe interaction with the molecules, the oscillation frequency ω encodes
the energy difference between two coherent states |0⟩ and |1⟩ through the Planck relation
E1 − E0 = h̄ω, and initial phase of the oscillation φ is an imprint of the pump pulse’s phase.
In the incoherent regime of the system’s excitation, the oscillating term disappears, and
Equation (51) converts into the classical Equation (23) (see Appendix A.3 for details). Such
correspondence between quantum and classical cases is not a coincidence: both cases refer
to the same reaction scheme (22), wherein the quantum case, M is |0⟩, A is |1⟩, and instead
of providing a concrete yield of observable, we use a more generic treatment of the probe
with the operator Ô.

3.2.6. Coherent Oscillations with Decay

Now, we will discuss the dynamics of the two-level system in which the excited state
can decay back into the ground state after the excitation. The derivation procedure will be
the same as in the previous Section 3.2.5. Therefore, we only highlight the changes that will
lead to a new result.

We start with the same system described generally by a 2× 2 density matrix (Equation (38)).
Before the pump, the molecular system is described by a wavefunction from Equation (35)
and right after the pumping, by a wavefunction from Equation (36). Equivalently, they are
given by a density matrix from Equations (40) and (49), respectively. Therefore, we again
need to propagate the pumped state.

To do the propagation, we will replace the von Neumann Equation (41) with its
modified version, the Lindblad equation, which considers the decay between states. In our
case, we can represent it as follows [44,47]:

ih̄
dϱ

dt
= [H, ϱ] + ih̄γ

(
σ−ϱσ+ − 1

2
{σ+σ−, ϱ}

)
, (52)

where the first part of the equation is the same as in Equation (41), and in the added decay
term, γ is the rate of the decay, {a, b} = ab + ba is the anticommutator, and the σ± matrices
are the excitation/deexcitation operators of the following form [44,47]:

σ+ =

(
0 0
1 0

)
and σ− =

(
0 1
0 0

)
. (53)

We can rewrite Equation (52) for our system (similarly to Equation (43)) as follows
(see Appendix A.4): 

dρ00
dt = +γρ11 ,

dρ01
dt = +iωρ01 − 1

2 γρ01 ,
dρ10

dt = −iωρ10 − 1
2 γρ10 .

dρ11
dt = −γρ11.

(54)
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Solving these equations with initial conditions given in Equation (40) results in the
following results:

ρ00(t) = 1 − p · exp(−γt) ,
ρ11(t) = p · exp(−γt) ,

ρ01(t) =
√

p · (1 − p) · exp(+iφ + iωt) · exp
(
− γt

2

)
,

ρ10(t) =
√

p · (1 − p) · exp(−iφ − iωt) · exp
(
− γt

2

)
,

(55)

where we obtain decay dynamics with the rate kr = γ. Therefore, to be in line with the
previous notation, we will replace γ with the decay time τr according to Equation (30).

Now, substituting the density matrix elements from Equation (55) into Equation (47),
describing the observable at tpp ≥ 0, we obtain a following analog of Equation (48):

⟨O⟩(tpp) =

f1︷︸︸︷
O00 +

f2︷ ︸︸ ︷
p · (O00 +O11) · exp

(
−

tpp

τr

)
+

+ 2O01

√
p · (1 − p)︸ ︷︷ ︸
f3

· cos(ωtpp + φ) · exp
(
−

tpp

2τr

)
=

= f1 + f2 · exp
(
−

tpp

τr

)
+ f3 · cos(ωtpp + φ) · exp

(
−

tpp

2τr

)
. (56)

The behavior of this system at delays tpp < 0 stays the same as before (Equation (50)).
By combining Equations (50) and (56), we get the coherent decay dynamics observables in
the pump–probe domain in the following form:

f (tpp) = f0 + f1 · θ(tpp) + f2 · θ(tpp) · exp
(
−

tpp

τr

)
+

+ f3 · θ(tpp) · cos(ωt + φ) · exp
(
−

tpp

2τr

)
. (57)

This equation closely reminds us of Equation (51), which can be obtained again in
the limit of τr → ∞ (γ = 0). At the same time, coherent oscillation dynamics resem-
ble a pump–probe yield from Equation (34), which is restored in the classical limit (see
Appendix A.3). This is again no coincidence since the currently discussed pump–probe
system is a modification of the reaction scheme (27) with M being |0⟩ and A∗ being |1⟩.
The difference between our two-level quantum model and rate scheme (27) is again in a
generic view on the probing, but also in the decay of A∗ back to M (A∗ → M instead of
A∗ → C in scheme (27)). We could also include the third state emulating C. This would
require extending the two-level system to three levels. However, in the three-level system,
the pump–probe observables will still be described with Equation (57).

3.2.7. More Complicated Dynamics Models

Now, let us take a look at more complicated reaction models for the pump–probe
dynamics than we have looked at before (Equations (22), (25) and (27)). The three extensions
can be seen in Figure 4, where scheme (a) shows a possibility of branching reactions when a
single metastable intermediate A∗ can result in multiple products, scheme (b) demonstrates
the possibility of having multiple interconverting metastable intermediates, and scheme (c)
shows how multiple pathways can produce the same product. However, if we evaluate the
observables from these schemes in the pump–probe domain, we see that all of them can be
described with the following expression (see Appendixes A.5–A.7):

f (tpp) = f0 + f1 · θ(tpp) + f2 · θ(tpp) · exp
(
− t

τ̃2

)
+ f3 · θ(tpp) · exp

(
− t

τ̃3

)
, (58)
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where τ̃i (i = 2, 3) are effective rate constants computed from original elementary rate
constants τr,j and fi (0 ≤ i ≤ 3) are effective parameters, dependent on the pump/probe
interaction cross-sections and on the reaction scheme.

(a)

B C1

M A∗ . . .

CN

pump

τr,1

τr,N

probe

(b)
B

M A∗
1 A∗

2 . . .
pump τr,1 τr,2

probe

(c)

B1

A∗
1

M C

A∗
2

B2

probe

τr,1

pump

pump

probe

τr,2

Figure 4. Three examples of pump–probe dynamics reaction schemes, extending the basic ones given
in Equations (22), (25) and (27): (a) reaction scheme with multiple outcomes from the same intermedi-
ate metastable state; (b) pump–probe scheme with sequential decay of the intermediate states; (c)
example of processes with multiple independent intermediate states that lead to the formation of
independent and same observables. Solutions for schemes (a)–(c) are given in Appendixes A.5–A.7.

The apparent simplicity of Equation (58) can be considered a lucky coincidence for
pre-designed schemes, but it is not. In fact, it can be explicitly shown (see Appendix A.8)
that if the reaction scheme for the pump-induced dynamics consists only of first-order
reactions (i.e., of the type A → C1 + C2 + . . .) and the probing dynamics is given only
as instant interconversion between species (i.e., of the type A + pump → B), then the
pump–probe yield for any of the products is given as:

f (tpp) = f0 · 1 + f1 · θ(tpp) + ∑
i≥2

fi · θ(tpp) · exp
(
− t

τr,i

)
, (59)

where τr,i (i = 2, . . .) are some effective rate constants composed of the rate constants for
individual reactions and the sum over i = 2, . . . covers all the effective decay pathways.

We can generalize Equation (59) in the following form:

f (tpp) =
N

∑
i=1

fi · bi(tpp), (60)

which is just a linear combination of N linearly independent basis functions bi(tpp) with
coefficients fi. Equation (59) has the following three types of basis functions:
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• The first type is simply the constant (“c”) defined as:

bc(tpp) = 1 . (61)

This function (with coefficient f0 in Equation (59)) has no parameters and describes
the background of the pump–probe experiment.

• The second type is the step or “switch” function (“s”):

bs(tpp) = θ(tpp). (62)

This basis function (with coefficient f1 in Equation (59)) describes the switching of the
background between tpp < 0 and tpp ≥ 0 regimes.

• The third type is the transient (“t”) function:

bt(tpp) = θ(tpp) · exp
(
− t

τr

)
. (63)

This type of basis function (with coefficients fi, i ≥ 2 in Equation (59)) describes
the pump-induced decay dynamics, and it depends on a parameter τr, which is an
effective decay time.

We can augment the three types of basis functions (Equations (61)–(63)) with three
additional functions.
• First, it is the instant (“i”) dynamics (Equation (25)) found in Equation (26):

bi(tpp) = δ(tpp). (64)

This type of dynamics describes unresolvably fast relaxation dynamics.
• The second additional function, describing nondecaying coherent oscillation (“o”),

can be taken from Equation (51):

bo(tpp) = θ(tpp) · cos(ωt + φ) . (65)

This basis function has two parameters: the oscillation frequency ω and the initial
phase φ.

• The last additional function, describing a transient coherent oscillation (“to”), can be
taken from Equation (57):

bto(tpp) = θ(tpp) · exp
(
− t

2τr

)
· cos(ωt + φ). (66)

This basis function has three parameters: the oscillation frequency ω, the initial phase
φ, and the decay time τr.

Using these six basis functions, bc, bs, bt, bi, bo, and bto given with Equations (61)–(66),
we can describe any pump–probe observable using expression (60). In the previous discus-
sion, we assumed that the pump pulse only initialized the dynamics and that the probe
pulse only changed the species produced with the pump. However, this is not always
the case: sometimes the probe pulse can initiate some processes, and the pump can probe
it, i.e., the probe acts similar to the pump, and vice versa [6,37]. These cases can be easily
described with the same dynamic equations by simply inverting the tpp, e.g., by using
bt(−tpp) instead of bt(tpp). Therefore, the proper basis set functions in Equation (60) are
given as b±x with:

bi(tpp) =

{
b+x (tpp) = bx(tpp) ,
b−x (tpp) = bx(−tpp) ,

x = c, s, t, i, o, to. (67)

In other words, each basis function requires two identifiers: index “x,” which selects
one of the basis function types from Equations (61)–(66), and index ±, which sorts between
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the cases of pump acting as a pump (and probe acting as a probe, denoted with “+”)
and probe acting as a pump (and pump acting as a probe, denoted with “−”). However,
we must note that the index “±” is essentially useless for the basis types of bc and bi
(Equations (61) and (64)), since these functions are symmetric with respect to the replace-
ment of tpp with −tpp.

3.3. Accounting for Finite Duration of the Pulses and Experiment Jitters

After sorting out the basic model for the pump–probe dynamics given by Equation
(60) with basis functions described in Equation (67), we are ready to account for deviations
of the dynamics from delta-shaped pump–probe measurements. There are two main
reasons why real experimental observations do not exactly follow the trends described in
Section 3.2 [41,48–50]:

• The real pulses are not delta-shaped but have a finite duration.
• Real experimental setups have fluctuations (jitters) of the pump–probe delay, arising

from different physical processes.

The first reason (pulse durations) is inherent to all pump–probe experiments and
can be further separated into the pump and probe pulses’ durations. The second reason
(experiment jitter) can have multiple sources and strongly depends on the experimental
setup. Such jitters are especially important for the experiments at the FELs, where optical
lasers are used for pumping/probing, because it is technically challenging to keep two
separate setups of tens to thousands of meters in size synchronized [49].

