
Citation: Stefanello, F.S.; Vieira,

J.C.B.; Araújo, J.N.; Souza, V.B.;

Frizzo, C.P.; Martins, M.A.P.; Zanatta,

N.; Iglesias, B.A.; Bonacorso, H.G.

Solution and Solid-State Optical

Properties of Trifluoromethylated

5-(Alkyl/aryl/heteroaryl)-2-methyl-

pyrazolo[1,5-a]pyrimidine System.

Photochem 2022, 2, 345–357. https://

doi.org/10.3390/photochem2020024

Received: 14 April 2022

Accepted: 16 May 2022

Published: 19 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Solution and Solid-State Optical Properties of
Trifluoromethylated 5-(Alkyl/aryl/heteroaryl)-2-methyl-
pyrazolo[1,5-a]pyrimidine System
Felipe S. Stefanello 1, Jean C. B. Vieira 1 , Juliane N. Araújo 1, Vitória B. Souza 2, Clarissa P. Frizzo 1 ,
Marcos A. P. Martins 1 , Nilo Zanatta 1, Bernardo A. Iglesias 2,* and Helio G. Bonacorso 1,*

1 Núcleo de Química de Heterociclos (NUQUIMHE), Departamento de Química, Universidade Federal
de Santa Maria, Santa Maria 97105-900, RS, Brazil; felipestefa@gmail.com (F.S.S.);
jeanbauer96@gmail.com (J.C.B.V.); julianenascimentoaraujo2@gmail.com (J.N.A.);
clarissa.frizzo@gmail.com (C.P.F.); marcos.nuquimhe@gmail.com (M.A.P.M.); nilo.zanatta@ufsm.br (N.Z.)

2 Laboratório de Bioinorgânica e Materiais Porfirínicos, Departamento de Química, Universidade Federal
de Santa Maria, Santa Maria 97105-900, RS, Brazil; vitoriabarbosadesouza@gmail.com

* Correspondence: bernardopgq@gmail.com (B.A.I.); helio.bonacorso@ufsm.br (H.G.B.)

Abstract: This paper describes the photophysical properties of a series of seven selected examples of
5-(alkyl/aryl/heteroaryl)-2-methyl-7-(trifluoromethyl)pyrazolo[1,5-a]pyrimidines (3), which contain
alkyl, aryl, and heteroaryl substituents attached to the scaffolds of 3. Given the electron-donor
groups and -withdrawing groups, the optical absorption and emission in the solid state and solution
showed interesting results. Absorption UV–Vis and fluorescence properties in several solvents of
a pyrazolo[1,5-a]pyrimidines series were investigated, and all derivatives were absorbed in the
ultraviolet region despite presenting higher quantum emission fluorescence yields in solution and
moderate emission in the solid state. Moreover, the solid-state thermal stability of compounds
3a–g was assessed using thermogravimetric analysis. The thermal decomposition profile showed
a single step with almost 100% mass loss for all compounds 3. Additionally, the values of T0.05 are
considerably low (72–187 ◦C), especially for compound 3a (72 ◦C), indicating low thermal stability
for this series of pyrazolo[1,5-a]pyrimidines.
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1. Introduction

According to the Web of Science, there have been about nine hundred publications on
photophysical properties and organic compounds in the last five years [1]. This shows the
importance of synthesizing organic compounds with these photophysical characteristics,
which have drawn considerable attention and have been widely used in industrial and
scientific fields [2].

For many organic molecules to exhibit outstanding photophysical properties, in most
cases, a combination of factors is required, which are related mainly to their structural
properties. These properties may involve the polarization of the chemical scaffolds due
to the presence of electron-donating (EDG) and electron-withdrawing groups (EWG) [3],
chain arrangements, and conformations (stereochemistry) [4–6], as well as the presence of
charge-transfer bands, such as intramolecular charge transfer transitions (ICT) [7,8].

In this regard, N-heterocyclic skeletons present many classes of compounds that exhibit
photophysical properties [9–12]. One such class is the pyrazolo[1,5-a]pyrimidines that have
π-extended electronic systems by two planar fused rings with three nitrogen atoms of
different electronic atom nature [13]; in fact, given its structural diversity, numerous studies
have highlighted its importance in materials science [14–19].

For these reasons, this study sought to evaluate and study, for the first time, the photo-
physical properties of pyrazolo-pyridimine derivatives, more specifically, the compounds
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named 5-(alkyl/aryl/heteroaryl)-2-methyl-7-(trifluoromethyl)pyrazolo[1,5-a]pyrimidines
(3), where the synthetic approaches have already been mostly described in the litera-
ture [13,20,21], although there is still a lack of studies on the absorption and emission
properties of these derivatives, both in solution and in the solid state. Given this context,
UV–Vis absorption analysis and steady-state fluorescence emission properties, both in
liquid and the solid state, will be discussed and studied. Furthermore, the solvent polarity
on absorption and emission effects and the thermal stability in the solid state will also be
discussed and presented (Scheme 1).
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experiments with 5 mm sample tubes at 298 K and digital resolution of 0.01 ppm in CDCl3 
as the solvent, using TMS as the internal reference, and the atoms numbering according 
to Figure 1. All spectra can be found in the Supplementary Information (Figures S1–S8). 
All melting points were determined using coverslips on a Microquímica MQAPF-302 
apparatus and are uncorrected. The HRMS analyses were performed on a hybrid high-
resolution and high-accuracy (5 mL L−1) micrOTOF-Q mass spectrometer (Bruker 
Scientifics, Billerica, MA, USA) at Caxias do Sul University (Brazil). 
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According to Frizzo and collaborators [13], a solution of 3-amino-5-methyl-1H-

pyrazole (1.0 mmol, 0.097 mg) (2) in acetic acid (5 mL) was added to a magnetically stirred 
solution of the respective 4-(alkyl/aryl)-4-methoxy-1,1,1-trifluoroalk-3-en-2-ones (1.0 
mmol) (1a–g), also diluted in acetic acid (5 mL). The mixture was stirred at 80 °C for 16 h. 
After the reaction time (TLC), the products 3a–g were extracted with chloroform (3 × 10 
mL), washed with distilled water (3 × 10 mL), and dried over anhydrous magnesium 
sulfate. The chloroform was removed in a rotary evaporator under reduced pressure and 
the respective compounds 3a–g were purified by recrystallization from ethanol. 

Scheme 1. Summary of this study: synthesis and photophysical properties of 5-(alkyl/aryl/heteroaryl)-
2-methyl-7-(trifluoromethyl)pyrazolo[1,5-a]pyrimidines (3).

2. Materials and Methods
2.1. General

Unless otherwise indicated, all common reagents and solvents were used as obtained
from commercial suppliers without further purification. The 1H, 13C, and NMR spectra
were acquired on a Bruker Avance III 600 MHz (3a–g) spectrometer for one-dimensional
experiments with 5 mm sample tubes at 298 K and digital resolution of 0.01 ppm in CDCl3
as the solvent, using TMS as the internal reference, and the atoms numbering according to
Figure 1. All spectra can be found in the Supplementary Information (Figures S1–S8). All
melting points were determined using coverslips on a Microquímica MQAPF-302 apparatus
and are uncorrected. The HRMS analyses were performed on a hybrid high-resolution and
high-accuracy (5 mL L−1) micrOTOF-Q mass spectrometer (Bruker Scientifics, Billerica,
MA, USA) at Caxias do Sul University (Brazil).
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2.2. Synthetic Procedures

General procedure was used for the synthesis of 5-(alkyl/aryl/heteroaryl)-2-methyl-7-
(trifluoromethyl)pyrazolo[1,5-a]pyrimidines (3a–g).

According to Frizzo and collaborators [13], a solution of 3-amino-5-methyl-1H-pyrazole
(1.0 mmol, 0.097 mg) (2) in acetic acid (5 mL) was added to a magnetically stirred solution
of the respective 4-(alkyl/aryl)-4-methoxy-1,1,1-trifluoroalk-3-en-2-ones (1.0 mmol) (1a–g),
also diluted in acetic acid (5 mL). The mixture was stirred at 80 ◦C for 16 h. After the reaction
time (TLC), the products 3a–g were extracted with chloroform (3 × 10 mL), washed with
distilled water (3 × 10 mL), and dried over anhydrous magnesium sulfate. The chloroform
was removed in a rotary evaporator under reduced pressure and the respective compounds
3a–g were purified by recrystallization from ethanol.

