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Abstract: Pyromellitic acid diimides are not as chemically unreactive as conjecturable (and presup-
posed) from their numerous applications as electron acceptor units or electron carriers in molecular
donor–acceptor dyads or triads. Similar to the corresponding phthalimides, electronically excited
pyromellitic diimides oxidize alkyl carboxylates in aqueous solution via intermolecular electron
transfer (PET) processes, which eventually results in radical–radical combination products, e.g., the
benzylation product 6 from N,N′-dimethyl pyromellitic diimide 5. The analogous product 7 was
formed with pivalic acid as tert-butyl radical source. One additional product 8 was isolated from
alkylation/dearomatization and multiple radical additions, respectively, after prolonged irradiation.
In intramolecular versions, from N-carboxyalkylated pyromellitic diimides 9a–e (C1 to C5-spaced),
degradation processes were detected, e.g., the cyclization products 10 from the GABA substrate
9c. In sharp contrast to phthalimide photochemistry, the green pyromellitic diimide radical anion
was detected here by UV-vis absorption (λabs = 720 nm), EPR (from 9d), and NMR spectroscopy for
several intramolecular electron transfer examples. Only the yellow 1,4-quinodial structure is formed
from intermolecular PET, which was deduced from the absorption spectra (λabs = 440 nm) and the
subsequent chemistry. The pyromellitimide radical anion lives for hours at room temperature in the
dark, but is further degraded under photochemical reaction conditions.

Keywords: pyromellitic imides; photodecarboxylation; electron transfer; radical ions; alkylative
degradation

1. Introduction

Numerous applications of pyromellitic acid diimides (pyromellitic imides, PI, Figure 1)
as electron acceptors in dyads with N-linked electron donors (A) [1–4] or as electron carriers
in donor–acceptor substituted model compounds that mimic the photosynthetic reaction
center (B) have been described [5–12]. Plenty of applications were developed that harvest
excitation energies in electron transfer/carrier systems. In many of these often complex and
high-molecular-weight compounds, PI operate as reliable and chemically stable electron
carriers, a kind of molecular mummy [1–12]. At least, this is the message of numerous
publications and the basic requirement for all applications.

Additionally and more importantly, pyromellitimide is the central building block of a
huge number of polymers that exhibit remarkable mechanical and thermal stability prop-
erties. One well-known example is the oxydiphenylene–pyromellitimide polymer Kapton
(poly(4,4’-oxydiphenylene-pyromellitimide)) [13], also described as a radiation-stable material

Photochem 2022, 2, 717–732. https://doi.org/10.3390/photochem2030046 https://www.mdpi.com/journal/photochem

https://doi.org/10.3390/photochem2030046
https://doi.org/10.3390/photochem2030046
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/photochem
https://www.mdpi.com
https://orcid.org/0000-0003-0093-9619
https://orcid.org/0000-0002-6546-3482
https://doi.org/10.3390/photochem2030046
https://www.mdpi.com/journal/photochem
https://www.mdpi.com/article/10.3390/photochem2030046?type=check_update&version=1


Photochem 2022, 2 718

that allows applications in spaceflights, such as coatings of satellites [14,15]. Apparently, the
radical anion of pyromellitimides (PI•-) is either too short-lived or too unreactive to lead to
chemical reactions, e.g., decomposition with loss of π-conjugation. At first sight, this behavior
reported in the literature is however inconsistent with our experience that we gathered from
phthalimide photochemistry in the last decade [16–21]. These electron-accepting compounds
are susceptible to radical coupling reactions following electronic excitation of the (mono)imide
chromophore. These processes allow the formation of ring-annulated isoindolinones 2 from
the corresponding carboxylates 1 in high chemical yields and good quantum yields by ir-
radiation in the UV-A of the phthalimide chromophore and initiated by a photoinduced
electron transfer (PET) followed by decarboxylation and radical-radical coupling (Scheme 1).
Overall, the negative charge is carried from carboxylate to alkoxide and thus the reaction can
be followed by pH and conductivity measurements [22].
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Figure 1. The pyromellitic acid diimide (PI) and the PI anion radical (PI•-). A: PI with donor in
a dyad. B: PI with donor and acceptor acts as a molecular wire and chemically stable molecular
mummy.
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Scheme 1. Intra- and intermolecular photoredox decarboxylative cyclization/addition of phthalimides.

These radical coupling reactions are possible not only in intramolecular fashion but
also intermolecular radical addition processes can be designed for numerous phthalimide
electron acceptors (e.g., the N-methyl compound 3 in Scheme 1). Well-suited electron
donors for PET and rapid decarboxylation are aryl acetates that we have intensively studied
and lead to benzylated products 4 [23–29]. These reactions deliver benzylated hydroxy-
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isoindolinones, valuable precursors to numerous pharmaceutically relevant products, such
as isoindolinones or isoindoles [30,31]. It is remarkable that these radical combinations
efficiently work also with unstabilized radicals from the corresponding carboxylates, e.g.,
methylation from the PET-oxidation of acetate or H-transfer using formate as the hydrogen
atom precursor [32].