To account for these fluctuations, the following approach can be used. Suppose we
have a pump–probe observable in a perfect experiment with dynamics given by function
f (tpp). However, due to various fluctuations, the processes can be initiated imperfectly
at times tpp − ti with a probability pi, where ti is the offset from the ideal pump–probe
delay times. Let us assume that we have N fixed possible offsets, and the probability is
normalized as ∑N

i=1 pi = 1. Therefore, the actual observed measurement result (F(tpp)) of
an experimental system at a given pump–probe delay tpp will be given as:

F(tpp) =
N

∑
i=1

f (tpp − ti) · pi . (68)

We can replace the discrete distribution {pi}N
i=1 with N outcomes by a continuous

distribution p(t) (
∫ +∞
−∞ p(t)dt = 1). Then, by replacing the sum in Equation (68) over

offset times t, we get the corrected observable to be given as the convolution f ⊛ p of the
observable f with the pump–probe delay fluctuation distribution:

F(tpp) =
∫ +∞

−∞
f (tpp − t) · p(t)dt = f ⊛ p . (69)

When we have more than one (say, N) contributing factors for the offset described with
independent distributions pi(t) (i = 1, . . . , N), Equation (68) can be extended to multiple
convolutions:

F(tpp) = f ⊛ p1 ⊛ . . . ⊛ pN = f
N
⊛
i=1

pi =

=
∫ +∞

−∞
. . .
∫ +∞

−∞
f (tpp −

N

∑
i=1

ti) ·
(

N

∏
i=1

pi(ti)

)
dt1 . . . dtN . (70)

In general, Equation (70) requires a specific evaluation for each given type of distri-
bution pi. Therefore, to produce a workable analytical expression, we assume that all our
pump–probe fluctuation distributions pi are simply normal distributions of the form:
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p(t) =
1√
2πσ

exp
(
− t2

2σ2

)
=

2
√

ln(2)√
π · FWHM

exp
(
−4 ln(2) · t2

FWHM2

)
=

=
1√
πτ

exp
(
− t2

τ2

)
. (71)

We choose the expectation value for each of the distributions pi to be zero. This
means that if there is a systematic shift of the pump–probe delay tpp, we account for
it before performing the convolution, shifting the position of the temporal overlap be-
tween pulses t0 into a new value. There are three equivalent alternative forms of nor-
mal distribution in Equation (71), which are defined through the standard deviation σ =
FWHM/(2

√
2 ln(2)) = τ/

√
2, full width at half-maximum (FWHM = 2

√
2 ln(2) · σ =

2
√

ln(2) · τ), and effective width τ =
√

2 · σ = FWHM/(2
√

ln(2)). Note that one should
always pay attention to which of these forms is used to define the pump/probe pulse width
and jitter parameters. Further in the text, we will use the latter form, defined with τ, i.e.,
each distribution pi is characterized by its width τi.

By choosing all the distributions pi in Equation (70) to be normal distributions, defined
by Equation (71), evaluation of the multiple convolutions become simple and results in a
final expression of the form (see Appendix B.1 for proof):

F(tpp) = f
N
⊛
i=1

pi = f ⊛ p =
1√
πτcc

∫ +∞

−∞
f (tpp − t) · exp

(
− t2

τ2
cc

)
dt , (72)

where p(t) is an effective normal distribution (Equation 71) with width τcc defined as:

τ2
cc =

N

∑
i=1

τ2
i . (73)

This effective width of the pump–probe delay fluctuation is called cross-correlation
time or instrument response function [10,38], and it is an effective measure of the pump
and probe pulses’ duration and the instrumental jitter.

To calculate the cross-correlation time given in Equation (73), we require three basic
components:

• Pump pulse duration τpump.
• Probe pulse duration τprobe.
• Instrument jitter magnitude. τjitter.

The last component of cross-correlation time (τjitter) can itself be a composite value by
a similar expression to Equation (73).

To combine these three values (τpump, τprobe, and τjitter) into the cross-correlation time
τcc (Equation (73)), we need to consider a previously ignored issue, namely the number
of pump and probe photons used to form the observable. Let us assume that our pump
and probe stages (similar to reaction schemes (4), (22), (25), and (27)) are given by the
three equations: 

M + npump × h̄ωpump → A∗
1

A∗
1 → . . . → A∗

i → . . .
A∗

i + nprobe × h̄ωprobe → B

, (74)

where ωpump and ωprobe denote the angular frequencies of the pump and probe pho-
tons, and npump and nprobe denote the numbers of pump and probe photons used in the
pump/probe photochemical reactions.

The probability of forming the product is proportional to the light intensity to the
power of the number of photons [51]. Therefore, in the case of pump and probe laser
pulses, we need to convolute the pump–probe response with p

npump
pump and p

nprobe
probe , respectively.
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These functions are also normal distributions (Equation (71)) but with the effective widths
τpump, eff = τpump/√npump and τprobe, eff = τprobe/√nprobe. Therefore, upon combination
of factors of fluctuating pump–probe delay tpp we will get the cross-correlation time
(Equation (73)) in the following form:

τ2
cc =

τ2
pump

npump
+

τ2
probe

nprobe
+ τ2

jitter. (75)

Now, we can apply the transformation from Equation (72) to the observables for
pump–probe experiments with ideal instant excitations (Equation (60)) to produce the
adequate model for the real-life experimental observables:

F(tpp) = f ⊛ p =
N

∑
i=1

fi ·

Bi(tpp)︷ ︸︸ ︷
(bi ⊛ p) =

N

∑
i=1

fi · Bi(tpp). (76)

The resulting equation is similar to the initial (Equation (60)), in which the basis
functions bi(tpp), given in Equation (67), are replaced with their counterparts Bi(tpp),
which are convolutions of bi(tpp) with the effective distribution p(t) (Equation (72)) with
effective width given as cross-correlation time (Equation (73)).

Since the effective Gaussian distribution is symmetric with respect to time inversion
(t → −t), the resulting basis functions are given similar to Equation (67):

Bi(tpp) =

{
B+

x (tpp) = (bx ⊛ p)(tpp) = Bx(tpp) ,
B−

x (tpp) = (bx ⊛ p)(−tpp) = Bx(−tpp) ,
x = c, s, t, i, o, to. (77)

Therefore, to apply Equation (76) for real experimental data fitting, we need to find
expressions for the six types of the basis functions: Bc, Bs, Bt, Bi, Bo, and Bto, which
are convoluted analogs of the six basis functions bc, bs, bt, bi, bo, and bto given with
Equations (61)–(66).

The actual evaluation of all six basis functions is provided in Appendix B.2. Here, we
will only give their final expressions and their visualization (Figure 5). The physical mean-
ings of these expressions are the same as for their idealized counterparts (see comments for
Equations (61)–(66)).

• The first function is the constant (“c”) function:

Bc(tpp) = 1 . (78)

• The second type is the step function (“s”):

Bs(tpp) =
1
2
·
(

1 + erf
(

tpp

τcc

))
, (79)

where erf(x) = (2/
√

π) ·
∫ x

0 exp(−q2)dq is the error function.
• The third type is the transient (“t”) function:

Bt(tpp) =
1
2

exp
(

τ2
cc

4τ2
r

)
· exp

(
−

tpp

τr

)
·
(

1 + erf
(

tpp

τcc
− τcc

2τr

))
. (80)

• The fourth type is the instant (“i”) dynamics function:

Bi(tpp) = exp

(
−

t2
pp

τ2
cc

)
. (81)
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• The fifth type is the nondecaying coherent oscillation (“o”) function:

Bo(tpp) =
1
2

cos(ωtpp + φ) ·
(

1 + erf
(

tpp

τcc

))
. (82)

• Furthermore, the sixth type is the decaying (transient) coherent oscillation (“to”)
function:

Bto(tpp) =
1
2

exp
(

τ2
cc

16τ2
r

)
· exp

(
−

tpp

2τr

)
· cos(ωtpp + φ) ·

(
1 + erf

(
tpp

τcc
− τcc

4τr

))
. (83)

With these basis set functions, we can fit virtually any pump–probe dependent observ-
ables according to Equations (76) and (77).
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Figure 5. Basis functions for fitting the instant and fluctuating tpp pump–probe kinetics with
Equations (60) and (76), respectively. The expressions for the basis functions are given in
Equations (61) and (78) for constant behavior, (62) and (79) for step function, (63) and (80) for
transient feature, (64) and (81) for instant feature, (65) and (82) for oscillation, and (66) and (83) for
transient oscillation. Parameters for plotting of the functions are τr = 100 fs, τcc = 20 fs, vibrational
period τv = 2π/ω = 200 fs.

4. Estimation Procedure for the Parameters and Their Uncertainties
4.1. Single Dataset Case

Now, we will combine the general ideas of solving inverse problems described in
Section 2 with the pump–probe observables model, derived in Section 3, to get a consistent
procedure for obtaining reliable estimations of molecular response parameters from the
experimental data. Let us assume that we have a dataset of pump–probe data {Ym +σm}M

m=1
consisting of M measured points, where Ym = O(tpp,m) is the value of the observable O
at the pump–probe delay tpp,m, and σm is the uncertainty (standard deviation or standard
error) of the corresponding value. For each of these points, we can provide a model value
Fm = F(tpp,m) computed with Equation (76), and consisting of N basis set functions.

Our pump–probe model actually has two types of parameters.

1. The first ones are the linear coefficients { fi}N
i=1 before basis functions. These parame-

ters depict effective cross-sections and quantum yields for a given dynamics. We will
represent these parameters as an N-dimensional vector f = ( f1, f2, . . . , fN).
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2. The second set of parameters defines each basis function Bi(tpp). There are several
types of actual parameters.

• The first type is t0, representing the temporal overlap of the pump and the probe
pulses on the molecular sample. This parameter is not always known in advance
from the experimental setup (e.g., in the cases of experiments at the FELs with
conventional lasers [6]); it might be needed to be fit. In this case, the parameter
is provided to a given basis function Bi(tpp) by replacing it with Bi(tpp − t0).
In most cases, t0 is a shared parameter for all the basis functions and datasets.
However, in some cases, some of the basis functions can have a different t0
parameter to account for Wigner time delay in photoionization [52].

• The second type of parameter is the cross-correlation time τcc. This parameter
might differ for various basis functions since some processes can require different
numbers of photons to be pumped/probed.

• The third type is the decay time τr. Various decay processes usually have different
parameters.

• The fourth type is the coherent oscillation frequency ω.
• Furthermore, the last, fifth, parameter type is the oscillation phase φ.

These values are required to fully describe the model of the observable. We will
denote all of these parameters with a vector p.

With that, we can denote points Fm of the model as Fm(f, p), i.e., as functions of two
sets of parameters, f and p.

To solve the inverse problem, we need to construct the LSQ function (Equation (6))
given as [12]:

Φ(f, p) =
M

∑
m=1

1
2σ2

m
(Fm(f, p)− Ym)

2 =
1
2
(Bpf − Y)TW(Bpf − Y), (84)

where in the vector compressed form on the right, the vector Y = (Y1, Y2, . . . , YM) is the
M-dimensional vector of the experimental points, the M × M diagonal matrix of weights
W = diag(σ−2

1 , σ−2
2 , . . . , σ−2

M ), and the nonlinear parameters dependent matrix Bp of size
M × N is composed of the elements Bmi = Bi(tpp,m).

Let us fix the nonlinear parameters p, and notice that the LSQ inverse problem
(Equation (8)) for linear parameters f has a single explicit solution [12,39]. For this, we
need to solve equation ∂fΦ(f, p) = BT

pWBpf − BT
pWY = 0. This is a system of lin-

ear equations Af = y with an N × N matrix A = BT
pWBp made of elements Aij =

∑M
m=1 Bi(tpp,m) · Bj(tpp,m)/σ2

m and N-dimensional right-side vector y = BT
pWY made of

elements yi = ∑M
m=1 Ym · Bi(tpp,m)/σ2

m. The solution of this system of equations is:

fmin(p) = arg min
f

Φ(f, p) =
(
BT

pWBp

)−1
BT

pWY . (85)

The requirement for this solution to exist is the invertibility of the matrix A = BT
pWBp.

Substituting this solution (Equation (85)) to the initial LSQ function (Equation (84)), we
obtain an effective LSQ function that depends only on the nonlinear parameters p:

Φmin(p) =
1
2
(Bpfmin(p)− Y)TW(Bpfmin(p)− Y) . (86)

Since this effective function depends only on nonlinear parameters p, which means we
greatly reduced the problem’s dimensionality. By performing the local or global nonlinear
minimization of this effective function, we can get an initial optimal solution for both
nonlinear and linear parameters as:
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{
popt = arg minp Φmin(p) ,

fopt = fmin(popt) .
(87)

By using this set of parameters as a starting point of a MC procedure, described in
Section 2.4, with probability p(p) ∝ exp(−Φmin(p)), we can get a proper estimation of
parameters p and f.