2.2.1. 2,5-Dimethyl-7-(trifluoromethyl)pyrazolo[1,5-a]pyrimidine (3a)

Yellow solid, yield 50%, m.p. 52–53 ◦C. Literature [20] (Yield 87%, oil)
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1H NMR (600 MHz, CDCl3) δ (ppm): 6.96 (s, 1H, H-6), 6.52 (s, 1H, H-3), 2.67 (s, 3H, CH3),
2.57 (s, 3H, CH3).

2.2.2. 2-Methyl-5-phenyl-7-(trifluoromethyl)pyrazolo[1,5-a]pyrimidine (3b)

Yellow solid, yield 85%, m.p. 123–124 ◦C. Literature [20] (Yield 82%, m.p. 123–124 ◦C).
1H NMR (600 MHz, CDCl3) δ (ppm): 8.30–8.00 (m, 2H, Ph), 7.75–7.52 (m, 3H, H-6/Ph), 6.68
(s, 1H, H-3), 2.62 (s, 3H, CH3).

2.2.3. 5-(4-Methoxyphenyl)-2-methyl-7-(trifluoromethyl)pyrazolo[1,5-a]pyrimidine (3c)

Yellow solid, yield 60%, m.p. 182–183 ◦C. Literature [21]
1H NMR (600 MHz, CDCl3) δ (ppm): 8.09 (d, J = 8.6 Hz, 2H. Ph), 7.50 (s, 1H, H-6), 7.06
(d, J = 8.6 Hz, 1H, Ph), 6.62 (s, 1H, H-3), 3.92 (s, 3H, OCH3), 2.60 (s, 3H, CH3).

2.2.4. 5-(4-Fluorophenyl)-2-methyl-7-(trifluoromethyl)pyrazolo[1,5-a]pyrimidine (3d)

Yellow solid, yield 98%, m.p.155–156 ◦C. Literature [20] (Yield 96%, m.p. 141–144 ◦C).
1H NMR (600 MHz, CDCl3) δ (ppm): 8.12 (dd, J = 8.9, 5.3 Hz, 2H, Ph), 7.50 (s, 1H, H-6), 7.24
(t, J = 8.6 Hz, 2H, Ph), 6.66 (s, 1H, H-3), 2.61 (s, 3H, CH3).

2.2.5. 5-(4-Bromophenyl)-2-methyl-7-(trifluoromethyl)pyrazolo[1,5-a]pyrimidine (3e)

Yellow solid, yield 70%, m.p. 171–173 ◦C. Literature [13,20] (Yield 86%, m.p. 171–173 ◦C).
1H NMR (600 MHz, CDCl3) δ (ppm): 8.00 (d, J = 8.6 Hz, 2H, Ph), 7.69 (d, J = 8.6 Hz, 2H,
Ph), 7.50 (s, 1H, H-6), 6.68 (s, 1H, H-3), 2.62 (s, 3H, CH3).

2.2.6. 2-Methyl-5-(4-nitrophenyl)-7-(trifluoromethyl)pyrazolo[1,5-a]pyrimidine (3f)

Orange solid, yield 80%, m.p. 223–224 ◦C.
1H NMR (600 MHz, CDCl3) δ (ppm): 8.41 (d, J = 8.6 Hz, 2H, Ph), 8.32 (d, J = 8.8 Hz, 2H,
Ph), 7.60 (s, 1H, H-6), 6.77 (s, 1H, H-3), 2.65 (s, 3H, CH3).
13C{1H} NMR (150 MHz, DMSO-d6) δ (ppm): 157.8 (C-2), 152.1 (C-5), 150.2 (Ph), 149.1
(C-3a), 142.0 (Ph), 134.1 (q, J = 37.1 Hz, C-7), 128.1 (Ph), 124.2 (Ph), 119.4 (q, J = 274.8 Hz,
CF3), 102.4 (d, J = 4.2 Hz, C-6), 98.7 (C-3), 14.9 (CH3).
HRMS (ESI): (M + H): Calcd. for C14H10F3N4O2 = 323.0756; Found: 323.0759.

2.2.7. 2-Methyl-5-(2-thienyl)-7-(trifluoromethyl)pyrazolo[1,5-a]pyrimidine (3g)

Yellow solid, yield 72%, m.p. 155–156 ◦C. Literature [20] (Yield 89%, m.p. 152–154 ◦C).
1H NMR (600 MHz, CDCl3) δ (ppm): 7.73 (d, J = 3.6 Hz, 1H, thienyl), 7.58 (d, J = 5.0 Hz, 1H,
thienyl), 7.41 (s, 1H, H-6), 7.19 (t, J = 4.4 Hz, 1H, thienyl), 6.60 (s, 1H, H-3), 2.59 (s, 3H, CH3).

2.3. Photophysical Measurements
2.3.1. Photophysical Measurements in Solution

Electronic UV–Vis analysis of compounds 3a–g in several solvents with distinct polar-
ity (CH3CN, CHCl3, THF, toluene, EtOH, and DMSO) were measured using a Shimadzu
UV2600 spectrophotometer (data interval, 1.0 nm, and slit 1.0 mm). Steady-state fluo-
rescence emission spectra of derivatives 3a–g in the same solutions were measured with
a Horiba Jobin Yvon FluoroMax 4 Plus spectrofluorometer (slit 5.0 mm; Em/Exc) and
corrected according to the manufacturer’s instructions. Fluorescence quantum yield (Φf; in
%) values of compounds 3a–g were determined by comparing the corrected fluorescence
spectra with that of standard 9,10-diphenylanthracene (DPA) in CHCl3 solution (Φf = 65%,
λexc = 375 nm) according to the current literature [12,22–24].

2.3.2. Photophysical Measurements in the Solid State

For the absorption and UV–Vis measurements in the solid state, derivatives 3a–g were
treated as powder, and the baseline in the solid state was obtained using a barium sulphate
standard (BaSO4; Wako Company®, Richmond, VA, USA). The diffuse reflectance spectra
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(DRUV) were measured using an integrating sphere attachment on a Shimadzu UV-2600
spectrophotometer in the 250–700 nm range.

The fluorescence emission spectra in the solid state were measured in the 300–700 nm
range using the Horiba Yvon-Jobin Fluoromax Plus (Em/Exc; slit 5.0 mm) instrument.
Fluorescence quantum yields (Φf) in the solid state were determined by comparing the
integrated area to the corrected fluorescence spectrum of compounds with the integrated
area to the corrected fluorescence spectrum of a standard compound (in this case, sodium
ascorbate − Φf = 55%), as reported elsewhere [23].

Fluorescence lifetimes in the solid state of related compounds were recorded using
the time-correlated single-photon counting (TCSPC) method with DeltaHub controller and
Horiba spectrofluorometer. Data were processed with the DAS6 and Origin® 8.5 software
(Northampton, MA, USA) using mono-exponential fitting of raw data. NanoLED (1.0 MHz;
pulse width < 1.2 ns; 284 nm excitation wavelength) was used as a source of excitation.

2.4. Thermogravimetric Analysis

Thermogravimetric analyses (TGA) were performed using a TGA Q5000 instrument
(TA Instruments Inc., New Castle, DE, USA) at a heating rate of 10 ◦C min−1, from 40 ◦C
to 600 ◦C under a N2 flux of 25 mL min−1. The masses were approximately 1 mg for all
samples. Data analysis was performed using the OriginPro 8.5 software (Northampton
MA, USA). The confirmation of calibration of apparatus before analysis was done with
CaC2O4·H2O (99.9%).

Differential scanning calorimetry (DSC) analyses were carried out using a Q2000 DSC
calorimeter (TA Instruments, New Castle, DE, USA) equipped with an RCS refrigeration
accessory and with N2 as purge gas (50 mL min−1). The heating rate used was 5 ◦C min−1.
The calibration of instruments in standard DSC mode was verified with indium (99.99%).
The masses of the samples (1–5 mg) were weighed on a Sartorius balance (M500P) with
a precision of ±0.001 mg. All samples were subjected to three heating–cooling cycles, as
follows: 25 to 250 ◦C.

3. Results
3.1. Synthesis and Structural Characterization

The precursors 4-alkoxy-4-(alkyl/aryl/heteroaryl)-1,1,1-trifluoroalk-3-en-2-ones (1a–g)
were first synthesized through the trifluoracetylation of enol ethers and acetals according
to the literature procedures [25–33]. The 3-amino-5-methyl-1H-pyrazole precursor 2 was
acquired from a commercial supplier (Sigma-Aldrich, São Paulo, Brazil).