While pyromellitimides do not provide this remarkable potential for synthetic ap-
plications, their extensive use in donor–acceptor systems due to their favorable redox
(E = −0.71 eV [33]) and spectroscopic properties (λmax(PI•-) = 718 nm [33]) poses the ques-
tion of whether photoreactions analogous to the ones observed for phthalimides are taking
place. In a figurative sense, pyromellitimides and other polyaromatic acceptors are often
characterized as highly chemically stable and able to undergo electron transfer cycles for
numerous times without chemical degradation. We herein describe the transfer of the well-
studied phthalimide electron transfer photochemistry on pyromellitimides. The reported
high stability of this chromophore should contradict analogous radical-type reactivity. This,
however, does not seem to be true.

2. Materials and Methods
2.1. Chemicals and Solvents for Syntheses and Photoreactions

Chemicals were purchased from Acros and Fisher and utilized as received. Solvents
were purchased from usual vendors and distilled before use.

2.2. Synthesis of the Photochemical Starting Materials

N,N-dimethyl pyromellitic diimide 5 was prepared according to [34] (CAS 26011-79-0).
General procedure for the synthesis ofω-carboxy pyromellitic diimides [35–37]:
One equivalent of pyromellitic anhydride was combined with 2.2 equivalents of

desired amino acid in approximately 30 to 40 mL DMF (for about 5 g of anhydride) in a
round-bottomed flask. The solution was stirred and heated to approximately 150 ◦C for 2 h,
precipitated with H2O, recrystallized from acetone/H2O, vacuum-filtered, and the product
air-dried.

2,2’-(1,3,5,7-tetraoxo-5,7-dihydropyrrolo[3,4-f ]isoindole-2,6(1H,3H)-diyl)diacetic acid
(9a, n = 1, CAS 7561-08-2)

Yield: 69%; 1H NMR (500 MHz, DMSO-d6): δ (ppm) = 12.01 (bs, 2H, COOH), 8.34
(s, 2 Harom), 4.38 (s, 4 H, CH2); 13C NMR (125 MHz, DMSO-d6): δ (ppm) = 169.0 (s, 2 C,
COOH), 165.9 (s, 4 C, CON), 137.4 (s, 4 C, Cq), 118.7 (d, 2 C, CH), 39.8 (t, 2 C, CH2).

3,3’-(1,3,5,7-tetraoxo-5,7-dihydropyrrolo[3,4-f ]isoindole-2,6(1H,3H)-diyl)dipropionic
acid (9b, n = 2)

Yield: 79%; 1H NMR (500 MHz, DMSO-d6): δ (ppm) = 11.99 (bs, 2H, COOH), 8.19
(s, 2 H, Harom), 3.82 (t, J = 7.3 Hz, 4 H, NCH2), 2.63 (t, J = 7.3 Hz, 4 H, CH2); 13C NMR
(125 MHz, DMSO-d6): δ (ppm) = 172.5 (s, 2 C, COOH), 166.5 (s, 4 C, CON), 137.4 (s, 4 C,
Cq), 117.7 (d, 2 C, CH), 34.5 (t, 2 C, NCH2), 32.6 (t, 2 C, CH2).

4,4’-(1,3,5,7-tetraoxo-5,7-dihydropyrrolo[3,4-f ]isoindole-2,6(1H,3H)-diyl)dibutyric acid
(9c, n = 3, CAS 61052-99-1)

Yield: 85%; 1H NMR (500 MHz, DMSO-d6): δ (ppm) = 12.05 (bs, 2H, COOH), 8.13 (s,
2 H, Harom), 3.64 (t, J = 6.7 Hz, 4 H, NCH2), 2.28 (t, J = 7.3 Hz, 4 H, CH2COO), 1.90–1.81 (m,
4 H, CH2); 13C NMR (125 MHz, DMSO-d6): δ (ppm) = 174.3 (s, 2 C, COOH), 166.8 (s, 4 C,
CON), 137.4 (s, 4 C, Cq), 117.5 (d, 2 C, CH), 37.9 (t, 2 C, NCH2), 31.4 (t, 2 C, CH2COO), 23.6
(t, 2 C, CH2).

5,5’-(1,3,5,7-tetraoxo-5,7-dihydropyrrolo[3,4-f ]isoindole-2,6(1H,3H)-diyl)dipentanoic
acid (9d, n = 4)

Yield: 82%; 1H NMR (500 MHz, DMSO-d6): δ (ppm) = 11.99 (bs, 2H, COOH), 8.15 (s,
2 H, Harom), 3.60 (t, J = 6.6 Hz, 4 H, NCH2), 2.22 (t, J = 7.1 Hz, 4 H, CH2COO), 1.68–1.59 (m,
4 H, CH2), 1.56-1.47 (m, 4 H, CH2); 13C NMR (125 MHz, DMSO-d6): δ (ppm) = 174.7 (s, 2 C,
COOH), 166.8 (s, 4 C, CON), 137.4 (s, 4 C, Cq), 117.6 (d, 2 C, CH), 38.1 (t, 2 C, NCH2), 33.5
(t, 2 C, CH2COO), 27.8 (t, 2 C, CH2), 22.2 (t, 2 C, CH2).
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6,6’-(1,3,5,7-tetraoxo-5,7-dihydropyrrolo[3,4-f ]isoindole-2,6(1H,3H)-diyl)dihexanoic
acid (9e, n = 5)

Yield: 85%; 1H NMR (500 MHz, DMSO-d6): δ (ppm) = 11.97 (bs, 2H, COOH), 8.16 (s,
2 H, Harom), 3.61 (t, J = 7.0 Hz, 4 H, NCH2), 2.19 (t, J = 7.2 Hz, 4 H, CH2COO), 1.62–1.67
(m, 4 H, CH2), 1.57–1.47 (m, 4 H, CH2), 1.35–1.25 (m, 4 H, CH2); 13C NMR (125 MHz,
DMSO-d6): δ (ppm) = 174.8 (s, 2 C, COOH), 166.8 (s, 4 C, CON), 137.4 (s, 4 C, Cq), 117.6 (d,
2 C, CH), 38.3 (t, 2 C, NCH2), 33.9 (t, 2 C, CH2COO), 28.0 (t, 2 C, CH2), 26.2 (t, 2 C, CH2),
24.5 (t, 2 C, CH2).

2.3. Photoreactions

Typical photoreaction for the intermolecular photoreaction of 5 with carboxylates:
2 mmol of the corresponding carboxylate were dissolved in 90 mL of water. After

addition of 270 mL of acetone, 1 mmol of 5 was added. The solution was then flushed
with argon for 5 min and irradiated at 300 nm for 2 h. After the photoreaction, the solu-
tion was extracted 3 times with CH2Cl2. The combined organic phases were washed with
5%-NaHCO3 solution and brine. The solution was dried over MgSO4, filtered and evaporated
under vacuum. The products were purified by column chromatography or recrystallization.

7-benzyl-7-hydroxy-2,6-dimethyl-6,7-dihydropyrrolo[3,4-f ]isoindole-1,3,5(2H)-trione
(6) (see Supplemental Material S3)

Yield: 56% after recrystallization from chloroform; M: [C19H16N2O4]: 336 g/mol;
RF-value: 0.19 (CH2Cl2/acetone 9:1); Mp.: 273 ◦C; 1H NMR (500 MHz, DMSO-d6): δ (ppm):
8.05 (d, J = 0.8 Hz, 1H, 10-H), 7.72 (d, J = 0.8 Hz, 1H, 4-H), 7.08–7.04 (m, 3H, 16-H, 17-H),
6.88–6.84 (m, 2H, 15-H), 6.85 (s, 1H, OH), 3.59 (d, J = 13.9 Hz, 1H, 13-H), 3.32 (d, J = 13.9 Hz,
1H, 13-H), 3.06 (s, 3H, 7-H), 3.04 (s, 3H, 1-H); 13C NMR (125 MHz, DMSO-d6): δ (ppm):
167.2 (s, C-8), 166.9 (s, C-6), 165.0 (s, C-2), 153.2 (s, C-11), 136.6 (s, C-3), 134.7 (s, C-9), 134.6
(s, C-14), 132.9 (s, C-5), 129.7 (d, C-15), 127.7 (d, C-16), 126.5 (d, C-17), 117.9 (d, C-10),
116.0 (d, C-4), 90.2 (s, C-12), 41.2 (t, C-13), 23.9 (q, C-7), 23.9 (q, C-1); IR (ATR): ῦ (cm−1):
3452 (w), 1765 (w), 1707 (s), 1684 (m), 1425 (w), 1407 (w), 1382 (m), 1071 (w), 1051 (w),
1020 (m), 992 (w), 781 (w), 744 (m), 702 (s), 688 (w); GC/MS (EI, 70 eV): τR = 18.44 min
m/z (%) = 318 (M+-H2O, 100), 289 (25), 232 (38), 204 (64), 190 (39), 177 (48), 163 (39), 116
(34), 91 (28), 89 (37), 74 (31). HR-MS (ESI): calcd. for [M + H]+ 337.1182835 amu, found
337.11871 amu; calcd. for [M + Na]+ 359.1002282 amu, found 359.10085 amu; UV-vis:
(MeCN, c = 10−4 mol L−1) λmax = 296 nm (ε = 2250 L mol−1 cm−1); Fluorescence (MeCN,
c = 10−4 mol L−1, λex = 300 nm) λem = 453, 346, 308 nm.

7-(tert-butyl)-7-hydroxy-2,6-dimethyl-6,7-dihydropyrrolo[3,4-f ]isoindole-1,3,5(2H)
-trione (7) (CCDC 2191095, see Supplemental Material S4)

Yield: 33 %; M: [C16H18N2O4]: 302 g/mol, RF-Value: 0.23 (CH2Cl2/acetone 9:1); Mp.:
248 ◦C; 1H NMR (500 MHz, DMSO-d6): δ (ppm): 7.93 (d, J = 0.4 Hz, 1H, 10-H), 7.90 (d,
J = 0.8 Hz, 1H, 4-H), 6.77 (s, 1H, OH), 3.07 (s, 3H, 7-H), 2.99 (s, 3H, 1-H), 0.98 (s, 9H, 14-H);
13C NMR (125 MHz, DMSO-d6): δ (ppm): 167.3 (s, C-8), 167.0 (s, C-6), 164.9 (s, C-2), 153.9
(s, C-11), 137.5 (s, C-3), 134.2 (s, C-9), 132.9 (s, C-5), 118.4 (d, C-10), 116.1 (d, C-4), 93.9 (s,
C-12), 39.4 (s, C-13), 27.5 (q, C-7), 25.9 (q, C-14), 24.0 (q, C-1); IR (ATR): ῦ (cm−1): 3338 (w),
1774 (w), 1721 (s), 1674 (s), 1480 (w), 1422 (m), 1380 (s), 1223 (w), 1134 (m), 1026 (s), 1016
(m), 986 (w), 941 (w), 740 (s), 692 (w); HR-MS (ESI): calcd. for [M + H]+ 303.1339336 amu,
found 303.13435 amu, calcd. for [M + Na]+ 325.1158782 amu, found 325.11628 amu, UV-vis:
(MeCN, c = 10−4 mol L−1) λmax = 298 nm (ε = 2660 L mol−1 cm−1). Fluorescence: (MeCN,
c = 10−4 mol L−1, λex = 300 nm) λem = 464, 348, 308 nm.

3a,7a-di-tert-butyl-2,6-dimethyl-4-(2-oxopropyl)-3a,4,4a,7a-tetrahydropyrrolo [3,4-f ]
isoindole-1,3,5,7(2H,6H)-tetraone (8) (CCDC 1439632)

Yield: 24 %; M: [C23H32N2O5]: 417 g/mol; 1H NMR (300 MHz, CDCl3): δ (ppm):
7.14 (s, 1H, 10-H), 3.28 (m, 1H, 4-H), 3.02 (d, J = 4 Hz, 1H, 17-H), 2.95 (s, 3H, 1-H), 2.92 (d,
J = 3.1 Hz, 1H, 17-H), 2.78 (s, 3H, 7-H), 2.18 (s, 3H, 19-H), 0.98 (s, 9H, 14-H), 0.78 (s, 9H,
H-16); 13C NMR (75.5 MHz, CDCl3): δ (ppm): 207.4 (s, C-18), 178.9 (s, C-8), 177.0 (s, C-2),
176.9 (s, C-6), 168.9 (s, C-12), 135.5 (s, C-11), 131.2 (d, C-10), 55.6 (s, C-3), 54.2 (s, C-9), 47.3
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(d, C-5), 47.3 (t, C-17), 39.9 (s, C-15), 39.3 (s, C-13), 31.9 (d, C-4), 29.9 (q, C-19), 27.0 (q, C16),
25.8 (q, C-14), 24.7 (q, C-7), 23.9 (q, C-1); GC/MS (EI, 70 eV): τR = 16.58 min, m/z (%) = 360
(M+-acetone, 18), 303 (58), 246 (65), 245 (100).

Typical photoreaction for the intramolecular substrates 9a–e:
About 2.20 mmol of pyromellitic diimide ω-carboxylic acid was dissolved in about

10 mL of acetone. An equimolar amount (2.20 mmol) of K2CO3 was dissolved in 10 mL of
water and the two solutions were mixed and stirred until completely clear and no more gas
evolved. After addition of 230 mL of water, the solution was flushed with argon for 5 min
and then irradiated at 300 nm for 12 h. After the photoreaction, the solution was extracted
3 times with ethyl acetate. The combined organic phases were dried over MgSO4, filtered
and evaporated under vacuum. This fraction contained the monocyclic products. The
aqueous phase was then brought to pH 3 with conc. HCl, and again extracted three times
with ethyl acetate. Those combined organic phases were dried over magnesium sulfate,
filtered, and evaporated under vacuum. This second fraction contained the bis-cyclic
products.

4-(9a-hydroxy-1,3,5-trioxo-1,5,7,8,9,9a-hexahydrodipyrrolo[2,1-a:3’,4’-f ]isoindole-2(3H)
-yl)butanoic acid (10c) (see Supplemental Material S5)

Yield: 24.4 %;M: [C17H16N2O6]: 344.32g/mol; 1H NMR (300 MHz, DMSO-d6): δ (ppm):
8.01 (s, 1 H), 7.86 (s, 1 H), 3.63 (t, J = 6.6 Hz, 2 H, NCH2), 3.32–3.59 (m, 2 H), 2.40–2.64 (m,
1 H), 2.28 (t, J = 6.6 Hz, 2 H, CH2COO), 2.16–2.36 (m, 2 H), 1.85–1.81 (m, 2 H), 1.52 (dd,
J = 10.5, 10.8 Hz, 1 H); 13C NMR (75.5 MHz, DMSO-d6): δ (ppm): 174.3 (s, 1 C, COOH),
167.6 (s, 1 C, CON), 167.3 (s, 1 C, CON), 154.5 (s, 1 C, CON), 137.4 (s, 1 C, Cq), 137.2 (s, 1 C,
Cq), 136.0 (s, 1 C, Cq), 133.5 (s, 1 C, Cq), 118.2 (d, 1 C, CH), 117.6 (d, 1 C, CH), 95.8 (s, 1 C,
COH), 41.9 (t, 1 C, NCH2), 37.7 (t, 1 C, NCH2), 35.7 (t, 1 C, CH2), 31.4 (t, 1 C, CH2COO),
27.7 (t, 1 C, CH2), 23.7 (t, 1 C, CH2).

5-(10a-hydroxy-1,3,5-trioxo-5,7,8,9,10,10a-hexahydro-1H-pyrido[2,1-a]pyrrolo[3,4-
f ]isoindol-2(3H)-yl)pentanoic acid (10d) (see Supplemental Material S6)

Yield: 25%; M: [C19H20N2O6]: 372.38g/mol; 1H NMR (500 MHz, DMSO-d6): δ (ppm):
8.03 (s, 1 H), 7.92 (s, 1 H), 4.04 (dd, J = 4.5, 12.5 Hz, 1 H), 3.59 (t, 2 H, NCH2), 3.73–3.68 (m,
1 H), 3.24–3.17 and 3.68–3.74 (m, 1 H), 3.04 (dt, J = 3, 13 Hz, 1 H), 2.37–2.48 (m, 1 H), 2.22
(t, J = 7.5 Hz, 2 H, CH2COO), 1. 88–1.92 (m, 1 H), 1.66–1.71 (m, 1 H), 1.57–1.66 (m, 2 H),
1.45–1.54 (m, 2 H), 1.26 (dt, J = 4, 13.5 Hz, 1 H); 13C NMR (125 MHz, DMSO-d6): δ (ppm):
174.6 (s, 1 C, COOH), 167.6 (s, 1 C, CON), 167.4 (s, 1 C, CON), 155.6 (s, 1 C, CON), 136.7 (s,
1 C, Cq), 135.4 (s, 1 C, Cq), 134.9 (s, 1 C, Cq), 133.3 (s, 1 C, Cq), 117.5 (d, 1 C, CH), 117.3 (d,
1 C, CH), 85.7 (s, 1 C, COH), 37.9 (t, 1 C, NCH2), 36.5 (t, 1 C, NCH2), 35.3 (t, 1 C, CH2), 33.5
(t, 1 C, CH2COO), 27.8 (t, 1 C, CH2), 24.9 (t, 1 C, CH2), 22.2 (t, 1 C, CH2), 19.5 (t, 1 C, CH2).

6-(11a-hydroxy-1,3,5-trioxo-1,5,7,8,9,10,11,11a-octahydroazepino[2,1-a]pyrroloisoindol-
2(3H)-yl)hexanoic acid (10e) (see Supplemental Material S7)

Yield: 61%; M: [C21H24N2O6]: 400.43 g/mol; 1H NMR (500 MHz, DMSO-d6): δ (ppm):
8.03 (s, 1 H), 7.83 (s, 1 H), 3.59 (t, 2 H, NCH2), 3.22 (m, 2 H, NCH2), 2.15–2.25 (m, 4 H),
1.43–1.68 (m, 8 H), 1.21–1.39 (m, 4 H); 13C NMR (125 MHz, DMSO-d6): δ (ppm): 174.8 (s,
1 C, COOH), 167.4 (s, 1 C, CON), 167.2 (s, 1 C, CON), 143.5 (s, 1 C, CON),), 137.6 (s, 1 C,
Cq), 133.6 (s, 1 C, Cq), 132.5 (s, 1 C, Cq), 133.3 (s, 1 C, Cq), 123.5 (d, 1 C, CH), 122.5 (d, 1 C,
CH), 90.6 (s, 1C, COH), 39.5 (t, 1 C, NCH2), 38.0 (t, 1 C, NCH2), 34.0 (t, 1 C,), 33.9 (t, 1 C,
CH2COO), 28.9 (t, 1 C, CH2), 28.0 (t, 1 C, CH2), 26.4 (t, 1 C, CH2), 26.2 (t, 1 C, CH2), 24.7 (t,
1 C, CH2), 24.5 (t, 1 C, CH2).

11a,12b-dihydroxy-1,2,3,9,10,11,11a,12b-octahydro-5H,7H-pyrrolo[2,1-a]pyrrolizino [2,1-
f ]isoindole-5,7-dione (11c-cis) and 6b,12b-dihydroxy-1,2,3,6b,7,8,9,12b-octahydro pyrrolo[2,1-
a]pyrrolizino[1,2-f ]isoindole-5,11-dione (11c-trans)

Yield: 6%; M: [C16H16N2O4]: 300.31g/mol, could not be separated; 13C NMR (125 MHz,
DMSO-d6) of 90 ppm region see Supplemental Material S8.

13a,14b-dihydroxy-1,3,4,11,12,13,13a,14b-octahydro-2H,6H-indolizino[2,1-f ]pyrido[2,1-a]
isoindole-6,8(10H)-dione (11d-cis) and 7b,14b-dihydroxy-1,2,3,4,7b,8,9,10, 11,14b-decahydro-
6H,13H-indolizino[1,2-f ]pyrido[2,1-a]isoindole-6,13-dione (11d-trans)
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Yield: 22%; M: [C18H20N2O4]: 328.37 g/mol, could not be separated; 13C NMR
(125 MHz, DMSO-d6) of 90 ppm region see Supplemental Material S9.

15a,16b-dihydroxy-1,2,3,4,5,11,12,13,14,15,15a,16b-dodecahydro-7H,9H-azepino[2,1-a]
azepino[1’,2’:1,5]pyrrolo[3,4-f ]isoindole-7,9-dione (11e-cis) and 8b,16b-dihydroxy- 1,2,3,4,5,
8b,9,10,11,12,13,16b-dodecahydroazepino[2,1-a]azepino[1’,2’:1,2]pyrrolo[3,4-f ]isoindole-7,
15-dione (11e-trans)

Yield: 15%; M: [C20H24N2O4]: 356.42 g/mol, could not be separated; 13C NMR
(125 MHz, DMSO-d6) of 90 ppm region see Supplemental Material S10.

2,3,9,10-tetrahydro-5H,7H-pyrrolo[2,1-a]pyrrolizino[2,1-f ]isoindolin-5,7-dione (12c-cis)
160 mg (0.5 mmol) of the product mixture of 11c-trans and 11c-cis was suspended in

25 mL of CH2Cl2 and a few drops of TFA were added while stirring, until a clear solution
resulted. After stirring for 10 min, the solution was washed with 5% bicarbonate solution
and brine. After drying over MgSO4, the solvent was removed and column chromatography
(silica gel, CH2Cl2/MeOH 100:1) yielded two products as yellow solids. One of them could
be identified as 12c-cis. The other product could not be analyzed by NMR due to solubility
issues. Its HR-MS spectrum confirmed the expected mass for 12c-trans.

12c-cis: 1H NMR (300 MHz, CD3COOD): δ (ppm) = 8.02 (s, 1H, H 4), 7.98 (s, 1H, H
3), 6.35 (t, J = 3.0 Hz, 2H, H-6), 4.12 (t, J = 7.3 Hz, 4H, H 8), 3.45 (m, 4H, H 7); 13C NMR
(75.5 MHz, CD3COOD): δ (ppm) = 164.2 (s, C 9), 142.0 (s, C 5), 137.7 (s, C 2), 133.9 (s, C 1),
119.7 (d, C 3), 117.4 (d, C 4), 114.5 (d, C 6), 42.3 (t, C 8), 37.0 (t, C 7). HR-MS (ESI): calcd.
For [M + H+] 265.0971542, found 265.09744 amu, calcd. for [M + Na+] 287.0790989, found
287.07949 amu; other fraction, presumably 12c-trans: HR-MS (ESI) calcd. For [M + H+]
265.0971542, found 265.09746 amu, calcd. for [M + Na+] 287.0790989, found 287.07944 amu.

3. Results
3.1. Intermolecular Reactivity

The intermolecular photochemical reactivity of the model substrate N,N′-dimethyl
pyromellitic imide 5 with alkyl carboxylates under standard conditions resulted in mono-
and bis-alkylation products. A specific example is the benzylation of 5 in the photoreaction
with the carboxylate of phenylacetic acid (Scheme 2). In this case, predominantly the
mono-adduct 6 was isolated even if twofold excess of phenylacetate is applied. Apparently,
the efficiency of the second electron transfer/decarboxylation process is strongly reduced
in comparison to the first one. Similarly, the use of potassium pivalate gave rise to the
formation of the mono-adduct 7 after short irradiation times (less than 6 h). After extended
irradiation times, the structurally unusual and complex addition product 8 was isolated for
the potassium pivalate reaction with N,N′-dimethyl pyromellitic imide 5: double addition
of the tert-butyl radical on the aromatic carbons with subsequent trapping of a solvent
molecule of acetone. The molecular structures from X-ray crystallography (Figure 2) con-
firmed the NMR data which showed only one proton in the sp2-region (see Supplemental
Materials). When the separated and purified mono-addition product 7 was again irradi-
ated under the standard conditions, 8 and starting material 5 were formed, suggesting a
dissociation step. Similarly, irradiation of 6 led to disappearance of this starting material,
but only 5 and traces of an 8 analogue with benzyl instead of tert-butyl were identified in
the NMR.
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Figure 2. Monoaddition product 7 and the double-addition and solvent-trapping product 8 in the 

crystal. Compound 8 is shown from two views in the crystal structure (top and side view on the 
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In order to test for intramolecular reactivity, we synthesized the five pyro-

mellitimide derivatives 9a-e from pyromellitic acid anhydride and glycine (9a, n = 1), 

β-amino propionic acid (9b, n = 2), γ-amino butyric acid (9c, n = 3), δ-amino pentanoic 

acid (9d, n = 4), ε-amino hexanoic acid (9e, n = 5). For the substrates 9c-9e (n = 3, 4, 5) the 

reaction mixtures after photolysis in an acetone/water solvent mixture and extraction 

showed the characteristic ~90 ppm peak in the 13C NMR, which typically corresponds to 
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alkyl carboxylates leading to the monoalkylation products 6, 7 and the threefold addition product 8.
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Figure 2. Monoaddition product 7 and the double-addition and solvent-trapping product 8 in the
crystal. Compound 8 is shown from two views in the crystal structure (top and side view on the
central ring).

3.2. Intramolecular Reactivity

In order to test for intramolecular reactivity, we synthesized the five pyromellitimide
derivatives 9a-e from pyromellitic acid anhydride and glycine (9a, n = 1), β-amino propionic
acid (9b, n = 2), γ-amino butyric acid (9c, n = 3), δ-amino pentanoic acid (9d, n = 4), ε-amino
hexanoic acid (9e, n = 5). For the substrates 9c–9e (n = 3, 4, 5) the reaction mixtures after
photolysis in an acetone/water solvent mixture and extraction showed the characteristic
~90 ppm peak in the 13C NMR, which typically corresponds to the newly formed quaternary
carbon centers (see arrows in Scheme 3, and Supplemental Materials). This indicated the
formation of cyclization products analogous to the phthalimide photochemistry. Basic
and acidic extraction yielded the mono (10) and bis-cyclization (11) products, respectively
(Scheme 4). Cyclization on both sides of the substrate diimide however gives rise to a
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large number of regio- (11-trans and 11-cis) and stereoisomers. Attempts to separate them
were unsuccessful; via NMR methods we were able to distinguish at least three isomers.
The product mixture of 10c was treated with TFA to destroy the stereocenter at the former
carbonyl carbon. Chromatographic separation of the two products allowed unambiguous
NMR identification of the bis-cis elimination product 12c-cis (Scheme 5).
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Scheme 5. Identification of the regioisomers of 11c (photoproduct of 9c) by elimination with trifluo-
roacetic acid.

For n = 1, 2 there seemed to be fewer products, similar to the phthalimide cases.
For n = 1 the simple decarboxylation product (N,N′-dimethyl pyromellitic diimide) was
isolated in small yields. In addition, a complex product precipitated during the acidic
extraction workup step. Particularly for n = 2, only a complex compound precipitated
during the workup after irradiation. To gain more information about the differing reaction
pathways we monitored the UV-vis absorption over the course of the reaction (Figure 3).
As inset in Figure 3 for compound 9e the colored solution of the radical anion is shown.
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Figure 3. Cont.
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Figure 3. UV-vis time course of photoreactions of 9e, 9c, and 9b under constant irradiation at
λ = 300 nm. Vertical axis: absorbance. Note that the absorbance scale is different for all three graphs
(max values: for n = 2 max. A = 8, for n = 3 max. A = 0.8, for n = 5 max. A = 2.0). 9e and 9c show very
similar time-dependent behavior and are shown in side and front view. 9b does not form a long-lived
715 nm absorbing species (pyromellitic diimide radical anion). The solutions of 9e after short and
long irradiation time (green and faint yellow, respectively) are also shown.

Two absorptions at longer wavelengths than pyromellitimide appeared at 425 and
725 nm, respectively. The strong absorption at 725 nm (the solution became dark green after
about 90 min of irradiation), which occurred for compounds with n = 3, 4, 5 can be attributed
to the radical anion of pyromellitimide [33]. This species has a lifetime of hours under
those conditions and has been confirmed by EPR (Figure 4) and NMR (line broadening
due to paramagnetic behavior, Figure 5). The simulation of the EPR spectrum (Figure 4,
in red, coupling constants with imido N and aromatic/aliphatic H given in the legend)
matches perfectly the experimental spectrum, proving that the radical anion is symmetric
with respect to the N-side chains and the carboxylic acids are still intact. The simulation of
the decarboxylation/protonation product from 9d that would bear two N-C4H9 side-chains
clearly differs from the experimental EPR spectrum (see also the Supplementary Material).

This radical anion can then undergo radical combination with the decarboxylated
chain to yield the cyclization products. In addition, an absorption at 425 nm was observed,
which is assigned to the double-reduced quinoid-like structure. The absorption maximum
of the dianion is reported at 552 nm in DMF [33], and the shift to 425 nm can be explained by
protonation in aqueous solution. This structure presumably leads to unexpected coupling
products on the aromatic ring (vide infra) and is the only absorption visible for compounds
with n = 1, 2 (but also exists for n = 3, 4, 5). The 425 nm species consequently does not
exhibit an EPR signal. The long lifetime of the radical anion is surprising, particularly
considering the fate of the primary alkyl radical that must have formed concurrently after
electron transfer and decarboxylation. The hydrophobic cores of the diimides associate in
aqueous solution and thus exhibit increased stability due to through-space coupling. Using
the reported extinction coefficient (ε((PI•-)) = 41,700 M-1 cm-1 [33]), it can be estimated
that about 1% of the total pyromellitimides exist as radical anion at the peak during the
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irradiation (between 70 and 160 min, depending on n). For the shorter spacers (n = 1, 2),
the decreased flexibility of the carboxylate chain leads to increased repulsion and less
aggregation. For n = 1, a second electron transfer yields the simple decarboxylation
product, which starts to precipitate, and the irradiation solution becomes less transparent.
Particularly for n = 2, the radical anion gets reduced quickly to the dianion, which is partly
protonated in aqueous solution and thus does not exhibit its typical UV-vis absorption
(λmax(PI2-) = 552 nm [33], Figure 3, n = 2, vertical axis scale is at an absorbance of about
8, corrected for dilution of the irradiation mixture). Radical combination now probably
occurs on the aromatic ring in those quinoid structures and leads to products like the ones
isolated for the intermolecular cases (vide supra).
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Figure 4. UV-vis spectrum of irradiation solution of 9d (n = 4) after 135 min (black curve, radical
anion) and 450 min (red curve, dianion). The solution at 135 min is EPR active as expected, shown
X-Band EPR spectrum of (conc. = 12.4 mM) in H2O at 298 K with simulation (in red). The spectrum
was simulated using g = 2.015 and HFS coupling with 2 × N = 1.29 G, 2 × H(arom.) = 0.33 G,
and 2 × H = 0.31 G, 2 × H = 0.30 G, 2 × H = 0.29 G, 2 × H = 0.28 G, line width of 0.05 G and
Lorentzian/Gaussian = 1.0. 450 min irradiation solution is not EPR active.
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Figure 5. NMR spectra of 9d (approx. 7 mM, in D2O/K2CO3), top spectrum: full 1H NMR, stacked:
zoomed into the 7.75–8.35 ppm region. Pyromellitimide protons at 8.20 ppm. Peaks at 7.91 and
7.82 ppm are caused by the hydrolysis product of 9d (structure shown) under the basic conditions and
conveniently serve as internal standard. (A) Before irradiation (B) after 10 min irradiation (C) sample
from (B) after quenching with air.

4. Discussion
4.1. Intermolecular Reactions

The intermolecular photoreactions were conducted in solvent mixtures with a high
acetone content (75%, compared to only less than 10% for the intramolecular reactions) due
to the insolubility of 5 in water. Under these conditions, solvent excitation and triplet energy
transfer to 5 is dominant and generates triplet excited 5. The monoaddition products 6 and
7 are the primary photoproducts that correspond to the phthalimide photochemistry. They
can easily be identified by their characteristic 13C NMR signals at about 90 ppm for Cq(OH).
Compound 7 is unstable and can regenerate the photochemically active radical precursor.
Subsequent excitation leads to the unusual addition to the benzene ring with concomitant
loss of aromaticity in 8, a reaction never observed in phthalimide photochemistry. Typical
phthalimide photoproducts 2 and 4 (Scheme 1) do not exhibit photochemical reactivity (at
300 nm) but the monoaddition product 7 of PI reacts further, presumably by intramolecular
hydrogen abstraction to dissociate the original adduct.

As a possible reaction mechanism for the formation of 8, the following scenario
is postulated (Scheme 6): after long irradiation times, the persistent radical anion can
get trapped by a second electron transfer to form the dianion, which likely exists in the
protonated form in aqueous solution, as evidenced by the blue-shifted UV-vis absorption
at 425 nm. This intermediate combines with the alkyl radical of the decarboxylated acids to
form 8, after Michael addition of an enolized solvent acetone.
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4.2. Intramolecular Reactions

The N-carboxyalkylated substrates 9c–6e (n = 3, 4, 5) form the expected (i.e., from
phthalimide photochemistry) intramolecular cyclization products by a sequence of PET and
radical combination. Low yields and the high number of regio- and stereoisomers make
the reaction less appealing from a preparative standpoint. The surprising long lifetime
of the pyromellitic imide radical anion (PI•-) is likely caused by stacking effects of the
hydrophobic core in the aqueous irradiation solution [38–40]. Short side chains in 9a,b
(n = 1, 2) prevent this stabilizing effect by electrostatic repulsion already in the ground state.
In the time-course experiments, no absorption peak at 725 nm ever develops for 9a,b. In
fact, the absorption of the double-reduced species (PI2-) at 425 nm is particularly strong for
those compounds (absorbance is extrapolated to almost 8 for 9b). For 9a, precipitation of the
double-decarboxylation product 5 is evident in the UV-vis data and makes interpretation
more difficult. The lack of stabilization of PI•- can lead to back-electron transfer to yield
the simple decarboxylation products. Additionally, an immediate second reduction can
form PI2-. This species can then yield addition products to the aromatic system to result in
uncharacterizable polymeric structures. The polymeric structures, while uncharacterized,
have potentially similar attachment points (on the pyromellitic aromatic ring) as seen in
the intermolecular product 8.

The stabilization of the PI radical anion (PI•-) does not explain the fate of the pri-
mary radical that is formed after decarboxylation. If radical combination does not occur
immediately, the decay of this primary radical prevents product formation to 10 and 11.
Interestingly, no partial or full decarboxylation products (i.e., an CO2H/H exchange) were
isolated for 9c–e (n > 2) suggesting a more complex decaying mechanism.

5. Conclusions

The reported stability of the pyromellitic diimide (PI) chromophore is the basis of
numerous applications in photochemical redox systems and in polymers for mechanical and
thermal protective coatings. Here, we show for the first time that PI exhibits surprisingly
high photochemical reactivity that is analogous to the well-known photochemistry of
phthalimides. The radical anion (PI•-) was detected by UV-vis absorption, NMR, and EPR
spectroscopy in aqueous solution. In the absence of a radical source, either external or
internal, the PI•- is persistent and can be spectroscopically characterized or additionally
reduced to the PI2- (Scheme 7). This dianion appears to be even longer lived and yields
products that eventually destroy the aromatic chromophore. While the product distribution
is too multifaceted to make the PI photochemistry interesting from a synthetic point of
view, it nevertheless shows that PI does get efficiently consumed in photoinduced electron
transfer processes.
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