4.2. Multiple Dataset Case

We can extend this case of a single dataset to a case of multiple K ≥ 1 datasets, which
we will indicate with an upper index k = 1, 2, . . . , K. Let us assume that the k-th dataset has
M(k) data points {Y(k)

m ±σ
(k)
m }M(k)

m=1 and the k-th model has N(k) basis set functions with linear
parameters f(k) and nonlinear parameters p(k). We can define the function Φ(k)(f(k), p(k))
in the same way as in Equation (84). The linear parameters f(k) will be unique for each of
the datasets; therefore, in each k-th case, we can find an optimal solution f(k)min(p

(k)) using

Equation (85) and define function Φ(k)
min(p

(k)) through Equation (86). However, unlike for
linear parameters, the nonlinear parameters p(k) might be shared between different datasets,
e.g., t0 position, cross-correlation times, or decay times of the same processes with various
observables, etc. Thus, we can form a unique set of Nnl nonlinear variables, describing
a nonredundant set of variables needed to describe all datasets. We will represent these
parameters with an Nnl-dimensional vector P (p(k) ∈ P for all k). In this case, we can
formally write that f(k)min(p

(k)) = f(k)min(P) and Φ(k)
min(p

(k)) = Φ(k)
min(P). Therefore, we can

define a general experimental LSQ function:

Φ(exp)
min (P) =

K

∑
k=1

Φ(k)
min(P) . (88)

We can now, similarly to Equation (87), find the optimal parameters Popt = arg minP

Φ(exp)
min (P) and {f(k)opt = f(k)min(Popt)}K

k=1, which can be used as starting points for MC sampling

of parameters P and {f(k)}K
k=1 (see Section 2.4).

4.3. Inverse Problem Regularization

We can also include the regularization of the nonlinear parameters (see Section 2.3)
in this procedure by adding a penalty function Φreg(P) to the experimental LSQ function

Φ(exp)
min (P), such as we work with an effective function:

Φeff(P) = Φ(exp)
min (P) + Φreg(P) . (89)

In this case, we do exactly the same minimization/MC sampling as for the pure
experimental LSQ function (Equation (88)).

The first type of regularization that we will consider is when we have independent
estimates for some (1 ≤ Nreg ≤ Nnl) of the nonlinear parameters p ∈ P (dim(p) = Nreg),
e.g., an independent measurement of t0 or estimates for τcc. Suppose we have Nreg values
of preg,l parameters with their corresponding uncertainties ςl (l = 1, 2, . . . , Nreg). In this
case, we can define a penalty function Φreg(P), which provides enforcing of these a priori
assumptions for parameters p:

Φ(I)
reg(P) =

1
2
(p − preg)

TWreg(p − preg) , (90)

using the Nreg-dimensional vector preg = (preg,1, preg,2, . . . , preg,Nreg) and weight matrix
Wreg = diag(ς−2

1 , ς−2
2 , . . . , ς−2

Nreg
) of size Nreg × Nreg. This equation has a form of L2-

regularization (Equation (12)), with the regularization parameter for each of the vari-
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ables pl being 1/(2ς−2
l ) (l = 1, 2, . . . , Nreg). A statistical meaning of the probability

p(P) ∝ exp(−Φreg(P)) is that we enforce the normal distribution for parameters p with
variances ςl [14].

The second type of regularization does not have any conceptual justification but is
rather a numerical necessity. If one of the observables has more than one step, decay, or
instant increase basis function, they can become linearly dependent upon their parameters
approaching each other. In this case, we can account for problems in finding the solution for
linear parameters (Equation (85)). Even worse, this can affect the MC sampled parameters,
since the two distinct dynamical channels can become interchanged, leading to mixed
distributions for different variables. To prevent that, we can add an artificial repelling term
Φij(P) for two entangled variables pi and pj in P, such as Φij(P) → 0 if these values are far
apart (|pi − pj| is large) and Φij(P) → ∞ if they approach each other (|pi − pj| → 0). The
simplest choice is the Coulomb-like expression:

Φij(P) =
αij

|pi − pj|
, (91)

where αij ≥ 0 is an arbitrary regularization factor, determining the strength of the repulsion.
If αij = 0, no repelling regularization for parameters pi and pj is applied. Combining all
the possible pairs of parameters, we can define a general penalty function:

Φ(II)
reg (P) =

N

∑
i=1

j<i

∑
j=1

Φij(P) . (92)

This general expression, that includes summing over all nonlinear parameters, allows
simultaneous treatment of both the unregularized pairs of values (for which αij = 0) and
those pairs of parameters, that are artificially constrained from being too close to each other
(αij > 0).

4.4. Inverse Problem Solution Algorithm

Now, we can summarize the proposed algorithm for solving the inverse problems in
pump–probe spectroscopy.

1. Obtain K ≥ 1 datasets of pump–probe observables and construct a model for each of
them. This means defining a unique set of nonlinear parameters P, a basis set for each
dataset, which provides linear parameters f(k)min(P) for each of the 1 ≤ k ≤ K datasets
(Equation (85)), and the experimental LSQ function Φexp(P) (88).

2. Construct a regularization functional for parameters P. Two types are available.

(a) If there are some a priori expectations on some of the parameters, they can be

included through the penalty function Φ(I)
reg(P) (Equation (90)).

(b) If, for some observables, there are multiple basis functions of the same type,

they can be protected from linear dependency using Φ(II)
reg (P) (Equation (92)).

The total regularization function Φreg(P) can be either:

• Φreg(P) = Φ(I)
reg(P) + Φ(II)

reg (P), if both regularization cases are applicable;

• Φreg(P) = Φ(I)
reg(P) or Φreg(P) = Φ(II)

reg (P), if only one regularization case in
demand;

• Φreg(P) = 0, if no regularization is required.

3. Define an effective function Φeff(P) (Equation (89)) as a sum of experimental and
regularization functions.

4. Find a solution of the LSQ problem as Popt = arg minP Φeff(P) using local or global
fitting.

5. Start a MC sampling procedure (see Section 2.4) with probability p(P) ∝ exp(−Φeff(P))

to sample nonlinear (P) and linear (f(k)min(P)) parameters.
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6. The final values for parameters will be the mean values from MC (⟨P⟩ and ⟨f(k)min(P)⟩).
The uncertainties of the mean values can be given as their respective standard devia-

tions (
√
⟨P2⟩ − ⟨P⟩2 and

√
⟨
(

f(k)min(P)
)2

⟩ − ⟨f(k)min(P)⟩2), see Equations (13) and (14).

7. In addition to the values and uncertainties, Pearson correlation coefficients (Equa-
tion (16)), histograms of parameter distributions, and higher distribution moments
can also be calculated from the MC trajectory.

The first application of this algorithm was in Ref. [6] with generic Python scripts, but
the development of general software for such fitting followed soon after. In the next section,
we will discuss this software.

5. PP(MC)3Fitting Software

The PP(MC)3Fitting (pump–probe multichannel Markov chain Monte-Carlo fitting)
is software that implements the algorithm from Section 4.4 for solving inverse problems
of pump–probe spectroscopy. It is written in Python language and is composed of an
application programming interface library libMCMCMCFitting.py and an actual script
ppmc3fitting.py that provides communication with the user by a command line interface
and a set of required and optional input files. The software also features a set of unit tests
and basic examples of applications.

The general scheme of working with the PP(MC)3Fitting software is given in Figure 6.
There are three required input files for the software to work. The first one, the dataset
definition file, provides the names of the files with the data that need to be fitted and the
basis functions, which should represent the observables via Equation (76). The second
input file, the channels’ definition file, provides the definition of the basis functions, i.e.,
which types of functions are there and which nonlinear variables they depend on. The last
compulsory input file (variables’ definition file) initializes the nonlinear variables (t0, τcc,
and τr): their minimal and maximal values, and optionally the initial value and the maximal
step for the MC sampling routine. A fourth additional file is the regularization definition
file, where additional constraints of the fitting can be defined. The data files are simple text
files with three or four columns, where the first column provides the pump–probe delay, the
second gives the yield of the observable, and the last column provides the yield uncertainty.
The units of the first column of all data files define the time units of all corresponding
nonlinear parameters.

PP(MC)3Fitting

Variables'

definition

file

Dataset

definition

file

Channels'

definition

file

Regularization

definition

file

(optional)

Dataset

R
E
S
U
L
T
S

Figure 6. A schematic representation of PP(MC)3Fitting workflow.
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The fitting procedure follows the algorithm described in Section 4.4. First, the local or
global optimization is run on the data to find the minimum of the effective LSQ function
(Equation (89)). For this, the minimization routines from the SciPy library are used [53].
The second step is MC sampling to obtain statistical estimates for the parameters. In the
end, the program prints out both optimized and sampled values for nonlinear variables,
Pearson correlation coefficients matrix, histograms for the variables, and also the numerical
representation of the fitted function and the basis sets to plot alongside the fitted data. A
more detailed application manual, the code itself, and examples of the fitting are provided
in the electronic supporting information (ESI).

The software provides the following types of basis functions to fit pump–probe
dynamics: “constant” (Bc, Equation (78)), “switch” (Bs, Equation (79)), “transient” (Bt,
Equation (80)), and “Gaussian” (Bi, Equation (81)). The coherent oscillations functions
(Equations (82) and (83)) were not implemented because these dynamics are not always
present in the pump–probe data but require more parameters to be included, such as the
oscillation frequency and the phase. Instead, the software also prints out the residuals
of the fit, which will contain the oscillatory dynamics, if present. Therefore, the coherent
oscillations can be fitted a posteriori from the fit, using Equations (82) and (83), similar to
Ref. [8].

The PP(MC)3Fitting software was successfully applied to disentangle complex dy-
namics of PAHs and published in Refs. [7,54,55]. For instance, in Ref. [7], a total of 31 decay
times were extracted from the rich fragmentation dynamics of fluorene (C13H10), which
corresponded to the lifetimes of the excited mono- and dications of this PAH molecule.
Here, we will not show any complicated analysis, but rather provide a few numerical
demonstrations of the capabilities of the PP(MC)3Fitting software and of the approaches
and concepts that could be used to work with the real-life experimental data.

6. Numerical Examples
6.1. Multiple Datasets with Shared Parameters

As a first example of the application of the PP(MC)3Fitting software, we will consider
the case of multiple datasets with shared parameters. For this, photoelectron sidebands
will be used as an example [56]. We will base the discussion on the actual experimental
pump–probe photoelectron spectra collected at the CAMP end-station [57,58] of the soft
X-ray free-electron laser FLASH (DESY, Hamburg) [59,60] during the beamtime F-20191568.
In this experiment, helium (He) atoms were pumped with XUV photons with an energy
of hνXUV = 40.8 eV (wavelength λ = 30.3 nm), produced by FLASH, and then probed by
infrared (IR) photons with an energy of hνIR = 1.5 eV (λ = 810 nm). More details on the
experiment can be found in Ref. [6].

He atoms resonantly absorb XUV photons with the energy of 40.8 eV, which is the
He II line [61], producing an ionization event according to the reaction:

He + XUV → He+ + e−(KE0) , (93)

where He+ is the He monocation, e−(KE0) is the photoelectron with kinetic energy of
KE0 = hνXUV − IP(He) = 16.2 eV, and IP(He) = 24.6 eV is the ionization potential of
He [62].

However, in the presence of the IR strong field, the absorption or induced emission of
photons by the ionized He can occur, leading to the gain or loss of the photoelectron energy,
respectively, [56]. We can describe this process through the following reaction:

He + XUV ± n · IR → He+ + e−(KEn) , (94)

where KEn = KE0 ± nhνIR is the new kinetic energy of the photoelectron, and n =
. . . ,−1, 0,+1, . . . is the number of the absorbed photons. If n = 0, Equation (94) be-
comes Equation (93), producing photoelectrons with energy KE0, and this photoelectron
line is also called a main line. However, if any IR photons are absorbed/emitted (|n| > 1),
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then the photoelectron energy KEn ̸= KE0, and the resulting signal is called the sideband
of the n-th order [56].

We can note that the sideband formation reaction (Equation (94)) is the same as the
instant probing scheme (Equation (25)). Therefore, the temporal behavior of these photo-
electron signals will be described with a basis function Bi(tpp) (Equation (81)). Near the
temporal overlap of both pulses (t0), the main line will be depleted, and the sidebands will
be formed. According to the cross-correlation time expression (Equation (75)), we expect
that the higher the sideband order |n| is, the smaller is the τcc of this line. Furthermore, the
sidebands should be symmetric, i.e., the width of the line at kinetic energy KEn should be
the same as for KE−n.

