New Fluorescent Porphyrins with High Two-Photon
Absorption Cross-Sections Designed for
Oxygen-Sensitization: Impact of Changing the
Connectors in the Peripheral Arms

Limiao Shi !, Zhipeng Sun !, Nicolas Richy !, Olivier Mongin ', Mireille Blanchard-Desce 2,
Frédéric Paul ' and Christine O. Paul-Roth 1*

1 Univ. Rennes, INSA Rennes, CNRS, Institut des Sciences Chimiques de Rennes
(ISCR)—UMR 6226, F-35000 Rennes, France; Imshi09@yahoo.com (L.S.);
sunzpciomp@126.com (Z.S.); nicolas.richy@univ-rennes1.fr (N.R.);
olivier.mongin@univ-rennes].fr (O.M.); frederic.paul@univ-rennes1.fr (F.P.)

2 Univ. Bordeaux, Institut des Sciences Moléculaires, CNRS UMR 5255), 351 Cours de la

Libération, 33405 Talence, France; mireille.blanchard-desce@u-bordeaux.fr

Correspondence: christine.paul@univ-rennesl.fr or christine.paul@insa-rennes.fr;

Tel.: +33-02-2323-6372

Contents

1. Retrosynthetic analysis and synthesis of key precursors for the starting aldehydes:

A/ Fluorenylaldehyde 9. p. S3
B/ Fluorenylaldehyde 10. p. S4
C/ Fluorenylaldehyde 11. p. S5
D/ Fluorenylaldehyde 12. p. S7
E/ Synthetic procedures and characterizations for intermediates 17-20. p. S9

2. 'H NMR spectra of compounds 13, 17, 18, 19, 20, i and aldehydes 9-12 in CDCls. p. S12

3. 13C NMR spectra of aldehydes 9-12. p. S17
4. *H NMR spectra of porphyrins 1-8 in CDCls. p. S19
5. Comparison of *H NMR spectra of porphyrins 1-8. p. S23
6. Partial *H NMR spectra of porphyrin 4. p. S25
7. 3C NMR spectra for porphyrins 1-8 in CDCls. p. S26

8. Energy transfer in porphyrins 1-8. p. S30



9. Overlay of 1PA and 2PA spectra for selected compounds. p. S31



1. Retrosynthetic analysis and synthesis of key precursors for the starting

aldehydes

A/ Fluorenylaldehyde 9
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Figure S1. Retrosynthetic analysis of fluorenylaldehyde 9 with a diphenylamine endgroup.

Synthesis of 4-ethynyl-N,N-diphenylaniline 13. Compound 13 was obtained in three steps
from commercial triphenylamine (Figure S1). In detail, bromination of triphenylamine
provided monobromo-compound a?® which was obtained pure after recrystallization from
ethanol (71% yield). The protected alkyne b? was synthesized in 61% yield by Sonogashira
reaction coupling® of a with ethynyltrimethylsilane. Then alkyne b, with subsequent cleavage
of the TMS group, provides access to the terminal alkyne 13%° in 98% yield. We can note that
when this reaction time is prolonged, the yield improves because this reaction is slowed down

by the electron-rich nature of triphenylamine.
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Figure S2. Synthesis of alkyne 13.



B/ Fluorenylaldehyde 10
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Figure S3. Retrosynthetic analysis of fluorenylaldehyde 10 with a carbazole endgroup.

Synthesis of carbazole intermediate c. The first step was the Ullmann Coupling Reaction®!:32
between commercial 1-bromo-4-iodobenzene and 9H-carbazole in toluene (Scheme S2), we
can note that in order to minimize the formation of doubly substituted arene, it is necessary to
use 1-bromo-4-iodobenzene in excess. As described, the bromo derivative ¢ was obtained in

86% yield by column chromatography.
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Figure S4. Synthesis of carbazole intermediate C.

Synthesis of alkyne 16. On the other hand, alkyne 16 can be obtained by Sonogashira coupling
between bromo-derivative d and ethynyltrimethylsilane, to give e then followed by cleavage of
the TMS.23 In details, intermediate e was synthesized in 97% yield from 4-bromofluorene
aldehyde d by Sonogashira coupling over two days with ethynyltrimethylsilane, and

purification by column chromatography on silica gel. Then TMS deprotection of compound e



by potassium carbonate, in a mixture of CH2Cl2 and MeOH over 12 hours at 45<C, gave 16,

with butyl chains, in 86% yield.
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Figure S5. Synthesis of alkyne 16.

C/ Fluorenylaldehyde 11
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Figure S6. Retrosynthetic analysis of aldehyde 11 with junction diphenylamine.

Synthesis of alkyne h. The bromo derivative g*? was reacted with ethynyltrimethylsilane in a
Sonogashira coupling to give compound e!? (Figure S7). The derivative e was obtained as a red
solid in 96% vyield after purification by column chromatography (heptane), then deprotection
of e in a mixture of CH2Cl2 and MeOH in the presence of potassium carbonate gave terminal

alkyne h'? in 95% yield.
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Figure S7. Synthesis of alkyne h.

Synthesis of mono-iodo derivative 18. This compound was obtained from commercial 1,4-
diiodobenzene and alkyne h in a Sonogashira coupling reaction, in 56% yield after purification

by column chromatography on silica gel (Figure S8).
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Figure S8. Formation of the iodo derivative 18.

Synthesis of Bromo derivative 17. This compound was obtained by an Ullmann coupling
reaction3? between commercial bromo aniline and iodo compound 18 in 80% vyield, after
purification by chromatography on silica gel (Figure S9). This reaction proceeds in conditions

similar to those used to prepare compound 17.
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Figure S9. Synthesis of the bromo derivative 17.



D/ Fluorenylaldehyde 12
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Figure S10. Retrosynthetic analysis of aldehyde 19 with a carbazole junction.

Synthesis of bis-alkyne i. This intermediate can be synthesized in two steps from commercially
available 3,6-dibromo-9H-carbazole, through coupling with ethynyltrimethylsilane followed
by removal of the TMS protecting group. In more details; the protected bis-alkyne j?° was
synthesized in good yield by Sonogashira coupling between commercial dibromocarbazole and
ethynyltrimethylsilane. The deprotection of j in basic solution (KOH) gave the free bis-alkyne
i, as described in the literature.?’ The yield, over the two steps, was 87% after purification by

column chromatography (Figure S11).
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Figure S11. two- step synthesis of bis-alkyne i.2°



Synthesis of compound 20. This compound was obtained under conditions similar to those
described earlier for aldehyde 10: Compound 20 can then be obtained by Sonogashira coupling
between alkyne i and bromo compound g. In this case, in order to improve the yield of this
Sonogashira reaction, we used an excess of derivative g, which allowed carbazole 20 to be

obtained in 58% yield by column chromatography (Figure S12).
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Figure S12. Synthesis of disubstituted carbazole 20.

Synthesis of 19. An Ullmann coupling of carbazole 20 with 1,4-diiodobenzene can lead to 19
(Figure S13). So, mono-iodo derivative 19 was obtained in 89% yield (after being purified by
column chromatography on silica gel), by using conditions similar to those described earlier for

compound 17. We can note that Cul was preferred to CuCl in order to increase the yield.

KOH
Cul/1.10-phen | < > N
Toluene

89%

Figure S13.:Formation of iodo compound 19.



E/ Synthetic procedures and characterizations for intermediates 17-20

n-Bu

17
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Procedure for 4-Bromo-N,N-bis(4-((9,9-dibutyl-9H-fluoren-2-yl)ethynyl)phenyl)aniline
(17). In a Schlenk tube, a mixture of 9,9-dibutyl-2-((4-iodophenyl)ethynyl)-9H-fluorene 26
(2.3 g, 2.56 mmol, 3 eq), 4-bromoaniline (147 mg, 0.85 mmol, 1 eq), 1,10-phenanthroline (15.3
mg, 0.085 mmol, 10% eq), KOH (191 mg, 3.4 mmol, 4 eq) and Cul (16.2 mg, 0.085 mmol,
10% eq) in toluene (20 mL) was stirred at 110 °C for 48 hours under an argon stream. After
cooling to room temperature, the mixture was extracted with water and ethyl acetate, the organic
layers were separated, and the aqueous layer was extracted with AcCOEt (3100 mL). Then the
combined organic phase was washed with water and brine, after the organic layers were dried
over anhydrous Na2SOs, filtered and concentrated. Finally, the residue was further purified by
chromatography (heptane/CH2Cl2 = 5/1, vol/vol), leading to the title compound as a yellow
solid (0.6 g, 80%). *H NMR (300 MHz, CDCls, ppm): §=7.72-7.66 (m, 4H), 7.52-7.46 (m,
8H), 7.43-7.40 (m, 2H), 7.38-7.31 (m, 6H), 7.08-7.01 (m, 6H), 1.99 (t, J = 8.3 Hz, 8H), 1.15-
1.03 (m, 8H), 0.69-0.53 (m, 20H).

18

Procedure for 9,9-Dibutyl-2-((4-iodophenyl)ethynyl)-9H-fluorene (18). In a Schlenk tube,
a mixture of prepared 9,9-dibutyl-2-ethynyl-9H-fluorene h'? (0.8 g, 2.64 mmol, 1 eq), 1,4-
diiodobenzene (3.5 g, 10.58 mmol, 4 eq), PdCl2(PPhs)2 (55.5 mg, 0.079 mmol, 3% eq) and Cul
(7.6 mg, 0.040 mmol, 1.5% eq) in DMF (7 mL) and 'Pr2NH (7 mL) were stirred at 95 °C for 48
hours under argon atmosphere. After cooling to room temperature, the solvents were evaporated
and the residue was further purified by chromatography (heptane), affording the title compound



as a yellow solid (0.7 g, 56%). *H NMR (300 MHz, CDCls, ppm): 6= 7.72-7.66 (m, 4H), 7.53-
7.50 (m, 2H), 7.36-7.28 (m, 5H), 1.98 (t, J = 8.3 Hz, 4H), 1.12-1.02 (m, 4H), 0.68 (t, J = 7.3
Hz, 6H), 0.63-0.54 (m, 4H).

19

|

Procedure  for  3,6-Bis((9,9-dibutyl-9H-fluoren-2-yl)ethynyl)-9-(4-iodophenyl)-9H-
carbazole (19). In a Schlenk tube, a mixture of compound 20 (1.2 g, 1.51 mmol, 1 eq), 1,4-
diiodobenzene (1.5 g, 4.52 mmol, 3 eq), 1,10-phenanthroline (27.2 mg, 0.151 mmol, 10% eq),
KOH (339 mg, 6.04 mmol, 4 eq) and Cul (28.8 mg, 0.151 mmol, 10% eq) in toluene (18 mL)
was stirred at 120 °C for 24 hours under an argon stream. After cooling to room temperature,
the mixture was extracted with water and ethyl acetate, then organic layers were separated, and
the aqueous layer was extracted with ACOEt (2100 mL). Then the combined organic layers
were washed with water and brine, and the solution was dried over anhydrous MgSOg, filtered
and evaporated. Finally, the residue was further purified by chromatography (heptane/CH2Cl2
= 1/1, vol/vol), affording 19 as a yellow solid (1.4 g, 89%). *H NMR (300 MHz, CDCls, ppm):
5= 8.44-8.37 (m, 2H), 7.99-7.96 (m, 2H), 7.73-7.57 (m, 10H), 7.38-7.32 (m, 10H), 2.02 (t, J =
16.5, 8.34 Hz, 8H), 1.15-1.05 (m, 8H), 0.72-0.51 (m, 20H).




Procedure for 3,6-Bis((9,9-dibutyl-9H-fluoren-2-yl)ethynyl)-9H-carbazole (20). In a
Schlenk tube, a mixture of 3,6-diethynyl-9H-carbazole i (0.56 g, 2.6 mmol, 1 eq), 2-bromo-9,9-
dibutyl-9H-fluorene 22 (2.8 g, 7.8 mmol, 3 eq), Pd(OACc)2 (14.6 mg, 0.065 mmol, 2.5% eq),
Cul (24.8 mg, 0.13 mmol, 5% eq) and PPhs (34 mg, 0.13 mmol, 5% eq) in DMF (7 mL) and
'ProNH (7 mL) were stirred at 100 °C for 48 hours under argon atmosphere. After cooling to
room temperature, the solvents were evaporated and the residue was further purified by
chromatography (heptane/CH2Cl2 = 1/1, vol/vol), getting yellow solid (1.2 g, 58%). 'H NMR
(300 MHz, CDCls, ppm): 6=28.33 (s, 2H), 8.24 (s, 1H), 7.73-7.68 (m, 5H), 7.65 (d, J = 1.5 Hz,
1H), 7.61-7.56 (m, 4H), 7.42 (d, J = 8.4 Hz, 2H), 7.38-7.31 (m, 6H), 2.01 (t, J = 16.6, 8.31 Hz,
8H), 1.17-1.05 (m, 8H), 0.72-0.55 (m, 20H).



2. 'H NMR spectra of compounds 13, 17, 18, 19, 20, i and aldehydes 9-12 in

CDCI3
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Aldehyde 11
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3. 13C NMR spectra of aldehydes 9-12
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6LELN
AR
0,22

wm.mmv
£6'627
z062 7,
68'LE
€00y —

82°GS —

0992

40

60

08¢l —

66'¢C —

96'GC¢ —

€0°0v —

9€'6G —

6592

Sv 1l
1£68
om.om%
18'SLL
LZ'0zl
88021
812zl
L0°€2h
s9€zl
v8ezl
80°GZL
66'GZL
Zr 6L
mm.omr/
1270}
9gzelL 7,
LsgeL
ge6EL
paOvL
SL vl
60871 I
81151 \

61251

€2'¢6l —

100 80

ppm

120

160 140

180

Aldehyde 10:

200

TO 2.2

YLl

G168~
70167

v2°60L —
12°0ZL
om.oﬁw
ov'0zt
660217
z1zeL
eLezl ]
al'ezl ]
L9'ezL
80°9Z1 1
€2°921
06921
9g'oel
zo'LEL ]
AR
89'gel
gruelL]
g66¢l ]
95°0b1
so'ovl |
G8'1S1
62251

L LB

-

€226l —

20

80 60 40

100
ppm

120

140

160

180

200




Aldehyde 11

180 160 140 120 100 80 60 40 20
ppm

200

Aldehyde 12

wh

©
<
<]
I
&
.

—

T T T

180 160 140 120 100 80 60 40 20
ppm

200



4. 'H NMR spectra of porphyrins 1-8 in CDCls

Porphyrin 1:
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Porphyrin 5:
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ppm

Porphyrin 8:

Ay
€80’
WL~

coc—
cce—

A

T@.ONF

Foser

ﬁ

v.'Ge
ce9l

5
ppm

10



5. Comparison of *H NMR spectra of porphyrins 1-8

Diphenylamine series. The complete spectra of porphyrins 1,3,4,6 was overlayed. For clarity,
we now divide the full spectra into two parts: (Figure S14a: between 6.6 ppm and 9.2 ppm) and
(Figure S14b: between -3.0 ppm and 2.5 ppm). The integration shows eight protons around 9
ppm, which are assigned to B-pyrrole protons (Hp) of the porphyrin macrocycle. We notice that
the Hgp protons are found to lower field in the zinc porphyrins (going from 8.9 ppm to 9.1 ppm).
For the aromatic protons, we can clearly distinguish three proton signals (Has,c) between 7.9
and 8.3 ppm that belong to the four distinct aromatic protons of the meso-fluorenyl spacers, and
which integrate in total for sixteen protons. Figure S14b shows the partial spectra between -3.0
and 2.5 ppm. The singlet at -2.6 ppm is from the —-NH functionalities that lie inside porphyrin
macrocycle; these are absent for zinc porphyrins, where they are replaced by the Zn(II) ion. The

n-butyl chains could also be identified between 0.5 and 2.2 ppm.
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Figure S14. a) Partial *H NMR spectra of porphyrins 1, 3, 5 and 7 at low field (7-9.2 ppm); b) Partial *H NMR
spectra of porphyrins 1, 3, 5 and 7 at high field (-3.0- 2.5 ppm).



6. Partial *H NMR spectra of porphyrin 4

The detailed *H NMR spectrum of free-base porphyrin 3, given in Figure S15 (between 7.0-9.3
ppm). For the aromatic protons: (i) there are eight protons at 8.4 ppm, which are assigned to Hp
carbazole protons, and (ii) there are three proton signals Hagc between 7.9 and 8.4 ppm,
belonging to the aromatic protons of the meso-fluorenyl spacers. The same results are observed

for the corresponding zinc complex 8 but, as before, we notice that the peaks are broader.

o b.oo >g

92 9

Figure S15. Partial *H NMR spectra of porphyrin 4 (7.2-9.2 ppm).



7. BC{*H} NMR spectra for porphyrins 1-8 in CDCls
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Porphyrin 3
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Porphyrin 5:
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Porphyrin 6:
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8. Energy transfer in porphyrins 1-8
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Figure S16. Emission spectra upon UV excitation at the fluorenyl band for Zn(Il) porphyrins 5, 7 and 8.

Derivation of @en7 values. The energy transfer efficiency (@ent) from dendrons (D) towards
the central porphyrin core (A) in porphyrins 1-4 and 5-8 was estimated based on the decrease
in donor fluorescence in dichloromethane. It is given by:

@Denr=1- doal °

where @pa is the fluorescence quantum yield of the donor in the presence of the acceptor (i.e.
the fluorescence quantum yield of the dendron in the presence of the porphyrin) and @o° the
fluorescence quantum yield of the donor in the absence of the acceptor i.e. the fluorescence
quantum yield of the dendron model, in our case the aldehyde precursor (see Figure S16 for an
example).

Table S1. Derivation of the energy transfer quantum yields in the free-base porphyrins 1-4 and
in the Zn(1l) complexes 6-8 using the corresponding aldehydes precursors 9-12 as models.?

Porphyrin 5]?)22: dpA an° Dent
1 9 0.04 0.67 0.94
2 10 0.01 0.74 0.98
3 11 0.024 0.50 0.95
4 12 0.021 0.39 0.95
5 9 0.025 0.67 0.96
7 11 0.024 0.50 0.95
8 12 0.021 0.39 0.95

& Fluorescence measurments done in CH,Cl, solutions.
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Figure S17. Example of fluorescence spectra of aldehyde 10 and porphyrin 2 (CH2Cl.) used for derivation of the

energy transfer quantum yield.
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Figure S18. Overlay of one- and two-photon absorption spectra for the free-base porphyrins 1-4 in CH,Cl, (25
).
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Figure S19. Overlay of one- and two-photon absorption spectra for the Zn(Il) complexes 5, 7-8 in CH.Cl, (25
).
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Figure S20. Overlay of one- and two-photon absorption spectra for the free-base porphyrin 22 in CH,Cl,. The
overlap with the dendron-based band (peaking at higher energy) is revealed by the asymmetry of the Soret band.