The method employed to synthesize the 5-(alkyl/aryl/heteroaryl)-2-methyl-7-
(trifluoromethyl)pyrazolo[1,5-a]pyrimidines (3a–e, 3g) has already been described else-
where [13]. The compounds (3a–e) and (3g) were obtained in 50–98% yields (Scheme 2),
which showed the appearance of air-stable yellow-orange solids [13,20,21]. The compound
2-methyl-5-(4-nitrophenyl)-7-(trifluoromethyl)pyrazolo[1,5-a]pyrimidine (3f) has yet to be
described in the literature, and it was obtained in 80% yield after recrystallization (also
from ethanol).

All products were fully characterized with 1H NMR and the melting point showed
spectral data typical for these compounds and also in agreement with the literature [13,20,21].
Until now, an unpublished compound (3f) was also characterized by 1H- and 13C NMR
and HRMS. For instance, in the NMR chemical shifts assignment, compound 3f presented a
chemical shift at 7.60 ppm at the 1H NMR spectrum, which was assigned to the pyrimidine
H-6; a signal at 6.77 ppm was assigned to the pyrazole H-3, a signal at 2.65 ppm referred
to the unique methyl substituent, and a signal at 8.41 and 8.32 ppm was assigned to the
p-phenyl substituted aromatic ring. The same compound 3f showed chemical shifts in
the 13C{1H} NMR spectrum as a singlet at 157.8 (C-2), 152.1 (C-5), 149.1 (C-3a), 102.4 (C-6)
and 98.7 (C-3) ppm, and a quartet for C-7 and CF3 group appearing at 134.1 ppm with
J = 37.1 Hz and 119.4 ppm with J = 274.8 Hz, respectively, due to the 13C–19F scalar coupling.
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3.2. Photophysical Properties of Pyrazolo[1,5-a]pyrimidines (3a–g)
3.2.1. Solution Analysis

Regarding the photophysical properties of pyrazolo derivatives 3a–g, the photophysi-
cal properties of all compounds in different solvent polarities (toluene, CHCl3, CH3CN,
THF, EtOH, and DMSO) were analyzed. For exemplification purposes, the spectral profile
of derivative 3b in all solvents studied is illustrated in Figure 2, and the absorption param-
eters of compounds are listed in Table 1; all UV–Vis absorption spectra are listed in the
Supplementary Information (Figures S9–S14).

In general, all derivatives showed electronic transition bands in the UV region and
can be attributed to π→ π* and n→ π* type transitions, which are characteristics of this
type of heterocyclic and aromatic skeleton, according to the literature [12,23,24,34]. As seen
in Figure 2, the derivatives studied show a similar absorption behavior according to the
nature of the solvent. Additionally, by analyzing the UV–Vis spectra in the ground state of
related compounds, small changes according to the solvent property are also observed, and
some spectral changes occur due to the presence of electron-donor or -acceptor substituents
(Table 1).
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Table 1. Photophysical data analysis of derivatives 3a–g in different solvents.

Compound Solvent a λabs, nm (ε; M−1cm−1) λem, nm (QY, %) b SS (nm/cm−1) c

3a CHCl3 274 (15670); 309 (4850) 501 (67.0) 192/12,400
THF 273 (19870); 308 (4505) 473 (87.0) 165/11,325

Toluene 283 (16120); 309 (8870) 492 (92.0) 183/12,040
CH3CN 306 (12550); 337 (7150) 511 (67.0) 174/10,105
EtOH 305 (17500); 338 (9690) 456 (55.0) 118/7655
DMSO 307 (9995); 342 (5120) 441 (86.0) 99/6565

3b CHCl3 266 (22520); 325 (7320); 357 (sh) 504 (79.0) 147/8170
THF 256 (30195); 324 (13535); 362 (sh) 507 (78.0) 145/7900

Toluene 286 (19550); 331 (15950); 362 (sh) 508 (88.0) 146/7940
CH3CN 265 (20210); 324 (3800); 360 (sh) 506 (71.0) 146/8015
EtOH 265 (21035); 325 (4175); 365 (sh) 514 (71.0) 149/7940
DMSO 269 (17410); 328 (3570); 362 (sh) 521 (91.0) 159/8430

3c CHCl3 290 (13420); 338 (5785); 367 (sh) 500 (77.0) 133/7250
THF 256 (18080); 295 (23610); 339 (12985); 368 (sh) 500 (75.0) 132/7170

Toluene 294 (22040); 338 (19095); 365 (sh) 501 (84.0) 136/7435
CH3CN 287 (14085); 324 (3800); 360 (sh) 554 (63.0) 194/9730
EtOH 289 (11740); 337 (5285); 367 (sh) 487 (56.0) 120/6715
DMSO 269 (10020); 327 (2010); 364 (sh) 509 (88.0) 145/7825

3d CHCl3 269 (15780); 331 (2870); 370 (sh) 504 (79.0) 134/7185
THF 256 (17380); 288 (8800); 326 (9640); 362 (sh) 509 (77.0) 147/7980

Toluene 289 (18920); 336 (6020); 369 (sh) 510 (87.0) 141/7490
CH3CN 266 (20720); 325 (4070); 359 (sh) 516 (73.0) 157/8475
EtOH 267 (17185); 328 (3030); 360 (sh) 514 (73.0) 154/8320
DMSO 269 (15720); 327 (3125); 359 (sh) 521 (93.0) 162/8660

3e CHCl3 276 (17465); 330 (3800); 364 (sh) 507 (79.0) 143/7750
THF 257 (9915); 291 (9720); 329 (8275); 365 (sh) 511 (78.0) 146/7830

Toluene 290 (22170); 334 (15485); 362 (sh) 510 (87.0) 148/8015
CH3CN 272 (10370); 327 (2195); 364 (sh) 516 (73.0) 152/8090
EtOH 274 (20375); 327 (4695); 366 (sh) 514 (73.0) 148/7865
DMSO 275 (17760); 330 (4285); 366 (sh) 524 (90.0) 158/8240

3f CHCl3 299 (10955); 344 (sh) 496 (64.0) 152/8910
THF 271 (10545); 296 (12640); 342 (sh) 524 (73.0) 182/10,155

Toluene 297 (11850); 346 (sh); 382 (sh) 520 (89.0) 138/6950
CH3CN 295 (11625); 341 (sh); 373 (sh) 545 (70.0) 172/8460
EtOH 292 (17630); 340 (sh); 373 (sh) 419 (24.0) 46/2940
DMSO 257 (14555); 301 (16145); 347 (sh) 558 (95.0) 211/10,900

3g CHCl3 280 (19115); 337 (8370); 375 (sh) 481 (63.0) 106/5875
THF 257 (15280); 304 (20765); 336 (19370); 378 (sh) 511 (75.0) 133/6885

Toluene 290 (17520); 345 (8170); 375 (sh) 510 (86.0) 135/7060
CH3CN 276 (11520); 343 (5715); 372 (sh) 517 (73.0) 145/7540
EtOH 278 (18050); 343 (8620); 371 (sh) 496 (56.0) 125/6790
DMSO 281 (21175); 346 (11215); 375 (7770) 520 (89.0) 145/7435

a Dielectric constant (ε) and refractive index (η): toluene (ε = 2.38; η = 1.4969), THF (ε = 7.50; η = 1.4072),
CHCl3 (ε = 4.81; η = 1.4459), CH3CN (ε = 36.6; η = 1.3441), EtOH (ε = 24.5; η = 1.3614), and DMSO (ε = 46.7;
η = 1.4793); b Excited at lower transition band and using 9,10-diphenylanthracene (DPA) in chloroform as standard
(λexc = 375 nm; Φf = 0.65); c Stokes shifts: ∆λ = λem − λabs = 1/λabs − 1/λem; sh = sholuder.

By comparing the electronic effect of the substituent on the aromatic moiety (3c—OCH3
and 3f—NO2 units), very subtle shifts can be observed in the other solvents investigated,
revealing that there is no significant change in the ground state (Table 1).

Regarding fluorescent emission properties, derivatives 3a–g were investigated in the
same solvent polarities used in the UV-Vis analysis, and the data regarding the emission
peaks (λem), quantum fluorescence yield (QY), and Stokes shifts (SS) are presented in
Table 1. The normalized fluorescence emission spectra of derivatives in all solvents are
presented in the Supplementary Information (Figures S15–S20). Regarding the fluorescence
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lifetime measurements of the derivatives in solution, time-resolved measurements were
not made because the proper NanoLED source was unsuitable for this analysis.

In general, derivatives 3a–g have emission bands located in the blue to green range.
As with the UV–Vis absorption analysis, compound 3b was chosen as an example, and the
fluorescence emission spectra in all solvents and natural/UV light solution photography
are listed in Figure 3. According to the spectra in Figure 3c, the solvent polarity does not
show any significant changes in the emission peaks of compound 3c. As for compound 3f
(containing NO2 group), more visible changes are observed, mainly in the protic medium
(Supplementary Information—Figure S24). We can attribute this to a difference in the
stabilization of the structures in the excited state, primarily in the presence of electron-
withdrawing groups and the secondary H-bonding interactions in ethanol solution.
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 THF 273 (19870); 308 (4505) 473 (87.0) 165/11,325 
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Figure 3. (a) Solutions in natural light, (b) solutions in UV365nm light irradiation, and (c) comparative
steady-state fluorescence emission spectra in several solvents of compound 3b.

As for the Φf values, the compounds presented higher QYs; this may be associated
with a greater stabilization and solvation of these molecules in the singlet excited state
(Table 1) and dependence on the substituent electronic property. Finally, moderate to large
SS were observed for all derivatives in the solvents studied, and this can be attributed to
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the vibrational relaxation or dissipation and solvent reorganization, which can decrease the
separation of the energy levels of the ground and excited states (Table 1).

3.2.2. Aggregation-Induced Emission Behavior

In a generalized way, the aggregation-induced emission (AIE) phenomenon describes
the behavior of a molecule that shows dim or no emission in dilute solution but much-
enhanced emission in aggregates or the solid state [35,36]. The fluorescence emission
behaviors of the selected compounds 3b, 3c, and 3f were examined in the THF-H2O
mixture (0–90% water fraction) to confirm the possibility of AIE characteristics. Studied
compounds emit a blue to green region under a UV lamp with 365 nm in THF solution
(Figure 3). All fluorescence emission spectra in the THF-H2O mixture of compounds 3c
and 3f are listed in the Supplementary Information (Figures S23 and S24).

Interestingly, the fluorescence emission of derivatives 3b, 3c, and 3f is sensitive to
solvent polarity; thus, we aimed to explore their emission behavior in THF as an aprotic
water-miscible solvent. The emission responses of compound 3b upon adding different
amounts of water to THF solution is presented in Figure 4. With the increase of water
content (0–90% v/v), a great decrease in the emission peak intensities was observed, and the
fluorescence intensity as a function of water content showed a slightly bathochromic shift.
Tigreros and co-workers previously described similar behavior in a study with pyrazolo
derivatives containing a triphenylamine substituent [16]. Thus, the AIE properties were
not observed, and this decrease in the emission intensities of derivatives can be directly
attributed to an aggregation phenomenon (J- or H-aggregate types) as the water fraction
increases. Consequently, this result demonstrates that (trifluoromethyl)pyrazolo-based
probes can act as possible fluorescent sensors for small amounts of acid or protic molecules.
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Figure 4. (a) Fluorescence emission spectra of compound 3b and (b) photograph of compound 3b
solutions in THF/water mixture with different water fractions (0–90%) under a UV lamp (365 nm).
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3.2.3. Solid-State Analysis—First Evidences

A solid-state absorption and fluorescence emission spectroscopy analysis in powder
was performed as the (trifluoromethyl)-pyrazolo derivatives 3a–g present fluorescence
emission in the solid state. The reflectance spectra of the compounds revealed similar
absorption peaks compared to the solution study, in which we observed the broadening of
the absorption bands (Supplementary Information; Figure S25).

The fluorescence emission data of derivatives 3a–g in the solid state are listed in Table 2,
and all spectra are presented in Figure 5a. Thus, compared to the spectra in solution, the
derivatives presented emission peaks very close to the values obtained in organic solvents
(Table 1). The variations in emission peaks observed in the solid state can be attributed to a
change in the molecular arrangement in the absence of the solvent, which may be favored
by π-π stacking interactions. The QY values observed in the solid state for derivatives
3a–g are smaller than those observed in the solution, which may be directly related to the
solid-state arrangement.

Table 2. Photophysical data analysis of derivatives 3a–g in the solid state.

Compound λabs, nm λem nm (QY,%) a SS (nm/cm−1) b τf, ns (χ2) c kr (108 s−1) d knr (108 s−1) e

3a 261, 338, 417 493 (29.0) 76/3700 3.50 ± 0.44 (1.131901) 0.83 2.03
3b 286, 338, 425 493 (23.0) 68/3245 3.03 ± 0.59 (1.143012) 0.76 2.55
3c 283, 335, 425 485 (21.0) 60/2910 8.62 ± 0.37 (1.091558) 0.24 0.92
3d 294, 340, 427 509 (28.0) 82/3770 3.00 ± 0.45 (1.051683) 0.93 2.40
3e 290, 428 483 (24.0) 55/2660 6.62 ± 0.48 (1.131901) 0.36 1.15
3f 283, 335, 427 542 (29.0) 115/4970 1.36 ± 0.82 (1.151343) 2.13 5.22
3g 268, 331, 433 507 (24.0) 74/3370 6.14 ± 0.52 (0.919048) 0.39 1.23

a Excitation at a less-energy absorption peak using sodium salicylate as standard (Φf = 55%); b Stokes shifts:
∆λ = λem − λabs = 1/λabs − 1/λem; c Using excitation by NanoLED source at 284 nm; d,e Determined by [23].
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Figure 5. (a) Normalized steady-state fluorescence emission spectra of compounds 3a–g in the solid
state and (b) normalized fluorescence decay of compounds 3a–g in the solid state when excited by a
NanoLED source at 284 nm.

Compared with the solution study, solid-state fluorescence lifetime measurements
were conducted, and lifetime decay plots and the τf, radiative (kr) and non-radiative (knr)
values for derivatives 3a–g are presented in Figure 5b and Table 2, respectively. It is possible
to note a variation in the τf values according to the electronic nature of the molecule, which
is attributed to the non-influence of the solvent in the excited state and a greater ordering
of the molecules in the solid state (Table 2). In addition, we can evidence a decrease in the
radiative (kr) rates with an increase in the non-radiative (knr) rates, and this is probably
evidenced by a relaxation of the vibrational levels of the molecules and restricted motion.

3.3. Thermal Stability in the Solid State

The solid-state thermal stability of compounds 3a–g was accessed using TGA, and the
results are summarized in Table 3, where T0.05 expresses the temperature at which 5.0% of
mass loss occurred and Td is the temperature of maximum decomposition rate (i.e., the
peak of the derivative curve). The order of thermal stability was established in terms of
T0.05 as follows: 3a < 3b < 3d < 3e < 3g < 3c < 3f. The TGA curves for compounds 3a, 3e,
and 3f are presented in Figure 6, and the other results, including DSC/TGA/DTG curves
for compounds 3b and 3d, are shown in the Supplementary Information (Figures S26–S33).
It is possible to note from Figure 6 and the other curves that the thermal decomposition
occurs in a single step with almost 100% of mass loss. Additionally, the values of T0.05
are considerably low, especially for compound 3a, indicating low thermal stability for this
series of pyrazolo[1,5-a]pyrimidines. Regarding T0.05 and structure relations, no direct
correspondence between molar masses and thermal stability was observed for the entire
series. More important than the molar mass of the compounds was the nature of the R
substituent. Nonetheless, more detailed explanations for the observed order of thermal
stability would require further analysis. From the values of T0.05 in Table 3 and the melting
temperatures of compounds 3a–g, it is worth noticing that the majority of the compounds
presented considerable mass loss (5%) below their melting point, narrowing possible
applications to the solid state.
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Table 3. Results of the TGA analysis.

Compound T0.05 (◦C) Td (◦C) Mass Loss (%)

3a 72 110 99
3b 117 161 97
3c 171 200 99
3d 134 169 96
3e 147 187 97
3f 187 230 99
3g 151 187 98
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4. Conclusions

The synthesis in yields of 50–98% and photophysical behavior of a series of seven ex-
amples of 5-(alkyl/aryl/heteroaryl)-substituted 2-methyl-7-(trifluoromethyl)pyrazolo[1,5-
a]pyrimidine core (3) was achieved, where one new compound (3f) was obtained and fully
structurally characterized. The optical properties in solution and the solid state of this
geminated system 3 were also successfully investigated. In the photophysical evaluation of
the molecules, transition bands were observed in the UV region, and moderate to higher
values in the quantum fluorescence yields for the derivatives 3a–g. Regarding the solvent
polarity variation, the changes vary according to the electronic nature of the molecules eval-
uated in the presence or absence of the substituent. Furthermore, photophysical analysis
in the solid state and AIE phenomena were also evaluated. For this series of pyrazolo[1,5-
a]pyrimidines, regarding T0.05 and structure relations, no direct correspondence between
molar masses and thermal stability was observed for the entire series. Additionally, it is
worth noticing that most of the compounds presented considerable mass loss (5%) below
their melting point, narrowing possible applications to the solid state.
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