The experimental data (Figure 7) show exactly the behavior we described. We can
extract the pump–probe photoelectron yields at given values of the photoelectrons’ kinetic
energies KEn, corresponding to the intensities of the main line and the sidebands. From
the data, in addition to the main line, we see sidebands of orders n = ±1,±2,±3,+4. All
of these datasets can be fitted simultaneously with the PP(MC)3Fitting software with a
routine described in Section 4.4. The model function (Equation (76)) in all of the cases is
given by:

F(tpp − t0) = fc · Bc(tpp − t0) + fi · Bi(tpp − t0) , (95)

that is, it is a sum of the constant function Bc = 1 (Equation (78)) describing the baseline
and instant dynamic Bi (Equation (81)). All eight datasets for the main line and seven
sidebands share the parameter t0. The fit for all data should also have five cross-correlation
time parameters τ

(n)
cc , with n = 0, 1, 2, 3, 4 denoting the main line (n = 0) and sideband

order (n ≥ 1) according to Equation (94). Since the ±n sidebands are produced with the
same amount of IR photons, they should have the same cross-correlation time.
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Figure 7. Experimental XUV-IR pump–probe photoelectron spectrum of helium, obtained in beam-
time F-20191568. The horizontal dashed lines show the expected position of the photoelectron main
line (at 16.2 eV) and sidebands. The experimental photoelectron maxima for higher-order sidebands
are offset due to imperfection of the radius-to-energy conversion. Details are provided in the text.

We performed two types of fits: a global fit for all eight datasets and separate fits for
the main line (Fit #0) and sidebands of each order (Fits #1 to #4). The results are shown
in Figure 8 and Table 1. As one can see, generally, the parameters obtained from both
the global fit and the separate fits agree. However, the global fit allows us to reduce the
uncertainty for some parameters and avoid inconsistencies between the datasets (e.g.,
Fit #1 or Fit #4). This, in particular, leads to an unambiguous and precise definition of
t0 = −38.522 ± 0.001 ps that can be used in further analysis, similar to Ref. [6].
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Table 1. Final values of the nonlinear parameters for fitting the He photoelectron main line and
sidebands. Fitted curves are shown in Figure 8.

Parameter Value, fs
Global Fit #0 Fit #1 Fit #2 Fit #3 Fit #4

t0 + 38.5 ps −22 ± 1 −22 ± 3 −35 ± 4 −23 ± 2 −20 ± 2 −15 ± 2
τ
(0)
cc 97 ± 3 97 ± 3 — — — —

τ
(1)
cc 138 ± 5 — 143 ± 6 — — —

τ
(2)
cc 88 ± 2 — — 88 ± 3 — —

τ
(3)
cc 63 ± 3 — — — 62 ± 3 —

τ
(4)
cc 62 ± 7 — — — — 61 ± 7
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Figure 8. Photoelectron yields at the sidebands of various order and of the main line, corresponding
to helium ionization (Reaction (94)), and their fits with the model from Equation (95). The points
shown here were obtained as horizontal slices from Figure 7.

6.2. Forward-Backward Channel Dataset

Here, we will consider a case with two pump–probe channels, where the pump acts
as a pump and the probe as a probe, and an inverted case, where the probe pulse acts as
a pump, and the pump pulse acts as a probe. We will take the formation of the fluorene
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dication from Ref. [6] as an example. In that work, the neutral three-ring PAH fluorene
(C13H10) was investigated in an XUV-IR pump–probe experiment with the same parameters
as given in the previous Section 6.1. Upon a first look at the experimental ion yield of the
fluorene dication C13H10

2+ (Figure 9), one would think that there is a single transient peak
and a switch function. However, the temporal overlap t0 = 12.650 ± 0.005 ps determined
with the help of helium sidebands [6], similar to that in Section 6.1, does not allow to fit the
resulting behavior using a single transient. The simplest model to explain this anomaly is
that the peak is composed of two transients: one with the XUV pulse acting as a pump and
the second with the IR pulse acting as a pump.
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Figure 9. Experimental ion yield of the fluorene dication C13H10
2+ in the XUV-IR pump–probe

experiment. Three plots show three independent fits of the same experimental data by the same
model, given in Equation (96). Fits #1 and #2 are the results of standard fitting using Gnuplot [63],
while the PP(MC)3Fitting result was obtained using the software procedure from Section 4.4 using
PP(MC)3Fitting software. The solid vertical line indicates the t0 from He sidebands, while the dotted
vertical lines are the results of the corresponding fit result.

The model (Equation (76)) proposed for the fitting of such a signal is the following:

F(tpp − t0) = fc · Bc(tpp − t0)+

+ f−s · B−
s (tpp − t0) + f+t · B+

t (tpp − t0) + f−t · B−
t (tpp − t0) , (96)

where “switch” and transient functions use a single cross-correlation time τcc, and two
transients B±

t are described with rate constants τ±
r , where τ+

r describes lifetime of an
excited fluorene monocation

(
C13H10

+)∗ and τ−
r describes the lifetime of an excited neutral

fluorene (C13H10)
∗ [6].

Simple fitting of Equation (96) to the experimental data given in Figure 9 is a good
example of the ill-posed problem. To illustrate that, we performed two fits with two sets of
initial values of nonlinear parameters t0, τcc, τ+

r , and τ−
r using the Marquardt–Levenberg

algorithm [64,65] with the Gnuplot software [63]. The initial t0 in both cases was taken as a
value from the He sidebands, and the initial τcc was taken from the MC result in Ref. [6].
The only difference is that the initial decay times were taken as 50 fs in the first fit, whereas
in the second, they were 150 fs.

Figure 9 and Table 2 show results for both fits. The overall description of the data looks
equivalent in both cases, but the actual values of the nonlinear parameters are quite different.
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While some of the parameters are equivalent to each other due to huge uncertainties, the
τ+

r have significantly different values, judging from the standard deviations computed
according to Equation (10). The LSQ function values are equivalent in both cases, making
these solutions indistinguishable, using, e.g., χ2-statistics [12] or various criteria, such as
the Akaike information criterion [66]. However, even by looking at the components of the
fit (Figure 9), we can be sure that these are two alternative solutions.

Table 2. Nonlinear parameters of the model for the fluorene dication ion yield (Equation (96))
obtained with different fit models. “Ini.” and “Fin.” denote the initial and final values according to
the Marquardt–Levenberg algorithm [64,65]. All values are given in fs.

Parameter Fit #1 Fit #2 PP(MC)3Fitting
Ini. Fin. Ini. Fin.

t0 − 12.650 ps 0 −41 ± 3441 0 −2 ± 33 −11 ± 20
τcc 97 80 ± 1018 97 104 ± 21 101 ± 10
τ+

r 50 88 ± 7 150 130 ± 30 133 ± 37
τ−

r 50 36 ± 58 150 21 ± 40 22 ± 20

Applying the algorithm from Section 4.4 is especially advantageous in such cases,
since we can automatically sample through all various equivalent solutions, providing
an adequate statistical representation of the result. The results of the application of the
PP(MC)3Fitting software are also given in Figure 9 and Table 2. Although the total fit
looks exactly the same as Fit #1 and Fit #2, the uncertainties of the individual transient
components ( f+t · B+

t (tpp − t0) and f−t · B−
t (tpp − t0)) are significant. By examining the dis-

tributions for individual nonlinear variables (Figure 10), we realize that the MC procedure
sampled through many equivalent solutions, including Fit #1 and Fit #2. A more accurate
and realistic solution can be obtained by applying regularization of t0 with the value from
He sidebands, similar to Ref. [6].
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Figure 10. Distributions of the nonlinear parameters of the model for the fluorene dication ion yield
(Equation (96)) from the MC sampling procedure. The dashed vertical lines illustrate the values from
Fit #1 and Fit #2 (violet and red, respectively, see Table 2). The vertical solid line for t0 shows the
result from the He sidebands measurements.
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6.3. Treatment of the Data with Coherent Oscillations

As was said in Section 5, the PP(MC)3Fitting software does not implement the basis
functions for the coherent oscillations (Equations (82) and (83)). Nevertheless, this software
can still be used to fit such datasets as well. As an example, we will use the ion yield of
the indole-water (C8H7N · H2O) monocation from Ref. [10], where oscillatory dynamics
were observed. In the original publication, a five-state model given by the Maxwell–
Bloch equations was used, which produced three rate constants τr,1 = 0.45 ± 0.07 ps,
τr,2 = 13 ± 2 ps, and τr,3 = 96 ± 10 ps, and also an oscillation frequency ω = 3.77 THz with
phase φ = 1.77.

To fit the same dataset for the indole-water monocation, we formulated an effective
model with three effective decay times:

F(tpp − t0) = fc · Bc(tpp − t0) + f−s · B−
s (tpp − t0) +

3

∑
i=1

f+t · B+
t,i(tpp − t0) , (97)

where the t0 was regularized with a value of t0,reg = 0 ± 1 fs, while all the rest of the nonlin-
ear parameters τcc and τr,i (i = 1, 2, 3), each from function Bt,i, were left unregularized. The
values of τr,i were expected to be sufficiently different. Therefore, no repulsion regulariza-
tion (Equation (92)) was applied in this case. Instead, the nonoverlapping regions for decay
times were set: 0.01 ≤ τr,1 ≤ 2 ps, 5 ≤ τr,2 ≤ 40 ps, and 40 ≤ τr,3 ≤ 300 ps. The result-
ing parameters obtained with PP(MC)3Fitting were τcc = 0.34 ± 0.02 ps, τr,1 = 0.9 ± 0.1,
τr,2 = 26 ± 5 ps, and τr,3 = 234 ± 34 ps. The obtained decay times are reasonably close
to the ones obtained in Ref. [10] (see above), as well as to the experimentally estimated
τcc = 0.381 ps. An exact match was not expected since, in the original paper, a microscopic
model was used, which produces the elementary rate constants, while our approach utilizes
the effective rate constants.

The obtained fit (Figure 11) by design (Equation (97)) does not contain any of the
oscillations, and this means that we have fitted only the noncoherent part of the signal (see
Equations (51) and (57)). We can consider the fit’s residual to find the signal’s coherent part.
The fit residual is defined as y = Y −Bpoptfopt (see Equations (86) and (87)) with the same
uncertainties as of the original values. Since the desired oscillation signal is proportional to
cos(ωt + φ) (Equations (51) and (57)), we can perform the Fourier transform (FT) of the
residual part of the spectrum, to find the initial guess for the oscillation frequency ω and
phase φ [12]. Since we know the residuals’ uncertainties and the dataset does not contain
uniformly spaced data, instead of the fast FT algorithm [12], we can use a least-squares
spectral analysis (LSSA) [67,67]. In particular, here, we used the regularized weighted
LSSA (rwLSSA) introduced in Ref. [68] (see details in Appendix C). The rwLSSA spectrum
of delay range of −0.7 ≤ tpp < 30 ps for a frequency range of 0 < ω ≤ 7 THz is shown
in Figure 12. The maximal intensity is observed for a point of ω = 3.82 THz with phase
φ = 1.4 at this point, which is already reasonably close to the parameters obtained in
Ref. [10] (ω = 3.77 THz and φ = 1.77).

We then performed a fit of the signal in the range −0.7 ≤ tpp < 10 ps with the highest
density of points. We represented a signal as an oscillation function (Equation (82)):

f (tpp) = fo · Bo(tpp) =
fo

2
cos(ωtpp + φ) ·

(
1 + erf

(
tpp

τcc

))
(98)

with τcc = 0.34 ps taken from the PP(MC)3Fitting and rwLSSA peak parameters as initial
conditions. By simple LSQ fitting, we get ω = 3.72 ± 0.05 THz and φ = −1.2 ± 0.3. This
result is shown in Figure 13. With that, we produced a full description of the pump–probe
dataset for both the incoherent decay part of the signal and the coherent oscillations.
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Figure 11. Experimentaland fitted ion yield of the indole-water monocation. Experimental data were
taken from Ref. [10]. Colored areas indicate the MC uncertainty of a corresponding component of the
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Now, we can summarize a universal analysis procedure that can be applied to the
pump–probe datasets with the possible presence of coherent oscillations.

1. First, with the algorithm from Section 4.4 implemented in PP(MC)3Fitting, we fit the
nonoscillating part of the dynamics.

2. Then, we perform an rwLSSA analysis [68] (see Appendix C) for the residuals of the
fit that are also printed by the PP(MC)3Fitting. This analysis will allow us to check
whether the signal contains any systematic oscillations. Note that the oscillations
should be present only in tpp ≥ t0 or in tpp ≤ 0 parts of the pump–probe data (see
Equations (82) and (83)).

3. If the rwLSSA spectrum shows a presence of statistically meaningful oscillations
in a reasonable range of frequencies, then the frequencies and the phases of the
maximal amplitude signals from rwLSSA spectra can be used as initial guesses to fit
the residuals of the PP(MC)3Fitting result with expression Equation (76) and basis
functions Bo (Equation (82)) and Bto (Equation (83)). Since the coherent oscillations
should correspond to the incoherent processes, the cross-correlations and decay times
from the PP(MC)3Fitting results can be used.

The same procedure can also treat other unaccounted features in the experimental
pump–probe data. One example is the presence of so-called coherent artifacts, which
appear near the temporal overlap of the pump and probe pulses [69–72].

6.4. Cross-Correlation Time and Time Resolution

The last example we will show here is a demonstration of a concept rather than a
PP(MC)3Fitting demonstration. Sometimes, statements are shared that the “time resolution
of pump–probe experiments is limited by the cross-correlation time” [11]. This leads to
frequent questions about whether the rate constants extracted from the fits are smaller than
the cross-correlation times of the experiments. However, such a direct application of the
idea that the cross-correlation time is the limit for the shortest obtainable decay lifetimes is
questionable since there are a few common ways to express both the cross-correlation time
(Equation (71)) and the decay time (Equation (30)). Therefore, in this section, we decided to
use the MC sampling of the possible solutions with PP(MC)3Fitting to demonstrate the
actual relation between the rate constants and the cross-correlation time.

To do that, we generated two sets of ten generic pump–probe data with a fixed decay
time τr = 50 fs, but with varied cross-correlation time 5 ≤ τcc ≤ 500 fs. The upper limit was
determined by the capabilities of the standard methods to represent the transient function
Bt(tpp) (Equation (80)). The standard methods, using SciPy [73] packages, allow for stable
and smooth data produced for the ratios τcc/τr up to τcc/τr < 50 (see Appendix D). Such
implementation of the Bt(tpp) function is used in PP(MC)3Fitting, but we limited ourselves
to τcc/τr ≤ 10.

All generated pump–probe data span the delays in the range −1 ≤ tpp ≤ +2 ps with
a step of 20 fs. Each set of data had a given signal-to-noise ratio (SN): one set had SN = 10
(high noise data), and the other SN = 100 (low noise data). Figure 14 shows an example
of such data. Each of the datasets with a given τcc and SN parameters was fitted with
PP(MC)3Fitting with the same function that it was generated with (Equation (80)), that is:

F(tpp) = ft · Bt(tpp) . (99)

Two fits were performed for each pump–probe dataset with a given τcc and SN:
without regularization and with regularization for t0 with t0,reg = 0 ± 1 fs (see Figure 14).
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Figure 14. Examples of generated pump–probe datasets and their fits with PP(MC)3Fitting. The
“initial function” is the original function, and the “dataset” is the generated dataset with the given
SN level. The shown datasets were generated using Equation (80) with τcc = 335 fs and τr = 50 fs
parameters.

The resulting trends for the three nonlinear parameters of the fit (t0, τcc, and τr) are
shown in Figure 15. As we can see, for the fully unregularized fit with SN = 10, the
procedure gives reasonable results (see also Figure 15) up to τcc ∼ 300 fs (τcc/τr = 6). At a
lower noise level (SN = 100), reasonable results extend to around τcc ∼ 450 fs (τcc/τr = 9).
Upon applying the regularization, both the low noise level (SN = 100) and high noise level
(SN = 10) fits were able to reproduce the preset parameters up to τcc = 500 fs. Therefore,
we can conclude that the decay times (Equation (30)) can be reliably fitted below the value
of the cross-correlation time (Equations (5) and (75)) with a single dataset. The lower noise
level and preliminary knowledge of the parameters, such as the position of the temporal
overlap (t0), allow shorter decay times to be reliably fitted. Combining the datasets in a
global fit, as shown in Section 6.1, can also be used to increase the accuracy of the results.
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Figure 15. Results of fitting the various datasets with unregularized and regularized procedures. The
dotted lines represent the actual defined parameters of the dataset. SN denotes the signal-to-noise
ratio for the fitted dataset.

7. Conclusions

In this manuscript, we extensively discussed the inverse problem solution (fitting)
for the pump–probe spectroscopic datasets. We examined the theoretical aspects of the
inverse problem solution and the standard model used to fit the pump–probe data. Here,
we provided rigorous proof that the classical set of model functions used to fit the pump–
probe experimental data is sufficient to describe any pump–probe observables, given that
only first-order reactions are possible (Appendix A.8). In addition, we have extended
the standard set of the basis functions used to fit the pump–probe dynamics with two
additional ones, describing coherent oscillations in the dataset (Equations (82) and (83)).

We proposed a general-purpose algorithm for treating the inverse problem of the
pump–probe spectroscopy (outlined in Section 4.4). In short, it is based on separating the
linear and nonlinear parameters. First, a global fit of the data is performed, and then the
uncertainties of the fitted parameters are determined by the Markov chain Monte-Carlo
routine. This approach was implemented in the Python software PP(MC)3Fitting, which
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can be used in a standardized fashion for various datasets. With the numerical examples,
we highlighted the common ideas for application, such as global fits with shared parameters
between different datasets, the presence of parasitic channels, and stepwise treatment of
the coherent oscillations in the data. We also commented on a commonly misdiscussed
issue of the time resolution in the pump–probe spectroscopy.

The presented PP(MC)3Fitting software is a complementary addition to the existing
methods used to analyze experimental pump–probe data. Examples of such approaches
include global and target analysis [32,38,74], KiMoPack [33], lifetime density maps anal-
ysis [75–77], and Maxwell–Bloch equation modeling [4,34]. Adding the PP(MC)3Fitting
to the listed set of methods can be useful for the ultrafast community to robustly and
effectively tackle complicated experimental pump–probe results with various dynamical
observables (Supplementary Materials).

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/photochem4010005/s1, The presented software is a complementary
addition to the existing methods used to analyze experimental pump-probe data.
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Appendix A. Detailed Derivations of Delta-Shaped Pump–Probe Dynamics

Appendix A.1. Solution of the First-Order Kinetics Equations

We are solving Equation (28) of the following form ([A∗] = y, kr = k):

ẏ =
dy
dt

= −ky (A1)

for function y = y(t) with initial condition y(0) = y0. Let us rewrite this equation as:

https://www.mdpi.com/article/10.3390/photochem4010005/s1
https://www.mdpi.com/article/10.3390/photochem4010005/s1
https://gitlab.desy.de/denis.tikhonov/mcmcmcfitting/
https://gitlab.desy.de/denis.tikhonov/mcmcmcfitting/
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dy
y

= −kdt

and integrate the left part from y0 to y(t) and the right part of the same equation from 0 to
t as: ∫ y(t)

y0

dy
y

= ln
(

y(t)
y0

)
= −k

∫ t

0
dt = −kt .

Rearranging this result, we obtain the final solution of the form:

y(t) = y0 · exp(−kt) , (A2)

as given in Equation (29).
Now, we integrate Equation (31) for the product of the decay ([C] = z) with substituted

Equation (A2), which gives:

ż = ky = ky0 · exp(−kt) . (A3)

Such an equation can simply be integrated in time from 0 to t with the initial condition
z(0) = 0 as: ∫ t

0
żdt = z(t) = ky0

∫ t

0
exp(−kt)dt = y0(1 − exp(−kt)) . (A4)

Appendix A.2. Coherent Quantum Dynamics without Decay

We start from the von Neumann Equation (Equation (41)):

ih̄ϱ̇ = [H, ϱ] = Hϱ − ϱH , (A5)

where the density matrix ϱ (Equation (38)) and Hamiltonian matrix H (Equation (42)) are:

ϱ =

(
ρ00 ρ01
ρ10 ρ11

)
, H = h̄ω

(
0 0
0 1

)
.

where ϱ̇ is a matrix, composed of elements ρ̇kl (k, l = 0, 1). By computing two products of
these matrices, we obtain:

Hϱ = h̄ω

(
0 0

ρ10 ρ11

)
and ϱH = h̄ω

(
0 ρ01
0 ρ11

)
.

Substitution of these results in the initial equation results in a matrix equation:

ih̄
(

ρ̇00 ρ̇01
ρ̇10 ρ̇11

)
= h̄ω

(
0 −ρ01

+ρ10 0

)
. (A6)

We can rewrite this equation as a system of equations for corresponding individual
matrix elements from the left and right sides:

ih̄ρ̇00 = 0 ,
ih̄ρ̇01 = −h̄ωρ01 ,
ih̄ρ̇11 = 0 ,
ih̄ρ̇10 = +h̄ωρ10 .

(A7)

By dividing the left and right sides by ih̄, we arrive at Equations (43). First, let us
integrate the equations, describing the dynamics of the diagonal elements (ρ00 and ρ11)
with initial conditions (Equation (40)) of ρ00(0) = 1 − p and ρ11(0) = p:
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∫ ρ00(t)

1−p ρ̇00dt = ρ00(t)− (1 − p) = 0
∫ t

0 dt = 0 ⇒ ρ00(t) = 1 − p ,∫ ρ11(t)
p ρ̇11dt = ρ11(t)− p = 0

∫ t
0 dt = 0 ⇒ ρ11(t) = p .

For off-diagonal elements, the rate equations have the same form as Equation (A1)
(y = ρ01, ρ10 and k = ∓iω). Thus, the solution is given with Equation (A2), that is:{

ρ01(t) = ρ01(0) · exp(+iωt) ,
ρ10(t) = ρ10(0) · exp(−iωt) .

Taking into account the initial conditions (Equation (40)) of ρ01(0) =
√

p · (1− p) exp(+iφ)
and ρ10(0) =

√
p · (1 − p) exp(−iφ), we arrive at:{

ρ01(t) =
√

p · (1 − p) · exp(+iφ + iωt) ,
ρ10(t) =

√
p · (1 − p) · exp(−iφ − iωt) .

Appendix A.3. Relation between Quantum and Classical Regimes

The classical incoherent regime in coherent regimes (Equation (51) or (57)) appears as
a result of incoherent excitation. For instance, such an incoherent regime can appear when
different molecules have different imprinted phases φ from the pump pulse. In this case,
we need to average all these signals from all the incoherent molecules. Let us assume that
the following expression gives the result of a molecule with an imprinted phase φ:

f (tpp, φ) = F0(tpp) + F1(tpp) · cos(ωt + φ) ,

where F0(tpp) is the phase-independent part of observable and F1(tpp) is the oscillation
prefactor. Both Equations (51) and (57) can be reduced to such a form. The distribution of
the molecules with various oscillation phases φ will be given by a probability distribution
P(φ), normalized as

∫ 2π
0 P(φ)dφ = 1. In this case, the result of the ensemble observation

will be:

f (tpp) =
∫ 2π

0
f (tpp, φ)P(φ)dφ .

If we now assume that all phases are equally possible, i.e., P(φ) is a uniform distribu-
tion for φ ∈ [0; 2π) (P(φ) = (2π)−1), then we get an averaging result:

f (tpp) =
1

2π

∫ 2π

0
f (tpp, φ)dφ =

= F0(tpp) ·
1

2π

∫ 2π

0
dφ︸ ︷︷ ︸

2π

+F1(tpp) ·
1

2π

∫ 2π

0
cos(ωt + φ)dφ︸ ︷︷ ︸

0

= F0(tpp) .

In other words, the oscillating observables disappear, and only the nonoscillating inco-
herent part of the signal is left. This result can also be obtained by setting the nondiagonal
elements to zero in the density matrix in Equation (47), which is known to lead to a classical
regime of the quantum system [78,79].

Appendix A.4. Coherent Quantum Dynamics with Decay

The initial Linblad Equation (52) has the following form:

ih̄ϱ̇ = [H, ϱ] + ih̄γ

(
σ−ϱσ+ − 1

2
{σ+σ−, ϱ}

)
=

= Hϱ − ϱH+ ih̄γ

(
σ−ϱσ+ − 1

2
σ+σ−ϱ − 1

2
ϱσ+σ−

)
. (A8)
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The σ± matrices (Equation (53)) are the excitation/deexcitation operators. If we
represent the system’s wavefunction |ψ⟩ = c0|0⟩ + c1|1⟩ with a vector of coefficients
(c0, c1), and apply σ± for states |0⟩ and |1⟩, described as (1, 0) and (0, 1), respectively, then
we get:

σ+|0⟩ =
(

0 0
1 0

)(
1
0

)
=

(
0
1

)
= |1⟩

and

σ−|1⟩ =
(

0 1
0 0

)(
0
1

)
=

(
1
0

)
= |0⟩ .

To get the matrix equation for the system evolution, we need to calculate the additional
term ih̄γ(σ−ϱσ+ − (1/2) · {σ+σ−, ϱ}) of Equation (A5), which describes the decay in the
quantum system. For this, we evaluate each of the following components:

σ−ϱσ+ =

(
0 1
0 0

)(
ρ00 ρ01
ρ10 ρ11

)(
0 0
1 0

)
=

(
ρ11 0
0 0

)
,

σ+σ−ϱ =

(
0 0
1 0

)(
0 1
0 0

)(
ρ00 ρ01
ρ10 ρ11

)
=

(
0 0

ρ10 ρ11

)
,

and

ϱσ+σ− =

(
ρ00 ρ01
ρ10 ρ11

)(
0 0
1 0

)(
0 1
0 0

)
=

(
0 ρ01
0 ρ11

)
.

Substituting these matrices into Equation (A8) with the previously evaluated first part
(Equation (A6)), we get:

ih̄
(

ρ̇00 ρ̇01
ρ̇10 ρ̇11

)
= h̄ω

(
0 −ρ01

+ρ10 0

)
+ ih̄γ

(
+ρ11 − 1

2 ρ01
− 1

2 ρ10 −ρ11

)
.

From this matrix equation, we can obtain a modified set of Equations (A7):
ih̄ρ̇00 = +ih̄γρ11 ,
ih̄ρ̇01 = −h̄ωρ01 − ih̄γ

2 ρ01 ,
ih̄ρ̇10 = +h̄ωρ10 − ih̄γ

2 ρ10 .
ih̄ρ̇11 = −ih̄γρ11 .

Dividing these equations by ih̄, for elements ρ01, ρ10, and ρ11, we arrive to the decay
differential equations (Equation A1) with k = γ/2 − iω, k = γ/2 + iω, and k = γ, re-
spectively. This results in the solution given by Equation (A2) with corresponding decay
rates. A similar procedure for ρ00 leads to an Equation (A3) with k = γ, which leads to
the solution in Equation (A4). All these results are summarized in Equation (55) in the
main text.

Appendix A.5. Reaction Scheme with Multiple Products

Let us consider the reaction scheme (a) from Figure 4, which can be represented with
the following system of chemical reactions:

M + pump → A∗

A∗ k1−→ C1

A∗ k2−→ C2

. . .

A∗ kN−→ CN

A∗ + probe → B

.
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It can be considered as an extension of scheme (27) with N various decay results
C1, C2, . . . , CN . We will denote [A∗] = y ([A∗](0) = y(0) = y0) and [Ci] = zi (i = 1, . . . , N).
In this case, the rate equation for A∗ will be:

ẏ = −

keff︷ ︸︸ ︷(
N

∑
i=1

ki

)
y = −keffy .

This rate equation is the same Equation (A1) with solution (A2). For each of the
products Ci, the rate equations are:

żi = +ki · y = ki · y0 · exp(−kefft) ,

which is the same as Equation (A3). Thus, the solution for product Ci is given by Equa-
tion (A4). From this, the pump–probe dynamics of [B] and [C] are given by Equation (33).
Since we can express rate constants through the decay lifetimes (ki = τ−1

i , see Equation (30)),
we can express the effective rate constant as:

τr =
1(

N

∑
i=1

ki

)
︸ ︷︷ ︸

keff

=

(
∑

i

1
τi

)−1

.

Appendix A.6. Reaction Scheme with Sequential Metastable Intermediates

Let us consider the reaction scheme (b) from Figure 4, which can be represented with
the following system of chemical reactions:

M + pump → A∗
1

A∗
1

k1−→ A∗
2

A∗
2

k2−→ . . .
A∗

2 + probe → B

,

where we get the formation of the intermediate A∗
1 by the pump, which is followed by the

decay into A∗
2 , which in turn decays further. The probing is done using B. First, we solve

rate equation for [A∗
1 ] = y1:

ẏ1 = −k1y1 ,

which is Equation (A1) with solution (Equation (A2)):

y1(t) =

y10︷ ︸︸ ︷
y1(0) · exp(−k1t) = y10 · exp(−k1t) . (A9)

The rate equation for [A∗
2 ] = y2 looks as follows:

ẏ2 = +k1y1 − k2y2 , (A10)

which can be thought of as a combination of Equations (A1) and (A3). Thus, we can try to
find the solution as a combination of (A2) and (A4) as:

y2(t) = α1 exp(−k1t) + α2 exp(−k2t) , (A11)
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where α1 and α2 are coefficients. By applying a boundary condition y2(0) = 0, we get
α1 = −α2. Then, substituting (A11) and (A9) into (A10), we get:

α1 · exp(−k1t) · (k2 − k1) = y10 · k1 · exp(−k1t) .

Dividing this equation by exp(−k1t) · (k2 − k1), we get:

α1 = −α2 =
y10 · k1

k2 − k1
,

which results in:

y2(t) = y10 · k1
(exp(−k1t)− exp(−k2t))

(k2 − k1)
.

The yield of B at tpp < 0 is zero, and at tpp ≥ 0 it is [B](tpp) = p · y2(tpp), where p
is the probing efficiency (similar to Equation (33)). This gives the following pump–probe
yield of B:

[B](tpp) = p · y10 · k1

(k2 − k1)
· θ(tpp) · (exp(−k1t)− exp(−k2t)) .

Appendix A.7. Reaction Scheme with Multiple Intermediates Forming a Single Product

Let us consider the reaction scheme (c) from Figure 4, which can be represented with
the following system of chemical reactions:

M + pump → A∗
1

M + pump → A∗
2

A∗
1

k1−→ C

A∗
2

k2−→ C
A∗

1 + probe → B1

A∗
2 + probe → B2

.

The kinetic equations for [A∗
i ] = yi (i = 1, 2) are the following ones:

ẏi = −kiyi ,

which are the decay Equation (A1), with the solution (Equation (A2)) given as:

yi(t) = yi0 · exp(−kit) ,

where yi0 = yi(0) are the initial amounts of A∗
1 and A∗

2 created by the pump pulse. This
solution (similar to Equation (33)) provides the amount of Bi as a function of the pump–
probe delay tpp to be:

[Bi](tpp) = pi · yi0 · θ(tpp) · exp(−kit) , (A12)

where pi is the conversion efficiency of A∗
i into Bi by the probe pulse.

The rate equation for [C] = z is as follows:

ż = +k1y1 + k2y2 = k1y10 · exp(−k1t) + k2y20 · exp(−k2t) ,

which can be solved by direct integration with boundary condition z(0) = 0 as:

∫ t

0
żdt = z(t) = k1y10 ·

∫ t

0
exp(−k1t)dt + k2y20 ·

∫ t

0
exp(−k2t)dt =

y10(1 − exp(−k1t)) + y20(1 − exp(−k2t)) .
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At t → ∞, z(t) → y10 + y20. At tpp < 0, the yield of C is given as [C](tpp) = y10 + y20.
At tpp ≥ 0, it is going to be the amount of full conversion (y10 + y20) without the amount
lost for B1 and B2 with a probe (Equation (A12)). Therefore, the total amount of C can be
written (similar to Equation (33)) as:

[C](tpp) =
2

∑
i=1

(
yi0 − pi · yi0 · θ(tpp) · exp(−kit)

)
.

Appendix A.8. General Form of the Decay Dynamics Pump–Probe Equations

Now, we will consider the generalized version of the decay reaction dynamics, de-
scribed in Section 3.2 of the main text and Appendixes A.5, A.6, and A.7 of the Appendix.
Let us consider that we have N compounds A1, A2, . . . , AN , formed by the pump from the
initial molecule M and/or those formed by the probe pulse from the species formed by the
pump pulse. The amount of each of compound Ai will be denoted as yi. An N-dimensional
vector describing the current amounts of all compounds will be denoted as:

y =


y1
y2
...

yN

 ,

where the pump pulse forms the initial distribution of states y0.
The system of reaction equations for free evolution of the system will be the following:

A1
k1→2−−→ s1→2 · A2

A1
k1→3−−→ s1→3 · A3

...

Ai
ki→j−−→ si→j · Aj

...

AN
kN→N−1−−−−→ sN→N−1 · AN−1

.

where we consider all possible reactions of decay into each other (1 ≤ i, j ≤ N and i ̸= j)
with rate constants ki→j ≥ 0 and stoichiometric coefficients si→j ≥ 0, where ki→j = 0 and
si→j = 0 mean that this reaction is not happening. The free evolution of the system is, thus,
given by the following rate equation:

ẏ = −Ky , (A13)

where matrix K consists of the following elements. The diagonal elements Kii are given as:

Kii = +
N

∑
j=1, j ̸=i

ki→j ,

while the off-diagonal elements are defined as:

Kji = −si→j · ki→j .

To obtain the solution of Equation (A13) [12], we will consider the solutions to the
following eigenproblem:

Kui = γiui.
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All eigenvalues should be nonnegative for physically-relevant reaction schemes
(γi ≥ 0). From a set of N orthonormal eigenvectors ui (i = 1, . . . , N and uT

i uj = δij),
we can form a matrix of orthogonal transformation:

U = (u1, u2, . . . , uN) .

We can now diagonalize matrix K as:

Γ = UKUT = diag(γ1, γ2, . . . , γN) .

Now, we can replace y and ẏ with Y = Uy and Ẏ = U ẏ by multiplying Equation (A13)
with U from the left side:

Ẏ = U ẏ = −UK

E︷︸︸︷
UTU y = −ΓY ,

where E is an N × N identity matrix. The solution for this equation is:

Y(t) = exp(−Γ · t)Y0 ,

where Y0 = Uy0 is the initial condition and the exponential matrix exp(−Γ · t) is:

exp(−Γ · t) = diag(exp(−γ1t), exp(−γ2t), . . . , exp(−γNt)) .

We can go back to y = UTY by multiplying this solution with UT from the left, resulting
in:

y(t) =

T (t)︷ ︸︸ ︷
UT exp(−Γ · t)U y0 = T (t)y0 ,

where T (t) is the free evolution operator. If we expand each of the components yi, we get:

yi(t) =
N

∑
j=1

cij exp(−γjt) ,

where the dynamics of each of the components is a sum of exponential decays with effective
rate constants (for γj > 0) and static yields (for γj = 0) with constant coefficients cij that
depend on the initial conditions y0 and on the reaction scheme.

To describe the probe process, we will also consider another set of rate equations:

A1 + probe
p1→2−−→ s′1→2 A2

A1 + probe
p1→3−−→ s′1→3 A3

...

Ai + probe
pi→j−−→ s′i→j Aj

...

AN + probe
pN→N−1−−−−→ s′N→N−1 AN−1

,

where 0 ≤ pi→j ≤ 1 describe the probing efficiency of a given process and s′i→j ≥ 0 are the
stoichiometric coefficients (pi→j = 0 and s′i→j = 0 mean that this process does not happen).
Therefore, we can describe probing at time t > 0 as an instant shuffling of the products as
replacement current values y(t) with Py(t), that is:

y(t) → Py(t) (A14)
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where the matrix P has the following nondiagonal elements:

Pji = s′i→j · pi→j

and diagonal elements:

Pii =
N

∑
j=1, j ̸=i

(1 − pi→j) .

At tpp < 0, the system continues a free evolution until the detection. Therefore, we
can describe the observable yield of all the components f(tpp) as:

f(tpp) = lim
t→∞

y(t) =

T∞︷ ︸︸ ︷(
lim
t→∞

T (t)
)

y0 = T∞y0 , (A15)

where T∞ is given as:

T∞ = UT

limt→∞ exp(−Γ·t)︷ ︸︸ ︷
diag(θ(−γ1), θ(−γ2), . . . , θ(−γN))U ,

where for γi = 0 we get θ(−γi) = 1 and for γi > 0 we get θ(−γi) = 0.
At tpp > 0, we get a free evolution from the initial conditions y0, then the action of the

probe according to Equation (A14), and then again free evolution until detection. We can
write this (similar to Equation A15) as:

f(tpp) = T∞PT (tpp)y0 . (A16)

Combining Equations (A15) and (A16), we get the following equation describing all
the pump–probe yields of all products:

f(tpp) = T∞ ·
(
E + θ(tpp) ·

(
PT (tpp)− E

))
y0 .

For each of the compounds Ai, their pump–probe yield can be described as:

fi(tpp) = q0 +
N

∑
j=1

qi · θ(tpp) · exp(−γitpp) ,

where qj (j = 0, 1, . . . , N) are the coefficients related to initial conditions y0, reaction scheme,
and also probing efficiencies. Terms with exponents appear from the operator T (tpp) in
the expression above.

Appendix B. Effects of the Duration of the Pulses and Experimental Setup Jitter

Appendix B.1. Sequential Convolution with Gaussian-Shaped Pulses

Let us consider a sequential convolution of the following form:

f ⊛ p1 ⊛ p2 =

=
1

πτ1τ2

∫ +∞

−∞

(∫ +∞

−∞
f (t − t1 − t2) · exp

(
−

t2
1

τ2
1

)
dt1

)
· exp

(
−

t2
2

τ2
2

)
dt2 , (A17)

where f (t) is some arbitrary function, and pi(t) (i = 1, 2) are the normal distributions:

pi(t) =
1√

π · τi
· exp

(
−

t2
i

τ2
i

)
.
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Trying to simplify Equation (A17), we can replace variables t1 and t2 with:{
T = t1 + t2 ,
q = t2 − t1 ,

i.e.,

{
t1 = T−q

2 ,
t2 = T+q

2 .
(A18)

The Jacobian J for such transformation is:

J = det

(
∂t1
∂T

∂t2
∂T

∂t1
∂q

∂t2
∂q

)
= det

(
+1/2 +1/2
−1/2 +1/2

)
=

1
2

,

which means that dt1dt2 = JdTdq = 1
2 dTdq. Substitution of coordinates from Equation (A18)

into Equation (A17) results in:

f ⊛ p1 ⊛ p2 =

=
1

2πτ1τ2

∫ +∞

−∞
f (t − T)

(∫ +∞

−∞
exp

(
− (T − q)2

4τ2
1

− (T + q)2

4τ2
2

)
dq

)
︸ ︷︷ ︸

I(T)

dT, (A19)

and therefore, we only need to evaluate the integral I(T). First, let us rearrange the
expression inside the exponent as:

− (T − q)2

4τ2
1

− (T + q)2

4τ2
2

=

= −
(τ2

1 + τ2
2 )

4τ2
1 τ2

2
·

T2 + q2 − 2

a︷ ︸︸ ︷
(τ2

2 − τ2
1 )

(τ2
1 + τ2

2 )
· T ·q

 =

= −
(τ2

1 + τ2
2 )

4τ2
1 τ2

2
·
(

T2 + q2 − 2 · a · q + a2 − a2
)
=

= −
(τ2

1 + τ2
2 )

4τ2
1 τ2

2
·
(

1 −
(τ2

2 − τ2
1 )

2

(τ2
1 + τ2

2 )
2

)
· T2 −

(τ2
1 + τ2

2 )

4τ2
1 τ2

2
· (q − a)2 =

= − T2

τ2
12

− (q − a)2

τ2
q

, (A20)

where
τ2

12 = τ2
1 + τ2

2 (A21)

and

τ2
q =

4τ2
1 τ2

2
(τ2

1 + τ2
2 )

=
4τ2

1 τ2
2

τ2
12

.

Substitution of the result from Equation (A20) into I(T) from Equation (A19) results
in:

I(T) =
∫ +∞

−∞
exp

(
− (T − q)2

4τ2
1

− (T + q)2

4τ2
2

)
dq =

= exp

(
− T2

τ2
12

)
·
∫ +∞

−∞
exp

(
− (q − a)2

τ2
q

)
dq =

√
πτq · exp

(
− T2

τ2
12

)
=

= 2
√

π
τ1τ2

τ12
· exp

(
− T2

τ2
12

)
,



Photochem 2024, 4 103

which upon substitution into Equation (A19) and replacement of T = t12 provides us a
final answer of:

f ⊛ p1 ⊛ p2 =
1√

πτ12

∫ +∞

−∞
f (t − t12) · exp

(
−

t2
12

τ2
12

)
dt12 . (A22)

In other words, convolution of function f (t) with two Gaussian functions is equivalent to
convolution with a single effective Gaussian function:

f12(t) =
1√

πτ12
exp

(
− t2

τ2
12

)
,

where the effective width τ2
12 is given by Equation (A21). If we require the calculation of a

triple convolution, we can apply this result sequentially as:

f⊛p12︷ ︸︸ ︷
f ⊛ p1 ⊛ p2 ⊛p3 = f ⊛ p123 ,

where the final effective Gaussian function p123(t)will have the effective width τ2
123 = τ2

1 + τ2
2 + τ3

3 .
Such a process can be continued for any arbitrary number of Gaussian functions, yielding
the result listed in Equation (72).

Appendix B.2. Basis Functions for Fitting Observables with Finite Duration Pump/Probe Pulses
and Experimental Jitter

Here, we explicitly calculate the convolution of the basis functions bx (x = c, s, t, i, bo, to,
given in Equations (61), (62), (63), (64), (65) and (66), respectively) for describing the
instant pump–instant probe observables with the effective distribution p(t) = (

√
πτcc)−1 ·

exp(−t2/τ2
cc) (see Equation (73)) representing fluctuation of the pump–probe delay tpp.

The expression we will evaluate is the following (see Equations (72) and (76)):

Bx(tpp) = bx ⊛ p =
1√
πτcc

∫ +∞

−∞
bx(tpp − t) · exp

(
− t2

τ2
cc

)
dt . (A23)

Appendix B.2.1. Constant Function

The first basis function is the constant (“c”) function bc(tpp) = 1 (Equation (61)).
Substituting it into Equation (A23) we get:

Bc(tpp) = bc ⊛ p =
1√
πτcc

√
πτcc︷ ︸︸ ︷∫ +∞

−∞
exp

(
− t2

τ2
cc

)
dt = 1 .

Appendix B.2.2. Step Function

The second basis is the step (“s”) function bs(tpp) = θ(tpp) (Equation (62)). Substitut-
ing it into Equation (A23) we get:

Bs(tpp) = bs ⊛ p =
1√
πτcc

∫ +∞

−∞
θ(tpp − t) exp

(
− t2

τ2
cc

)
dt . (A24)

The Heaviside step function θ(x) (Equation (24)) is nonzero only for values of argu-
ment x ≥ 0 (θ(x) = 1). Thus, the nonzero values of the integral are given by inequality
tpp − t ≥ 0 ⇒ t ≤ tpp. With that, we can rewrite integral in Equation (A24) as:
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∫ +∞

−∞
θ(tpp − t) exp

(
− t2

τ2
cc

)
dt =

∫ tpp

−∞
exp

(
− t2

τ2
cc

)
dt =∫ 0

−∞
exp

(
− t2

τ2
cc

)
dt︸ ︷︷ ︸√

πτcc/2

+
∫ tpp

0
exp

(
− t2

τ2
cc

)
dt︸ ︷︷ ︸√

πτcc·erf(tpp/τcc)/2

=

√
πτcc

2
·
(

1 + erf
(

tpp

τcc

))
. (A25)

Substitution of this result into Equation (A24) results in:

Bs(tpp) = bs ⊛ p =
1
2
·
(

1 + erf
(

tpp

τcc

))
.

Appendix B.2.3. Transient Function

The third basis is the transient (“t”) function bt(tpp) = θ(tpp) exp(−ktpp) (Equation (63)),
where k = τ−1

r (Equation (30)). Substituting it into Equation (A23), we get:

Bt(tpp) = bt ⊛ p =
1√
πτcc

∫ +∞

−∞
θ(tpp − t) exp

(
−k · (tpp − t)− t2

τ2
cc

)
dt . (A26)

Removing the zero values of the Heaviside step function, similar to that in Equation
(A25), we can rewrite the integral in Equation (A26) as:

∫ +∞

−∞
θ(tpp − t) exp

(
−k · (tpp − t)− t2

τ2
cc

)
dt =

=
∫ tpp

−∞
exp

(
−k · (tpp − t)− t2

τ2
cc

)
dt = exp(−ktpp)

∫ tpp

−∞
exp

(
− t2

τ2
cc

+ kt
)

dt =

= exp
(

k2τ2
cc

4

)
· exp(−ktpp)

∫ tpp

−∞
exp

− 1
τ2

cc
·
(

t − kτ2
cc

2

)2

︸ ︷︷ ︸
q2

dt =

= exp
(

k2τ2
cc

4

)
· exp(−ktpp)

∫ tpp−kτ2
cc/2

−∞
exp

(
− q2

τ2
cc

)
dq =

= exp
(

k2τ2
cc

4

)
· exp(−ktpp) ·


∫ 0

−∞
exp

(
− q2

τ2
cc

)
dq︸ ︷︷ ︸

√
πτcc/2

+
∫ tpp−kτ2

cc/2

0
exp

(
− t2

τ2
cc

)
dt︸ ︷︷ ︸

√
πτcc·erf(tpp/τcc−kτcc/2)/2

 =

=

√
πτcc

2
· exp

(
k2τ2

cc
4

)
· exp(−ktpp) ·

(
1 + erf

(
tpp

τcc
− kτcc

2

))
Substitution of this result into Equation (A26) results in:

Bt(tpp) = bt ⊛ p =
1
2

exp
(

k2τ2
cc

4

)
· exp(−ktpp) ·

(
1 + erf

(
tpp

τcc
− kτcc

2

))
. (A27)

The constant term exp
(

k2τ2
cc

4

)
is preserved further, since it is crucial for keeping the

values of this function from approaching zero in the whole pump–probe range.
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Appendix B.2.4. Instant Increase Function

The fourth basis is the instant increase (“i”) function bi(tpp) = δ(tpp) (Equation (64)).
Substituting it into Equation (A23) we get (by definition of the Dirac delta function):

Bi(tpp) = bi ⊛ p =
1√
πτcc

∫ +∞

−∞
δ(tpp − t) exp

(
− t2

τ2
cc

)
dt =

1√
πτcc

exp

(
−

t2
pp

τ2
cc

)
.

The normalization factor (
√

πτcc)−1 is later ignored to have the maximal value of this
function fixed at one.

Appendix B.2.5. Nondecaying Coherent Oscillation Function

The fifth basis is the coherent oscillation (“o”) function bo(tpp) = θ(tpp) · cos(ωtpp + φ)
(Equation (65)). Substituting it into Equation (A23),we get:

Bo(tpp) = bo ⊛ p =
1√
πτcc

∫ +∞

−∞
θ(tpp − t) cos

(
ω · (tpp − t) + φ

)
· exp

(
− t2

τ2
cc

)
dt . (A28)

We can represent cosine as:

cos(x) =
exp(ix) + exp(−ix)

2
,

and thus, rewriting bo(tpp) as:

bo(tpp) =

=
1
2
· exp(+iφ) ·

b+(tpp)︷ ︸︸ ︷
θ(tpp) · exp(+iωtpp) +

1
2
· exp(−iφ) ·

b−(tpp)︷ ︸︸ ︷
θ(tpp) · exp(−iωtpp) =

=
1
2
·
(
exp(+iφ) · b+(tpp) + exp(−iφ) · b−(tpp)

)
, (A29)

where new functions b±(tpp) look the same as bt(tpp), but with the complex rate constants
k± = ±iω. Thus, we can reduce Equation (A28) to a linear combination of Equations of
type (A26). Applying this, we obtain the following result from Equation (A27):

Bo(tpp) =
1
2
·
(
exp(+iφ) · (b+ ⊛ p)(tpp) + exp(−iφ) · (b− ⊛ p)(tpp)

)
=

=
1
4

exp
(
−ω2τ2

cc
4

)
·
[

exp(+iωtpp + iφ) ·
(

1 + erf
(

tpp

τcc
+

iωτcc

2

))
+

+ exp(−iωtpp − iφ) ·
(

1 + erf
(

tpp

τcc
− iωτcc

2

))]
(A30)

which cannot be properly simplified further. However, we can apply an approximation
that ωτcc ≈ 0, which is equivalent to the statement that the oscillation period τo = 2π/ω is
much larger than the cross-correlation time (τo ≫ τcc). In this case, Equation (A30) can be
rewritten as:

Bo(tpp) =
1
2

cos(ωtpp + φ) ·
(

1 + erf
(

tpp

τcc

))
.
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Appendix B.2.6. Transient Coherent Oscillation Function

The sixth basis is the transient coherent oscillation (“to”) function bto(tpp) = θ(tpp) ·
cos(ωtpp + φ) · exp(−kt/2) (Equation (66)). By substituting it into Equation (A23), we
obtain:

Bto(tpp) = bto ⊛ p =

=
1√
πτcc

∫ +∞

−∞
θ(tpp − t) cos

(
ω · (tpp − t) + φ

)
· exp

(
− k

2
· (tpp − t)− t2

τ2
cc

)
dt . (A31)

Similar to Equation (A29), we can rewrite the original function as:

bto(tpp) =
1
2
·
(
exp(+iφ) · b+(tpp) + exp(−iφ) · b−(tpp)

)
,

where in this case:
b±(tpp) = θ(tpp) · exp(−k±tpp)

with effective complex rate constants k± = (k/2)∓ iω. By applying Equations (A27)–(A31)
in the same fashion as in Equation (A30), and also applying approximation ωτcc ≈ 0, we
arrive at the final result:

Bto(tpp) =
1
2

exp
(

k2τ2
cc

16

)
· exp

(
−

ktpp

2

)
· cos(ωtpp + φ) ·

(
1 + erf

(
tpp

τcc
− kτcc

4

))
.

Appendix C. Regularized Weighted Least-Squares Spectral Analysis (rwLSSA)

The detailed derivation of the rwLSSA technique is provided in Ref. [68], focusing
on the sine-FT. Here, we only outline the basic steps of the method for the general case
of the FT. The time-dependent signal y = y(t) is given as a discrete set of N points
{tn, yi = y(tn), σn}N

n=1 with uncertainties σn for each point yn. Our goal is to get an M-
point spectral representation of these data with a set of points {ωm, fm = f (ωm), ςm}M

m=1,
where ωm refers to the points in the grid of angular frequencies, fm = Am · exp(iφm) refers
to the complex spectra with amplitude Am ∈ R and phase φm ∈ [−π; π), and ςm refers to
the m-th point’s amplitude uncertainty.

The spectrum is computed through the following expression [68]:

f = Σα

(
S†W

)
y ,

with the following components:

• y = (y1, y2, . . . , yN) is the N-dimensional vector of the data points;
• f = ( f1, f2, . . . , fM) is the M-dimensional vector of spectral representation;
• S is the matrix of size N × M with elements Snm = exp(−iωmtn);
• W = diag(σ−2

1 , σ−2
2 , . . . , σ−2

N ) is the N × N diagonal matrix of weights;
• α ≥ 0 is the regularization parameter;
• Σα is the M × M covariance matrix defined as Σ−1

α = αE + S†WS , where E =
diag(1, 1, . . . , 1) is the unit matrix of size M × M.

The uncertainties of the spectral amplitudes ςm are computed from the m-th diagonal
elements Σα,mm and (S†WS)mm of the matrices Σα and (S†WS), respectively, as [68]:

ςm =
√

Σα,mm · (α + (S†WS)mm)/(S†WS)mm .

The regularization parameter was chosen automatically with an a priori regularization
criterion from Ref. [68] as:

α = tr
(
S†WS

)
·
(

M +
N
M

· tr
(
S†WS

)
· (y

TWy)
tr(W)

)−1

.
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Appendix D. Issues with Numerical Implementation of the Bt(tpp) Basis Function

The Bt(tpp) basis function (Equation (80)), and also the Bto(tpp) basis function
(Equation (83)), have issues in the numerical usage, due to the unstable behavior in the
tpp < 0 region, where the near-zero (1 + erf(x)) function is being multiplied by an expo-
nential function, which highlights all the small numerical noise effects.

To demonstrate it, we can calculate the Bt(tpp) with different ratios τcc/τr. Here,
we compare three alternative numerical representations of Bt(tpp) with τr = 50 fs and
τr = 253, 457, 2390, 2593 fs. The Bt(tpp) was computed using the Gnuplot’s implementation
of (1 + erf(x)), and with two alternative Python implementations of (1 + erf(x)) from
SciPy package [73]: using scipy.special.erf (definition #1) and using the cumulative
distribution function of the normal distribution scipy.stats.norm.cdf (definition #2).

The results are shown in Figure A1. As one can see, at ratio τcc/τr = 5, all three
numerical results are equivalent. At the ratio τcc/τr = 9, the Gnuplot and definition #1 start
to fail, producing spurious oscillations near tpp = −0.5 ps. At higher ratios, they eventually
both fail, producing zeros. The definition #2 (through cumulative distribution function) is
the most stable, allowing to reach τcc/τr = 48. However, at τcc/τr = 52 even definition #2
starts to fail, producing a cutoff at tpp = −1.8, which is an abrupt break. Therefore, a stable
ratio τcc/τr, where the definition #2 works stably is estimated to be τcc/τr < 50.
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Figure A1. Illustration of numerical calculation of the Bt(tpp) basis function (Equation (80)) with
alternative numerical functions and various ratios of τcc/τr. Here, τr = 50 fs and the region plotted is
−2.5 · τcc ≤ tpp ≤ +2.5 · τcc.
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67. Vaníček, P. Approximate spectral analysis by least-squares fit. Astrophys. Space Sci. 1969, 4, 387–391. https://doi.org/10.1007/

BF00651344.
68. Tikhonov, D.S. Regularized weighted sine least-squares spectral analysis for gas electron diffraction data. J. Chem. Phys. 2023,

159, 174101. https://doi.org/10.1063/5.0168417.
69. Ippen, E.P.; Shank, C.V., Techniques for Measurement. In Ultrashort Light Pulses: Picosecond Techniques and Applications; Shapiro,

S.L., Ed.; Springer: Berlin/Heidelberg, Germany, 1977; pp. 83–122. https://doi.org/10.1007/978-3-662-22574-5_3.
70. Vardeny, Z.; Tauc, J. Picosecond coherence coupling in the pump and probe technique. Opt. Commun. 1981, 39, 396–400.

https://doi.org/10.1016/0030-4018(81)90231-5.
71. Lebedev, M.V.; Misochko, O.V.; Dekorsy, T.; Georgiev, N. On the nature of “coherent artifact”. J. Exp. Theor. Phys. 2005,

100, 272–282. https://doi.org/10.1134/1.1884668.
72. Rhodes, M.; Steinmeyer, G.; Ratner, J.; Trebino, R. Pulse-shape instabilities and their measurement. Laser Photonics Rev. 2013,

7, 557–565. https://doi.org/10.1002/lpor.201200102.
73. SciPy: Open Source Scientific Tools for Python. Available online: http://www.scipy.org/ (accessed on 20 January 2024).
74. van Stokkum, I.H.M.; Weißenborn, J.; Weigand, S.; Snellenburg, J.J. Pyglotaran: a lego-like Python framework for global and target

analysis of time-resolved spectra. Photochem. Photobiol. Sci. 2023, 22, 2413–2431. https://doi.org/10.1007/s43630-023-00460-y.
75. Müller, M.G.; Niklas, J.; Lubitz, W.; Holzwarth, A.R. Ultrafast Transient Absorption Studies on Photosystem I Reaction Centers

from Chlamydomonas reinhardtii. 1. A New Interpretation of the Energy Trapping and Early Electron Transfer Steps in
Photosystem I. Biophys. J. 2003, 85, 3899–3922. https://doi.org/10.1016/S0006-3495(03)74804-8.

76. Croce, R.; Müller, M.G.; Bassi, R.; Holzwarth, A.R. Carotenoid-to-Chlorophyll Energy Transfer in Recombinant Major Light-
Harvesting Complex (LHCII) of Higher Plants. I. Femtosecond Transient Absorption Measurements. Biophys. J. 2001, 80, 901–915.
https://doi.org/10.1016/S0006-3495(01)76069-9.

77. Holzwarth, A.R.; Müller, M.G.; Niklas, J.; Lubitz, W. Ultrafast Transient Absorption Studies on Photosystem I Reaction Centers
from Chlamydomonas reinhardtii. 2: Mutations near the P700 Reaction Center Chlorophylls Provide New Insight into the Nature
of the Primary Electron Donor. Biophys. J. 2006, 90, 552–565. https://doi.org/10.1529/biophysj.105.059824.

78. Zurek, W.H. Decoherence and the Transition from Quantum to Classical. Phys. Today 1991, 44, 36–44. https://doi.org/10.1063/1.
881293.

79. Zurek, W.H. Decoherence and the Transition from Quantum to Classical–Revisited. Los Alamos Sci. 2002, 27, 86–109.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/978-3-319-04507-8_10-2
https://doi.org/10.1140/epjp/s13360-023-03814-8
https://doi.org/10.1364/JOSA.55.000654
https://doi.org/10.1103/PhysRevA.36.3575
http://www.gnuplot.info
https://doi.org/10.1137/0111030
https://doi.org/10.1109/TAC.1974.1100705
https://doi.org/10.1109/TAC.1974.1100705
https://doi.org/10.1007/BF00651344
https://doi.org/10.1007/BF00651344
https://doi.org/10.1063/5.0168417
https://doi.org/10.1007/978-3-662-22574-5_3
https://doi.org/10.1016/0030-4018(81)90231-5
https://doi.org/10.1134/1.1884668
https://doi.org/10.1002/lpor.201200102
http://www.scipy.org/
https://doi.org/10.1007/s43630-023-00460-y
https://doi.org/10.1016/S0006-3495(03)74804-8
https://doi.org/10.1016/S0006-3495(01)76069-9
https://doi.org/10.1529/biophysj.105.059824
https://doi.org/10.1063/1.881293
https://doi.org/10.1063/1.881293

	Introduction
	Inverse Problem of Experimental Data Analysis 
	Formulation of the Problem
	Least-Squares Formulation of the Inverse Problem 
	Regularization of the Least-Squares Inverse Problem 
	Monte-Carlo Importance Sampling of the Parameter Space 

	Fitting Model of Pump–Probe Spectroscopy 
	General Considerations
	Delta-Shaped Pump–Probe Model 
	Assumptions of the Model
	Step Function Dynamics
	Instant Dynamics
	Transient Pump–Probe Signatures of Metastable Species
	Coherent Oscillations without Decay 
	Coherent Oscillations with Decay 
	More Complicated Dynamics Models

	Accounting for Finite Duration of the Pulses and Experiment Jitters

	Estimation Procedure for the Parameters and Their Uncertainties
	Single Dataset Case
	Multiple Dataset Case
	Inverse Problem Regularization
	Inverse Problem Solution Algorithm 

	PP(MC)3Fitting  Software 
	Numerical Examples
	Multiple Datasets with Shared Parameters 
	Forward-Backward Channel Dataset 
	Treatment of the Data with Coherent Oscillations 
	Cross-Correlation Time and Time Resolution 

	Conclusions
	Appendix A
	Appendix A.1
	Appendix A.2
	Appendix A.3
	Appendix A.4
	Appendix A.5
	Appendix A.6
	Appendix A.7
	Appendix A.8

	Appendix B
	Appendix B.1
	Appendix B.2
	Appendix B.2
	Appendix B.2
	Appendix B.2
	Appendix B.2
	Appendix B.2
	Appendix B.2


	Appendix C
	Appendix D
	References

