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Abstract: Luminescent micelles are extensively studied molecular scaffolds used in applied supramolecular
chemistry. These are particularly important due to their uniquely organized supramolecular structure
and chemically responsive physical and optical features. Various luminescent tags can be incorporated
with these amphiphilic micelles to create efficient luminescent probes that can be utilized as “chemical
noses” (sensors) for toxic and hazardous materials, bioimaging, drug delivery and transport, etc.
Due to their amphiphilic nature and well-defined reorganized self-assembled geometry, these nano-
constructs are desirable candidates for size and shape complementary guest binding or sensing a
specific analyte. A large number of articles describing micellar fluorogenic probes are reported, which
are used for cation/anion sensing, amino acid and protein sensing, drug delivery, and chemo-sensing.
However, this particular review article critically summarizes the sensing application of nitroaromatic
(e.g., trinitrotoluene (TNT), trinitrobenzene (TNB), trinitrophenol (TNP), dinitrobenzene (DNB), etc.)
and nitramine explosives (e.g., 1,3,5-trinitro-1,3,5-triazinane, trivially named as “research department
explosive” (RDX), 1,3,5,7-tetranitro-1,3,5,7-tetrazocane, commonly known as “high melting explosive”
(HMX) etc.). A deeper understanding on these self-assembled luminescent “functional materials” and
the physicochemical behavior in the presence of explosive analytes might be helpful to design the
next generation of smart nanomaterials for forensic applications. This review article will also provide
a “state-of-the-art” coverage of research involving micellar–explosive adducts demonstrating the
intermolecular charge/electron transfer (CT/ET) process operating within the host–guest systems.

Keywords: luminescent micelle; functional nano-materials; explosive sensor; colorimetric detection

1. Introduction

In the last decades, significant advancement has been made to construct the lumines-
cent micellar systems for sensing target analytes, ion transport, and bioimaging. These
luminophoric materials are used to demonstrate the rudimentary models for various
CT/ET processes in an aqueous solution in the presence of various chemical entities [1–7].
Based on the fundamental idea of CT/ET transition, a considerable number of elegant
luminous micellar systems are developed for sensing metal ions [8–12] and anions [13–15],
biomolecules [16–20], detection of explosive [21–25], etc. to name a few. Moreover, these
micellar systems can be typically considered as the simplest biological mimic of cellular
membranes having both hydrophobic and hydrophilic parts in a single molecular platform.
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Therefore, they might be useful materials considering the artificial synthetic models com-
patible for biosensing. In addition to that, augmenting particular luminophoric moieties
to the micellar systems may provide specific hybrid nano-composites selective for target
analytes. It is noteworthy that compared to the conventional luminescent/optical sensors,
these luminescent micellar sensors are a new category that require more exposure to unfurl
their potential applications in sensing activity.

The ever-increasing use of explosive chemicals for homeland security, armed military
forces, mining, road construction, demolition of old buildings and civil structures, and
more importantly by separatist groups, terrorist organizations, and criminals has raised the
necessity of their trace level detection by various sensitive techniques. Depending on the
chemical structures, these explosives can be categorized as nitroaromatics, nitrate esters,
nitramines, and peroxides. Among them, nitroaromatic and nitramine explosives are the
most commonly used high energy explosives (secondary explosives), widely used by armed
forces and also by separatist and terrorist organizations. Nitroaromatic explosives are
aromatic compounds containing single or multiple electron poor nitro (–NO2) groups. The
most common examples of nitroaromatic compounds are DNT, TNT, TNP (or PA), etc. On
the other hand, the representative examples of chemical explosives fall under the category
of nitramine, which includes RDX, HMX, and Tetryl, etc. Sensing of these explosive analytes
for forensic applications by using various “chemical noses” in different medium, is therefore,
an important topic in applied supramolecular chemistry research, which is growing rapidly
in the present era. In current literature, explosive sensing and their materials applications
by various purely organic or composite materials have been described in a few review
articles [26,27]. However, to the best of our knowledge, a detailed review article based
on supramolecular micellar systems exclusively meant for forensic applications has yet
to appear in the current literature. Considering the applied supramolecular chemistry,
materials chemistry research, sensor development, and timeliness of this topic, we therefore,
strongly believe that a comprehensive review article is urgently necessary to summarize the
recent development of the luminescent micellar sensors. Particularly, in this review article
we will highlight the progress on various luminescent micellar systems which are effective
in an aqueous medium. The efforts have also been made on the working principles of the
sensing behavior of each micellar–analyte supramolecular system. We also discuss the role
of explosive analytes to control the CT phenomena, which has tremendous influence on both
ground and excited state dynamics. In general, the luminescence quenching processes are
involved (with few exceptions of enhanced emission) in the sensing of explosive analytes
depending on their acceptor strengths and geometries.

Therefore, the present review article is designed to address a brief coverage on metal
ion sensing, anion sensing, and biosensing followed by exclusive highlight on explosive
sensing. Given its breadth and scope, we anticipate that this review will provide a general
glimpse on what has been done in the area of micellar sensors, thus allowing for further
advances in this research field. Consequently, in this review we provide a “state-of-the-art”
coverage of research involving various micellar systems used for explosive detection and
sensing in an aqueous medium by means of a donor–acceptor (D–A) type of supramolecular
interaction along with their design strategy and working principle. A deeper understanding
of supramolecular chemistry involved with these luminous micellar systems along with
the structure-property relationship of micelle–analyte adducts, and their physicochemical
properties might provide a general platform to researchers to design the next generation
“functional materials” of this kind.

2. Luminescent Micellar Systems

The chemistry of luminescent micellar systems originally developed decades ago,
however, a short discussion might be relevant here for neophytes. Figure 1a shows a typical
model structure of a micelle that is structurally different from reverse micelle liposome
and lipid bilayer (Figure 1b–d). Typically, a micellar system consists of a hydrophobic
core resulted from self-assembled organic synthons having a hydrophilic head and hy-
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drophobic tail groups (cf. Figure 1, Inset) [28–30]. To construct a luminescent micellar
system, either polyaromatic hydrocarbon (PAH)-based fluorophore(s) or a luminescent
metal complex tag should be attached or grafted to the skeleton. While the hydrophobic
and hydrophilic part self-assembled to form a micellar structure, the luminophores too
stacked either on the surface or within the core. The specific arrangement of luminophores
in the core/surface/intermediate layer of micelle results in monomer/excimer emission
with much enhanced quantum yield compared to that in organic solvents under identical
conditions. In the presence of explosive materials (which are generally electron poor in
nature due to the presence of multiple NO2 groups present in a single unit), a D–A type of
host–guest complex can be produced with micellar systems where the explosive molecules
are intercalated within the lyophilic part of the micelles. Normally, the sensing behavior
resulted from either by quenching of initial luminescence of the existing luminophore
or quenching of the excimer emission by intermolecular D–A charge transfer transitions.
Few cases are also reported where the luminescence sensing was achieved by the fluores-
cence “Turn ON” mechanism. The efficacy of such a micellar system as a sensor can be
easily determined by the Stern–Volmer constant (KSV) using the Stern–Volmer equation
given below:

Iq = I0 +
I f inal − I0

2
×
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[Q]

[F]
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Figure 1. Graphical representation of a standard micelle (a), reverse micelle (b), liposome (c), and lipid
bilayer (d), respectively. Inset: A single unit consists of hydrophobic aliphatic tail and hydrophilic
head, which takes part to construct all the above-mentioned self-assembled structures with various
geometries under different environments.

Where, I0 is the initial emission intensity of a fluorophoric unit, Ifinal is the final
emission intensity, Iq is the fluorescence intensity in the presence of quencher, [F] is the
concentration of the fluorophore, and [Q] is the concentration of added quencher Q, re-
spectively. The nonlinear nature of the Stern–Volmer plot indicates a combined static and
dynamic quenching process involved in a particular system or an energy transfer process
within the host–guest system under consideration.

The sensing mechanism to detect the explosive traces are mainly of four different
types, viz. (1) by emission quenching phenomenon due to intermolecular D–A interactions
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with photo-induced electron transfer (PET) transition; (2) the emission enhancement by
counter-ion displacement process; (3) the luminescence quenching of an aggregated sample
exhibiting aggregation-induced emission (AIE), by CT/ET to the explosive analytes; and
(4) by the change of a ratiometric emission of a double luminophoric system (vide infra).
The graphical illustration of sensing mechanisms by the luminescence “Turn OFF” pathway
involved within micellar systems and explosive analytes as the representative examples are
given in Figure 2a,b. The absence of π–π interactions between two neighboring aggregated
units and the activation of intermolecular D–A interactions within micelle and explosive
analytes mainly contributed to the quenched emission intensity in these micellar systems.
It is noteworthy that both the classic polyaromatic hydrocarbons (PAHs), (viz. anthracene,
pyrene, perylene, etc.) and some specific cyclometallated Pt(II)/Ir(III) luminophoric materi-
als can be used to construct these micellar sensors that are effective in an aqueous medium.
In addition to that presence of charge, hydrophilic and hydrophobic groups existing in
micellar systems also play an important role towards sensing property.
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Figure 2. The proposed mechanism involved in the “Turn OFF” luminescent sensing of explosive
analytes. (a) Luminescence quenching of excimer-based emission in the presence of explosive
analytes. (b) Luminescence quenching of a surface-modified micellar system by supramolecular D–A
CT transition within the cyclometallated luminophore (D) and explosive analytes (A). The models
are redrawn based on the concept used in references [22,23].

2.1. Luminescent Micellar Systems for Metal Ion Sensing

A wide variety of luminescent micellar systems have been reported so far in the current
literature demonstrating metal ion sensing [8–12,31–50]. However, as our main focus is
on explosive sensing in a micellar medium, we will cover the metal ion sensing in this
section in brief. Most well-known cases that have fused heterocyclic organic fluorophores
or traditional polyaromatic hydrocarbons (PAH) have been utilized (see Chart 1 for details)
to construct luminescent micellar sensors. The major advantages of these micellar organic



Photochem 2022, 2 36

luminophores include: (i) Enhanced emission intensity of the monomer or excimer through
vibrational rigidity, (ii) selective site binding with metal ions as compared to bulk phase, (iii)
mimicking biological membrane-like systems and in vivo sensing feasibility, (iv) selective
and sensitive sensing of metal ions through enhanced emission of organic luminophore
via controlled binding, and (v) the use of lipophilic fluorophores in aqueous medium
solubilized by micelles, etc. to name a few.
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Chart 1. Chemical structures of few representative fluorophores and receptors (both chelated and
macrobicyclic) used for metal ion sensing in an aqueous micellar medium.

In addition to that, depending on the charge state of micellar systems (cationic, anionic,
or neutral) and the nature of coordinating atoms, the sensing efficacy is directly related to
the pH of the medium. Based on these ideas, various luminescent probes to detect tran-
sition metal ions (viz. Cu2+, Fe3+, Hg2+, Cd2+, etc.) have been successfully demonstrated,
which are able to work in an aqueous medium. For example, the fluorescent “Turn ON”
metal ion sensors 10a,b are reported by Nakatsuji and Akashi et al. which are constructed
by using laterally unsymmetric bicyclic oxa-aza cryptands [34]. These photosensitive
monoazacryptand derivatives are used to sense the alkali and alkaline earth metal ions
in the presence of various surfactants, depending on the size of the inner core. Typically,
the sensing mechanism involves the deactivation pathway of the PET process between
cryptands and fluorophore (pyrene), which results in the “Turn ON” emission switching
upon metal binding. It was noticed that the 15-crown-5 -based fluorophoric system (10a) is
selective for K+, however, the corresponding larger analogue 10b (18-crown-6 -based sys-
tem) is selective for Ba2+ in an aqueous medium at ambient condition. It is speculated that
a bigger core diameter of oxa-aza cryptand 10b provides a suitable platform to encapsulate
Ba2+ that make the receptor 10b selective for Ba2+ ion.

Taking advantage of the aggregated pyrene-based excimer emission, Ding and co-
workers used a series of synthetic luminescent molecular probes for constructing the
surfactant ensembled metal ion sensors, which are nicely summarized in a recent article [12].
Among the series, the neutral bispyrene derivative shown in Figure 3 inset provides
substantial sensing behavior to various di- and tri-valent metal ions. Interestingly, when
the bispyrene/SDS assemblies are titrated against Fe3+, Cu2+, Hg2+, emission quenching
was observed (cf. Figure 3a,b in case of Fe3+, Cu2+ respectively), however, incremental
addition of Mg2+, Ca2+, Co2+, Ni2+, Zn2+, Cd2+, and Pb2+ exhibit ratiometric response (cf.
Figure 3c,d in case of Co2+ and Zn2+ as representative examples). A prominent optical
change in the presence of these metal ions under exposure of UV light reflects their potential
applications in metal ion sensing. The suggested mechanism involving the sensing behavior
of bispyrene/SDS adduct against these di- and tri-valent metal ions by emission quenching
and ratiometric pathway is shown in Figure 3e. The flexibility of the long aliphatic bridge
of bispyrene derivative plays an important role during the sensing process.
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tiometric change of bispyrene/SDS assemblies when titration was performed against Zn2+ ion.
(e) The schematic representation of a bispyrene/SDS self-assembled sensor towards various metal
ions. Inset: Top, the Chemdraw representation of bispyrene derivative; bottom, the photograph of
bispyrene/SDS sensor in the presence of Fe3+, Cu2+, Co2+, and Zn2+ respectively, under exposure of
UV light. This figure is reproduced with permission from reference [12], Copyright © 2022, American
Chemical Society.

Apart from these organic fluorophores, a DANSYL appended macromolecular system
is reported by Zhao et al. to detect Hg2+ ion selectively in an aqueous medium. This
lyophilic organic molecular probe is solubilized in an aqueous medium by the help of
surfactant-based micellar systems. A more detailed account on luminescent micellar
systems for metal ion sensing can be found in the following recent review article [33].

2.2. Luminescent Micellar Systems for Anion Sensing

Among various anionic species, sensing of halides (e.g., F−, Cl−, Br−, and I−) and
cyanide (CN−) by luminescent micellar probes have been extensively studied [13–15,51–55].
Although a large number of model sensors are reported in current literature, however,
as mentioned earlier, our primary focus in this current review is to highlight the most
compelling applications of micellar systems for explosive sensing. Therefore, exclusive
discussion on anion sensing with micellar systems in this part is intentionally precluded to
avoid repetition. Nevertheless, emphasis is placed on some quintessential micellar systems
as the representative examples which can be treated as model micellar systems for anion
sensing in an aqueous medium. The sensing strategies mostly relied on using the receptors
containing the metal complexes which selectively binds specific anions to give a substantial
luminescence signal. In addition to that, another interesting class of anion sensor is also
observed in current literature where the anion reacts with the receptor/fluorophore to
produce a substituted/addition product with changed luminescence output. Few repre-
sentative examples of such fluorophoric systems reported so far in the current literature
for anion sensing in aqueous micellar medium are shown in Chart 2. Considering CN−

sensing in water, the bis-indolyl fluorophores, 11–13, undergo Michael addition reaction
with CN− which give rise to the new luminophores. Nevertheless, the probes exhibit
very weak detection limit due to poor solubility as a result of aggregation. However, in
micellar media, the probes behave effectively with a much lower detection limit (8 ppb)
through improved solubilization of the probes. The other fluorophores used for CN−
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sensing includes 2,4,6- triarylthiopyrylium (14) encapsulated with a neutral surfactant
(Triton X-100)-based micelle reported by Manez et al. [13]. In a similar fashion, the probes
15–20 has been used for sensing the halides (Cl−, F−) and cyanide (CN−) ions after being
solubilized through micellar media.
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To demonstrate Cl− sensing by metal complexes, the work of Severin and coworkers
is noteworthy [15]. Their aqueous buffered solution was loaded with a Rh(II)-complex (19)
as a coordinating site and hydroxypyrenesulfonate as fluorophore, which is mixed with a
supplementary surfactant. The resulting adduct remarkably increases Cl− affinity. It was
described that Cl− binds to the metal center, which in turn changes the phase behavior
of the whole system. The metal complex now in turn becomes amphiphilic in nature
as compared to its initial ionic state, which can easily move towards the lyophilic core
of the micelle. The resulting species causes significant modulation of the luminescence
property. A fluorescence quenching was observed, which is directly related to the added
Cl− concentration (Figure 4a,b). This in situ generated anion sensor showcased a model
system which exhibits high sensitivity and selectivity, by signal transduction mechanism,
which can effectively work in a neutral aqueous solution (i.e., at pH = 7).

Bhattacharya et al. reported a “Turn-ON” luminescence sensor composed by the
surface modification of cationic micellar system (CTAB) with naphthalimide derivative [53].
Due to the partial CT from Br− to the naphthalimide moieties, the CTAB micellar adduct
is non-emissive in nature. However, upon addition of strong anions (e.g., PO4

3−, SO4
2−,

MoO4
2−, WO4

2−, H2PO4
− etc.) this adduct exhibits significant enhancement of emission

under identical experimental condition. It was speculated that these strong anions can
effectively replace the bromide counter anions from the periphery of CTAB. Therefore,
partial CT transition operating within the Br− anions to the naphthalimide moieties is
restricted, that results a substantial fluorescence enhancement of the adduct. Moreover,
these strong anions rearrange the initial spherical micellar structure to an elongated core-
modified geometry as shown in Figure 5.
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Sessler and Khashab et al. reported an interesting thermo-responsive amphiphilic poly-
mer, P1 {poly(N-isopropylacrylamide)-b-poly(calix[4]pyrrole-co-methyl methacrylate} [56]
where hydrophobic calix[4]pyrrole (C4P) are attached as the anion receptor (Figure 6, Inset).
This polymer was designed to capture the contaminated anions within pendent C4Ps in its
micellar form which effectively works under an extraction-free condition. This is a typical
demonstration of a water purification process by a synthetic C4P-based polymeric system
where the target anions can be effectively “captured” and “removed” from contaminated
water under easy experimental conditions. Owing to the thermo-responsive characteristics
of the hydrophilic block chain, the anion incorporated micelles that can be precipitated
out from the aqueous phase upon heating the aqueous solution at 50 ◦C. Then, a simple
filtration technique can be employed to remove the generated precipitate from the anion
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contaminated aqueous solution. Finally, the pristine polymer (P1) can be easily recovered
by treating the anion-trapped micelles with a dilute nitric acid (0.2 M) solution at room tem-
perature. The whole reversible process of anion removal and regeneration of the polymer
(P1) is provided in Figure 6.
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2.3. Luminescent Micellar Systems for Bio Sensing

Biosensors are the integrated receptor-transducer devices that emerge as a core re-
search topic for many researchers in recent time. This is mainly due to their wide range
of applications in the area of health care and diagnosis, environmental monitoring, etc.
to name a few [57,58]. Among them, much attention has been devoted in designing the
luminescent biosensors as they offer outstanding advantages, such as high sensitivity, low
background noise, and facile sample preparation [59–61]. Considering the advancement of
nanotechnology and nanoscience, nanostructured micellar probes have been considered as a
promising candidate for bio-sensing owing to their structural flexibility and versatility [62].
However, only a handful of luminescent biosensor probes based on micellar systems ap-
peared in the recent literature [16–20,63–74]. We will provide a very brief glimpse on these
luminescent biosensors, which are used to create self-assembled nanostructure materials
showing promise for use as next generation potential as “functional materials”.

Pioneering work by Li and Yang et al. on poly β-Cyclodextrin/TPdye nanomicelle-
based two-photon nanoprobe is reported describing two-photon-induced fluorescent
microscopic detection of enzymatic activities in living cells and tissues [63]. In this
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nanoprobe, a two-photon active (TPA) donor molecule trans-4-[p-(N,N-diethylamino)styryl]-
N-methylpyridinium iodide (DEASPI) was used as a complementary combination with
β-CDP nanomicelle. This combined adduct serves as a potential TPA fluorophore and
also behaves like a carrier vehicle to deliver a specific peptide sequence to the living
cell through fast endocytosis. For example, an adamantine GRRRDEVDK-BHQ2 pep-
tide (Ad-DEVD-BHQ2) can be easily mounted to construct a robust inclusion complex,
DEASPI/βCDP@Ad-DEVD-BHQ2 onto the nanomicellar surface by various noncovalent
interactions (cf. Figure 7). The adduct DEASPI/βCDP@Ad-DEVD-BHQ2 was then used to
demonstrate both in vitro and in vivo enzymatic activities assay of caspase-3 in the complex
biological environment. From their experiments, it is evident that this “Turn-ON” fluo-
rescent biosensor offers a new platform for high-contrast imaging of enzymatic activities
within live cells and tissues. (Figure 7, Inset) Thus, DEASPI/βCDP@Ad-DEVD-BHQ2
nanoconjugate also offers the opportunity to screen enzyme inhibitors, which are also able
to evaluate the apoptosis-associated disease progression.
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activity assay. Orange Inset: The TPM image of HeLa cells treated with 4 µM STS for 3 h after incubat-
ing with DEASPI/βCDP@Ad-DEVD-BHQ2 nanoconjugate (top); and TPM image of the 1.0 mm thick
cervical tumor tissue slice pretreated with doxorubicin after incubating with DEASPI/βCDP@Ad-
DEVD-BHQ2 nanoconjugate (0.15 mg/mL, concentration of the nanoconjugate refers to the concen-
tration of βCDP). Black Inset: Cartoon representations of few components. This figure is reproduced
with permission from reference [63], Copyright © 2022, American Chemical Society.

Another fluorescent micellar nanoprobe (NanoDPA-NMP-tyr) is reported describing
sensing of tyrosinase (TYR) in a living B16 cellular medium [16]. NanoDPA-NMP-tyr is
constructed with a hydrophobic interior of the amphiphilic copolymer mPEG-DSPE that
shows a very fast response towards TYR with high sensitivity and selectivity with a detec-
tion limit of 0.057 U/mL. The sensing behavior involved in this nanoprobe is thought to be
due to the Förster Resonance Energy Transfer (FRET) from 9,10-diphenylanthracene (DPA)
(λem =∼445 nm) donor to the naphthalimide-tyrosene (NMP-tyr) (λabs =∼450 nm) acceptor.

Recently Lee et al. reported an interesting model sensor [17] to sense heparin (HP)
with amplified fluorescence response resulted from inter-fluorophore excitation migration
within a self-assembled micellar medium. For this purpose, a coumarin-based amphiphilic
fluorescent molecule (see Figure 8, Inset) is designed which forms a micellar structure
consisting of a hydrophobic core and hydrophilic surface, where the aggregated coumarins
promote the energy and electron transport under bioanalytical conditions. The sensing
response of micellized 22 (5.0 × 10−6 M) via ionic (cationic–anionic) interactions is also
highly selective for HP among the other tested analytes e.g., dextrose, sucrose, glucose,
mannitol, ATP, sodium citrate, Na2SO4, Na3PO4, sodium hyaluronate (HA), and chon-
droitin sulfate sodium salt (ChS) in a 10-mM HEPES buffer solution at pH 7.4 at ambient
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condition (Figure 8a). High selectivity of the micellized 22 (5.0 × 10−6 M) for HP via
fluorescence suppression, reaches a quenching maximum of ~78.4% with an incubation of
HP of concentration 2.0 × 10−6 M (Figure 8b). The sensing mechanism for the detection of
heparin by the conjugated micellar system of coumarin derivative 22 is shown in Figure 8c.
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(1.7 × 10−6 M), and (b) Fluorescence intensity changes of micellized 22 upon gradual addition of HP
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were monitored at a 385 nm wavelength. (c) The proposed mechanism involving “ON”/”OFF”
fluorescence switching by heparin. Green Inset: Structure of various biomolecules. Red Inset: The
schematic diagram of amplified quenching mechanism involved with micellized 22.

Fan et al. demonstrated discriminative luminescence sensors [18] for metal and non-
metal proteins by employing a pyrene/bispyrene-based fluorophoric system which are
encapsulated in a cationic micellar structure. In case of a metal-free protein system, com-
parative luminescence intensity of monomer and excimer emission of pyrenes displayed
quenching of an excimer emission whereas the monomer emission remain unchanged. On
the other hand, metal containing proteins showed substantial quenching of both monomer
and excimer emission under identical experimental conditions.

Selective detection of ATP is another important case of bio-sensing in recent times.
Pang et al. have demonstrated a cationic squaraine dye encapsulated by CTAB based
micelles, which can selectively detect ATP [19]. It is speculated that the ionic interactions
between cationic CTAB head groups and anionic ATP along with the π−π staking of ATP
and the dye molecules enormously contributed towards sensing behavior.

Likewise, Jiang et al. recently reported a luminescent micellar system [20] for ATP,
comprised of a cationic surfactant, dodecyltrimethylammonium bromide (DTAB), and a
near infrared (NIR) emissive cyanine dye. As mentioned above, a similar π−π staking
within ATP and dye molecule triggered an effective energy transfer (ET) from the dye to
ATP that resulted in significant quenching of emission intensity. A more detailed account
on luminescent micellar sensors for sensing bioanalytes can be found in reference [4,5].
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2.4. Luminescent Micellar Systems for Explosive Sensing

Trace level detection of explosive molecules is very important and timely in forensic
investigations. Particularly, effective on-the-spot testing of suspected explosive analytes is
in high demand. Micellar luminescent assembly for sensitive and discriminative detection
of explosive samples is a topic of current interest which is gaining popularity in the last
two decades. This is due to their simple design strategy and the use of cost-effective
organic fluorophores (both amphiphilic and lipophilic) in an aqueous medium. Various
nitroaromatic and nitramine explosives used so far to demonstrate sensing behavior are
provided in Chart 3. We briefly described the reported micellar assemblies used for
explosive detection in following four major categories.
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2.4.1. Hydrophobic Organic Fluorophore Encapsulated Micellar Systems

The strategy has been most widely studied and has proven as very cost effective but
highly sensitive and selective for trace level detection of explosives. Here the hydropho-
bic organic fluorophore is added to an aqueous micellar solution and depending on the
structural motif of the fluorophore, it occupies the core or periphery of the micellar host in
the solution. The presence of explosive traces in the solution will result in a fluorescence
response (typically either “Turn-OFF” or “Turn-ON” manner) through interaction with the
fluorophore encapsulated in a micellar structure. The hydrophobic nature of the majority of
explosive molecules also favors the strategy as those are extracted very efficiently from the
bulk phase to micellar core, which ensures their ultralow detection limit. