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Abstract: The application domain of deep learning (DL) has been extended into the realm of nanoma-
terials, photochemistry, and optoelectronics research. Here, we used the combination of a computer
vision technique, namely convolutional neural network (CNN), with multilayer perceptron (MLP) to
obtain the far-field optical response at normal incidence (along cylinder axis) of concentric cylindrical
plasmonic metastructures such as nanorods and nanotubes. Nanotubes of Si, Ge, and TiO2 coated on
either their inner wall or both their inner and outer walls with a plasmonic noble metal (Au or Ag)
were thus modeled. A combination of a CNN and MLP was designed to accept the cross-sectional
images of cylindrical plasmonic core-shell nanomaterials as input and rapidly generate their optical
response. In addition, we addressed an issue related to DL methods, namely explainability. We
probed deeper into these networks’ architecture to explain how the optimized network could predict
the final results. Our results suggest that the DL network learns the underlying physics governing
the optical response of plasmonic core-shell nanocylinders, which in turn builds trust in the use of
DL methods in materials science and optoelectronics.

Keywords: energy; sensing; photocatalysis; in-silico design; classification; optimization; light-matter
interactions; Maxwells equations; optical characterization; plasmonic hot carrier devices

1. Introduction

There exists a relatively small family of materials that exhibit localized surface plas-
mon resonances (LSPR) at visible and near-infrared wavelengths in their nanostructured
forms [1]. This family includes Ag, Au, Cu, Al, HfN, ZrN, TiN, TaN, Cu2S, and a few
other compounds [1–4]. There has been considerable progress in tuning the shape of plas-
monic nanomaterials. While plasmonic nanospheres are ubiquitous in nanoscience and
nanotechnology, other shapes such as nanoprisms, nanocubes, nanoshells, and nanorods
are becoming increasingly common [5,6]. Plasmonic nanomaterials are particularly inter-
esting for applications in sensing, imaging, and catalysis where they can produce dramatic
performance improvements due to the local electromagnetic field enhancement effect at
metal-dielectric interfaces [7–10]. Plasmonic metamaterials allow the engineering of the
photonic density of states and thus enable control over spontaneous and stimulated emis-
sion [11,12]. The hot carriers produced by plasmon decay can be used to drive chemical
reactions [13–16]. Nearly all of the aforementioned applications benefit from the presence
of a thin dielectric or semiconductor shell surrounding the plasmonic nanoparticles which
allows for tuning of the LSPR peak and Q-factor, and enables extraction of hot carriers
before thermalization and/or recombination [17]. Such a shell also confers photochemical
and mechanical protection for the plasmonic core. In several cases, hot carrier-mediated
oxidation or reduction is used to create the semiconductor or dielectric shell around the
coinage metal core [18,19]. Time-consuming and resource-intensive empirical trials and/or
computationally costly electromagnetic simulations are currently needed to obtain the opti-
cal properties of core-shell plasmon-dielectric metastructures for given values of material
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type, shape, size, shell thickness, etc. This problem is particularly severe for cylindrical
core-shell nanomaterials since exact analytical solutions do not exist, unlike the Mie theory
analytical solutions available for nanospheres [20,21]. The Rayleigh–Gans approach of
approximating nanorods with oblate spheroids fails to capture several features of interest
in annular nanocylinders composed of core@shell and core@shell1@shell2 geometries. If an
empirical approach is used to extensively document the optical absorption of cylindrical
core-shell plasmon@dielectric metastructures to form a vast database, such a database
composed of discrete values of various geometric parameters might still miss critical op-
tical absorption features for specific geometries. The experimental task of obtaining the
far-field optical response consists of two components, namely nanomaterials synthesis
and nanomaterials characterization. The challenges in nanomaterials synthesis involve
the difficulty in growing monodisperse core-shell nanocylinders and the sheer volume
of experiments and human hours needed to synthesize core-shell nanoparticles of dif-
ferent sizes and material types to build a comprehensive library of structure-property
relations. The optical characterization is also challenging and is not as simple as running
the samples through a UV-Vis spectrophotometer. This is because spectrophotometers
commonly measure the extinction of colloidal nanoparticles (in transmission mode) as a
function of wavelength while determination of the optical absorption also requires accurate
measurement of reflection, which is complicated for nanocylinders due to strong scattering
and optical anisotropy. The goal of the present work is to use a machine learning-based
approach to accurately predict the optical absorption of core-shell cylindrical plasmonic
metamaterials for arbitrary geometrical and material parameters within a specified range
of values. There are three key innovations in this work. First is the unusual nanotube and
nanorod morphology of the investigated plasmonic noble metal-semiconductor hetero-
junctions. A second innovation consists of incorporating elements of computer vision to
directly recognize the morphological parameters from the cross-sectional profile. Thirdly,
we attempted to go beyond the blackbox nature of machine learning predictions by using
the Shapley additive explanations framework to gain insights into the manner in which the
artificial neural network (ANN) arrives at the results.

Finite-difference time-domain (FDTD) simulation is a powerful technique for estimat-
ing the far-field and near-field optical properties of metamaterials. Like every other finite
element method, FDTD is based on solving partial differential equations (PDEs) on tiny
building blocks of the defined structure. In FDTD, the PDEs are Maxwell’s equations, and
the small building blocks of the desired structure are called the Yee grid [22–24]. Solving
Maxwell’s equations on the Yee grid yields valuable information about the interaction of
the electromagnetic wave with matter; this is an extensive area of study with applications
in optoelectronics, photonics, photochemistry and sensing [25]. While there is no doubt
about FDTD simulations’ ability to model light/matter interactions, this method has its
limitations. In general, the accuracy of finite difference methods depends on the mesh size,
making the direct implementation of these methods extremely computationally expensive
for nanomaterials. More accurate and reliable results are obtained only by using very fine
mesh sizes [22,24–28]. Some techniques can be used to speed up the convergence of FDTD
simulations and reduce the computational cost of FDTD simulations, such as exploiting
the symmetry of the structure by applying symmetrical or anti-symmetrical boundary
conditions, which can reduce the simulation cost by a maximum factor of eight [29] and
dimensionality reduction where a 3D structure can be conceived as 2D or even 1D when
the structure is infinite and homogeneous in one or two directions of the coordinate sys-
tem [30,31]. Figure 1 exhibits a simplified representation of a 2D FDTD method. First,
the 3D topology of a cylindrical structure that extends into infinity in the Z direction
(along cylinder axis) is defined. Second the geometry is simplified into a corresponding 2D
structure. Third, meshing is performed and the subsequent iterative solving of Maxwell’s
equations on this 2D structure yields the far-field absorption spectrum.
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Figure 1. Schematic representation of the FDTD simulation—a user-defined 3D structure that goes
to infinity in the Z direction is introduced. The FDTD engine simplifies the 3D structure into a 2D
structure, splits it into small meshes, and solves Maxwell’s equations on these meshes iteratively to
then obtain the far-field optical response of the structure.

While FDTD simulation is known to be the most reliable method to simulate light-
matter interactions, replacing FDTD with more rapid approaches has recently attracted a
tremendous amount of attention [24,25,27]. The advent of artificial intelligence and deep
learning (DL) has increased the efficiency of computer-aided processes in a wide range
of research fields. The impact of DL on our lives is steadily increasing. DL has a wide
range of applications, from speech recognition in smart home devices to face detection in
phones [32]. DL algorithms rely on stacking a vast amount of data, training a model on the
available data, and testing the developed model’s prediction ability on data it has never
seen before. Applying DL algorithms to replace sluggish and more computationally expen-
sive FDTD methods was investigated recently. Compared with iterative processes such as
FDTD methods, the computational cost of data-driven approaches such as DL methods
occurs only during the model’s training process. After the model is trained, obtaining
the result is almost instantaneous with almost no computational cost [33]. In the broader
field of nanophotonics, machine learning has been used to design photonic topological
insulators [34], classify disordered Pt nanoparticles [35], design high-performance plas-
monic nanosensors [36], and to enhance electron energy loss spectroscopy (EELS) for the
fundamental study of nanoplasmonic phenomena [37]. Predicting the far-field [28,31,38]
and near-field [32] optical properties of metastructures, and addressing the inverse design
problem where an artificial neural network (ANN) suggests the optimal design parameters
to obtain a desired optical response [28,32,33,39–42] are among the problems tackled by
researchers thus far in the specialized area of plasmonic metastructures. While the end goal
of replacing the slow and computationally expensive FDTD with a fast data-driven model
developed by DL is intriguing, most of the attempts to date are based on introducing a set
of physical parameters to ANN and acquiring the optical response from it [31–33,38–40].
This mimics the FDTD simulation, in which a structure’s geometrical shape is given to the
simulation engine as an input. Recently, convolutional neural networks (CNNs) were used
to link the optical response of the structures with their cross-sectional images [31,43].

In this article, we demonstrated that a 2D image of a cylindrically shaped metamaterial
can serve as an input to a convolutional neural network to obtain the desired optical
response of a metamaterial. A CNN in combination with an MLP is used to instantly
generate the absorption spectrum. While image classification and labeling are the primary
usage cases of CNN thus far [31], herein the CNN was utilized to obtain both the categorical
(type of material) and structural (radius and thicknesses of layers) parameters at the same
time. An artificial neural network further used the physical parameters obtained with
CNN to generate the desired optical spectrum with high accuracy. The most important
contribution of this article is the development of a methodology to explain the results
predicted by machine learning. By interpreting the MLP’s output, we demonstrate that
underneath the hood, the MLP follows a set of logical rules to predict the optical response
of the metastructures that are explainable by the physics of light/matter interactions.
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2. Materials and Methods
2.1. FDTD Simulations

Plasmonic metamaterials are artificially engineered materials that exhibit unique
optical responses that do not occur in nature [44–46]. As a result, the optical properties of
plasmonic metamaterials have been investigated extensively with possible applications
in photochemistry, optics, optoelectronics, sensing, and nanophotonics [10,21,38,45]. In
this work, cylindrically shaped core-shell metamaterials with a maximum of 3 layers
were chosen as a case study. Core materials were selected from two important plasmonic
metals (Ag and Au), and the shell material was chosen among the three ubiquitously
used semiconductors (Si, Ge, and TiO2). For the 3-layer structures, the outermost shell
was again selected from either Ag or Au. In the real world, such concentric cylinders
are encountered when arrays of vertically oriented semiconductor nanotubes are coated
with a plasmonic absorber on both their inner and outer walls by a conformal deposition
technique [2,47]. The polarization of the electric field was assumed along the x-axis. The
radius of the cylinders and thickness of each layer was varied; the length of the cylinders
was set to infinity along the z-axis so that the 3D structure can be simulated in a 2D
environment. Table 1 summarizes the choices of the materials with the range of the radii
used for FDTD simulations.

Table 1. Physical properties of the FDTD simulated metamaterials.

Number of
Layers Core Materials 1st Layer

Materials
2nd Layer
Materials

Core Radii
Range (nm)

1st Layer’s
Thickness

Range (nm)

2nd Layer’s
Thickness

Range (nm)

1 Au, Ag NA NA 5–75 NA NA
2 Au, Ag Si, Ge, TiO2 NA 5–40 5–40 NA
3 Au, Ag Si, Ge, TiO2 Au, Ag 5–25 5–25 5–25

The FDTD simulations were conducted using the commercially available Lumerical
software package which solves Maxwell’s equations on a Cartesian mesh for 2D or 3D struc-
tures. Lumerical provides a user-friendly graphical user interphase (GUI) where materials
with different permittivities, shapes, and geometric configurations can be defined. Their
far-field and near-field optical properties, including absorbance, reflectance, transmittance,
electric field distribution, and Poynting vectors, can be simulated. Furthermore, Lumerical
supports integrated scripting commands that help the user automate the whole simulation
process when many simulations need to be performed. The sequence of simulations in
Lumerical starts with defining the simulation environment, including the structure of the
metamaterial, followed by the addition of the light source and monitors, and subsequent
meshing. In the last step, Lumerical solves Maxwell’s equations on the defined structure
until it reaches convergence [48].

Concentric cylindrical structures with radii ranges mentioned in Table 1 were defined
in the simulation environment. Since the cylinders were considered to extend to infinity in
the Z direction, the simulation environment was set to 2D in X-Y Cartesian coordinates. A
total-field scattered field (TFSF) [49] which ranges from 250–800 nm was selected as the light
source. Lumerical’s built-in material database provided the refractive index data for Ag,
Au, Si, and Ge; the refractive index of TiO2 was extracted and imported as a new material
into Lumerical’s database using the refractive index data reported in the literature [50].
The refractive index of the environment around the metamaterials was adjusted to air by
setting its refractive index to 1. The metamaterials’ light absorption was calculated using an
absorption cross-section monitor surrounding the metamaterial. The number of frequencies
for calculating the absorption properties was set to 200. A fine mesh of 2 nm was introduced
to the simulation environment to ensure that the simulations converge. Meshing order
was introduced so that when the cylinders overlap, the software automatically considers
the inner cylinder’s meshing. In total, 2426 different simulations were conducted; these
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simulations were conducted automatically using Lumerical’s native programming scripts,
and the obtained spectra were outputted as a text file. A refractive index monitor showing
a snapshot of the metastructure index’s cross-section was placed inside the simulation
environment. The refractive index monitor’s output snapshots were further fed to the CNN
neural network as the input images.

2.2. CNN and MLP Architectures and Implementations

Keeping in mind that our end goal was to obtain the absorption spectrum of a specific
plasmonic metamaterial from a 2D image of its cross-section, the cross-sectional images
obtained by Lumerical were used as the input, and the obtained absorption spectra were
served as the output of the deep learning model. To link a 2D image to a spectrum, we
divided the task into two different networks. The first one, which takes the 2D image as
the input, is a CNN with the duty of realizing the physical properties such as materials
used in each of the layers, the radius of the core, and the thickness of each shell. We named
this CNN the physical properties recognizer network (PPRN). The second network was an
MLP which accepts the physical properties generated by PPRN as the input and outputs
the absorption spectra; this network is named as the spectrum generator network (SGN).
Combining the PPRN and the SGN is a hybrid network that accepts a 2D image as input
and outputs an absorption spectrum. While CNN is mainly used for classification problems,
the PPRN network used here should successfully predict both continuous values (i.e., the
radius of the core and thicknesses of the shell) and categorical values (i.e., type of materials
used as core and shell). Prediction of continuous values falls within the regression problem
territory where the mean absolute error (MAE) (Equation (1)) is the standard loss function.
Additionally, predicting the categorical values is a multilabel classification problem where
binary cross-entropy (BCE) (Equation (2)) is the expected loss function. In these two loss
functions, ypredict is the predicted value by the neural network and yactual is the reference
value, and σ is the sigmoid function. Since PPRN should predict a hybrid of categorical and
continuous values, its loss function was set to a combination of MAE and BCE (Equation
(3)), where α is a value between 0 and 1 which was optimized to reach the best result during
the training process.

MAE =
1
n ∑

n

∣∣ypredict − yactual
∣∣ (1)

BCE = −
[
yactuallog σ

(
ypredict

)
+ (1 − yactual) log

(
1 − σ

(
ypredict

))]
(2)

PPRNloss = α.MAE + (1 − α).BCE (3)

Figure 2 shows the combined architecture of the PPRN and SGN. The output shape
of each of the layers is shown in the figure. The PPRN’s input was a series of images
with the size of (107,82) in each red, green, and blue (RGB) channel, which caused the
total dimension of each input image to be (107,82,3). The RGB values were divided by 255
(which is the maximum possible value for RGB filters) to facilitate the convergence process.
The PPRN consisted of several convolutional layers followed by max-pooling, dropout,
and flatten layers. During the simulation, the number of materials selected for the core, first
layer, and second layer was chosen to be 2, 3, and 2, respectively, so the output of the PPRN
was selected to consist of seven categorical values. In addition to that, the PPRN’s output
consists of 3 continuous values related to the core radius, the thickness of the first layer, and
the thickness of the second layer, making the output of PPRN consist of 10 different values
in total. After the second max-pooling layer of the PPRN, the network was split into two
branches. The left branch is related to the regression problem that outputs three continuous
values with a linear activation function (core radius, first layer thickness, and the second
layer’s thickness). The branch on the right, outputs seven categorical values with a sigmoid
activation function (core material, first layer’s material, and second layer’s material), and
the combination of the output of these two branches with a shape of (1, 10) was used in the
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loss function of the PPRN (Equation (3)). The total number of hidden layers (regardless of
the last two dense layers, which was the network’s output) was thirteen, making the total
number of trainable parameters in PPRN equal 149,834. The activation function for each of
the hidden layers was set to relu, and Adam [51] was chosen as the optimizer.

Figure 2. Schematic representation of the PPRN and SGN. PPRN is a CNN composed of several
convolutional, max-pooling, dropout, flatten, and dense layers. SGN is an MLP composed of
consecutive dense layers which uses the physical parameters suggested by PPRN to generate the
final spectra.

Table 2 summarizes the ten physical features generated by the PPRN; the SGN should
receive these ten physical properties and output absorption spectra with 200 data points;
this is a multioutput regression problem, so the loss function for SGN was set to MAE
(Equation (1)). Figure 2 also exhibits the SGN’s architecture; it consists of 2 hidden layers
with 1024 nodes and output with 200 nodes. The total number of trainable parameters for
this network was 1,265,864. The activation function of the hidden layers was set to relu,
and a linear activation function was chosen for the last layer of this MLP. Like PPRN, Adam
was selected as the optimizer of SGN. It is worthy of mention that the hyperparameters,
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including the number of hidden layers, number of neurons in each layer, choice of activation
function, optimizer, learning rate, and batch size, were optimized, and the architectures
reported in Figure 2 are the optimized layouts.

Table 2. Physical properties outputted by PPRN/used by the SGN network as input.

Categorical Features Continuous Features

Core
Material

(Au)

Core
Material

(Ag)

Shell1
Material
(TiO2)

Shell1
Material

(Si)

Shell1
Material

(Ge)

Shell2
Material

(Au)

Shell2
Material

(Ag)

Core
Radius

Shell1
Thickness

Shell2
Thickness

3. Results and Discussion
3.1. FDTD Simulation Results

The simulation considered nanocylinders, which are infinite in length along the x-axis
and oriented along the z-axis. Since the propagation direction of the electric field of light
was also along the z-axis, the simulations captured the optical absorption behavior at
normal incidence of an array of non-interacting infinitely long core-shell nanocylinders.
Thus, only the transverse plasmon resonances of each nanocylinder were considered and
the longitudinal resonances were ignored. Figure 3 exhibits randomly chosen structures
within the set of annular core-shell nanocylinders and their corresponding absorption
spectra; the inset of each image shows the snapshot of the cross-section of the cylindrical
metamaterials. For instance, the bare gold and silver nanocylinders in Figure 3a–c show
the characteristic LSPR peaks in air of nanostructured Au and Ag at ~510 nm and 370 nm
respectively. The LSPR peak of Ag in Figure 3c is narrower and sharper than that of Au in
Figure 3a,b because of the lower dielectric loss of Ag, leading to a smaller surface plasmon
bandwidth. The higher permittivity (compared to air) of the concentric dielectric shell
shifts the transverse plasmon resonance of the noble metal core to longer wavelengths
(e.g., Figure 3d). For single-core, single-shell nanocylinders, additional excitonic peaks
appeared to due to the size quantization of the semiconductor shell surrounding the
nanocylinders (e.g., Figure 3e). Plexcitonic effects were also captured by the simulations.
When an excitonic resonance was very close to the plasmon resonance, Rabi splitting due
to strong coupling (e.g., Figure 3f,h) or anomalous peak broadening due to weak coupling
(e.g., Figure 3g) were also seen [52]. For single-core, double-shell nanocylinders (annular
dielectric cylinders coated on the interior and exterior with identical metals), additional
collective modes appeared due to the interaction between the core- and shell resonances
(Figure 3i–l).

The plasmon resonance of each layer in metamaterials can be engineered in such a
way that plasmon hybridization occurs and the total absorption cross section overlaps at a
specific wavelength, a phenomenon called super-absorption [46,53,54]. Super-absorption
will lead to a strong light/matter interaction at a specific wavelength. This ability makes
the superabsorbers desirable for optoelectronic applications such as photovoltaics, photode-
tectors, highly selective photocatalysts, surface-enhanced spectroscopy, and sensing [55].
A quick look at Figure 3 gives insight into the diversity of the optical response of plas-
monic metamaterials simulated in this work. It is therefore clear that a careful design
of the metamaterials’ building blocks is needed to achieve the desired optical response.
Furthermore, the simulated structures exhibited a variety of super-absorption responses at
wavelengths ranging from 300 nm to 600 nm, which makes them ideal candidates for the
aforementioned applications.
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Figure 3. The simulated optical absorption spectra of randomly selected plasmonic metamaterials—each
of the materials is represented by a specific color, which is shown on the right side of the figure.

3.2. Training of PPRN and SGN

The training process was conducted on a computer equipped with an Intel(R) Xeon(R)
CPU and a Tesla T4 GPU. The neural network architecture was defined and trained using
Tensorflow (v.2.4.1). For training the Physical Properties Recognizer Network (PPRN) and
Spectrum Generation Network (SGN), the available data were split into training and test
sets. Seventy percent of the data was used for the training, ten percent for validation, and
the remaining twenty percent was allocated to test the trained models’ ability to predict the
unseen data. The maximum number of epochs for training was set to 1500, and a call-back
function with patience of 10 on the validation loss was used to stop the training at a specific
epoch to prevent overfitting. The training and validation loss as a function of the number of
epochs for training the PPRN and SGN are shown in Figure 4. The PPRN’s loss (Figure 4a)
exhibited a gradual decrease as the epoch increased and reached values as low as 10−3

for both the training and the validation loss. Since PPRN also classifies the input images,
classification accuracy is an essential factor for judging its ability. Figure 4b exhibits the
PPRN’s accuracy of classification; after only 178 epochs, the accuracy reached the excellent
value of 0.99 for both training and validation, which implies the superior ability of PPRN
to classify the input images into the correct categories. The decrease of loss as a function of
the number of epochs for SGN’s training is also evident in Figure 4c. After 720 epochs, the
SGN’s loss reached 0.013 and 0.019 for training and validation, respectively. The proximity
of the training and validation losses of both PPRN and SGN suggests that the optimized
architecture designed for these two networks can generalize and predict unseen data
effectively, and overfitting did not occur for either of these two trained networks. Adding
more complexity to these two networks (i.e., adding more hidden layers or changing
the number of neurons in each hidden layer) resulted in a network that was incapable
of generalization.
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Figure 4. The training loss as a function of the number of epochs for (a) PPRN and (b) SGN networks
and (c) accuracy as a function of the number of epochs for PPRN.

To further clarify how the arcitecture of the networks was optimized, the results of the
validation errors for the SGN with different architectures are reported in Table 3. These
results suggest that a model with fewer than three layers or a model with tanh as the
activation function cannot perform predictions well on the validation set. In addition, when
the complexity of the SGN exceeds its optimal structure (by increasing the number of layers
or the number of neurons in each layer), the model tends to overfit and the validation
error increases.

Table 3. The validation error for SGN networks with different architectures.

SGN Architectures Activation for the Hidden Layers Validation Error

{1024,1024,200} (used in this study) relu 0.019
{1024,1024,200} tanh 0.034

{1024,1024,500,200} relu 0.025
{512,200} relu 0.055

3.3. Comparison between the Results Obtained by PPRN and SGN, with FDTD Simulations

After the training process was completed, the PPRN and SGN models were further
used to calculate the test samples’ absorption spectra (samples on which the model was not
trained). Figure 5 exhibits a few randomly selected examples from the test set, the FDTD
simulated absorption spectrum, and the predicted spectrum generated by the PPRN and
SGN. As is evident from these results, the spectra generated by the combination of PPRN
and SGN correlate well with the FDTD simulated spectra. Because the FDTD simulation’s
runtime to create the absorption spectrum was on average in the range of 100 s and the
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time elapsed for PPRN + SGN to generate similar spectra was on average around 0.1 s, the
PPRN + SGN could deliver the same task 1000 times faster than FDTD simulation.
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3.4. Interpreting the PPRN and SGN

To further understand how the PPRN model interprets the input images to extract the
features and physical properties out of the input image, each hidden layer’s outputs were
plotted as the model progresses. Figure 6 exhibits the input image fed to the PPRN and
outputs of randomly selected filters in each of the layers embedded in PPRN. As is evident
from this figure, the PPRN model can extract features such as edges, colors, and outlines.
All these features extracted by the PPRN model help it decide the physical properties of the
input image. These results showcase the outstanding ability of PPRN for the interpretation
of different physical properties of the input image by extracting a comprehensive set of
details out of it. These results, alongside the 99 percent accuracy for classification and losses
as low as 10−3 for training and validation, guarantee that PPRN is a robust network for
deciphering the physical properties from the input image.
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Figure 6. The output of randomly selected layers of PPRN. The heterogeneity of the extracted features
in the output of each layer shows the PPRN’s caliber in finding physical properties.

The black-box nature of ANNs has made their interpretation a challenging task [56].
While human beings follow general wisdom for the decision making process, it is hard
to understand how exactly an ANN decides to reach a specific prediction based on the
input features [57,58]. Recently, a new framework for interpreting the behavior of ANNs
was introduced which is called SHAP (Shapley Additive exPlanations) [58]. SHAP
values are numbers assigned to each of the input features based on game theory. By
removing the feature from the feature space and calculating to what degree the output
was affected by this change, SHAP values are calculated [56]. SHAP values measure
how the ANN gave importance to a feature for a particular prediction. A higher absolute
SHAP value corresponds to the higher significance of that specific feature. Positive
SHAP values mean that the feature was contributing to increasing the predicted value
and vice versa. To understand each feature’s effect on the prediction, the SHAP method
was implemented to explain the SGN network’s behavior. Figure 7a exhibits the mean
calculated SHAP values for each of the features (these features are listed in Table 2) used
by the SGN network. It is evident from Figure 7a that the continuous features (i.e., sizes
of the materials and structures listed in Table 2) obtained higher SHAP values compared
with the categorical values (i.e., materials used in each of the layers). What this means
is that the output prediction of SGN is heavily affected by the size of the structure
(continuous features) and the nature of the material. This is a coherent deduction since
one of the photophysical properties of multilayer plasmonic metamaterials is the non-
uniqueness of their optical response wherein the far-field optical response of different
plasmonic metamaterials with the same size range resemble each other [59,60]. As a
result, it is not surprising to see that more importance was given to continuous features
by the SGN for decision-making.
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Figure 7. (a) Calculated importance of each of the features (absolute SHAP values) for SGN.
(b) Calculated SHAP values of the SGN network corresponding to 400 nm. (c) Calculated SHAP
values of the SGN network corresponding to 500 nm.

Since the output of the SGN network is 200 data points, each of which corresponds
to the far-field absorption response of the plasmonic structures at a specific wavelength
(ranging from 250 nm to 800 nm), SHAP values of the SGN for the top five most essential
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features in a particular wavelength of interest were calculated; 400 nm and 500 nm were
chosen as the wavelengths of interest as it is known that nanostructures of Ag (350–400 nm)
and Au (500–550 nm) show strong interaction with incident light at these wavelengths,
respectively [7,61–63] due to the LSPR phenomenon. Figure 7b shows the SHAP values of
SGN corresponding to 400 nm. At this specific wavelength, Ag’s importance as the type of
the material used as a core material is high, even higher than continuous values such as shell
1 and shell 2 thicknesses. Besides, Ag’s presence as the core material contributed positively
to the light absorption at this specific wavelength, proving that the SGN network could
pinpoint Ag’s importance on the output optical response in this particular spectral region. A
similar trend for Au can be seen in Figure 7c, where the SHAP values of SGN corresponding
to 500 nm are shown. Overall, the interpretations obtained by the SHAP value calculations
provide solid evidence that the SGN is acquiring an abstract understanding of the most
significant physical characteristics that regulate the light/matter interaction. In other
words, rather than randomly assigning numbers as an output, the SGN is deducing logical
interpretations out of the features imported to this network. While still primitive, the SHAP
value calculations are a step in the direction of reducing the black box nature of ANNs and
improving the explainability of their predictions.

4. Conclusions

Plasmonic metamaterials exhibit a diverse optical response for visible light frequen-
cies and are important materials for optoelectronic applications such as optical sensors,
light emitting devices, photocatalysts and photovoltaics. Numerically solving Maxwell’s
equations on a finite element grid using FDTD simulation is an essential tool for under-
standing the optical properties of these materials to avoid time- and resource-intensive
empirical examination of the entire available parameter space. FDTD is a computationally
expensive and slack process. One of the best ways to improve the efficiency of a process is
by increasing its speed without losing precision. As a result, replacing FDTD with swifter
DL methods is a hot topic in optoelectronics research. Furthermore, with the ultimate goal
of replacing FDTD with DL methods, there should be a framework to build trust in the
models developed by DL. Herein, we demonstrated that more rapid models developed by
DL can replace FDTD. A new network consisting of a combination of convolutional neural
network (CNN) and multilayer perceptron (MLP) models was designed, which receives
the cylindrical plasmonic core-shell nanomaterials’ cross-sectional images as input and
rapidly generates their absorption spectrum with outstanding precision. To understand
how CNN and MLP are generating their predictions, the interpretation of the predictions
of the CNN was made by visualizing each hidden layer’s output, revealing how CNN
could understand the outline and shape of the images which it receives as an input. Further
interpretation of the MLP predictions was made using SHAP value calculations which
opened a window into the otherwise black-box nature of the ANNs. SHAP feature impor-
tance calculations proved that the SGN is learning the physics governing the plasmonic
metastructure/light interactions behind the scenes. Further progress in explaining the
predictions of machine learning based approaches is needed, which might also provide new
physical insights. These results demonstrate the viability and integrity of DL approaches as
potential alternatives to both FDTD simulations and experiments.
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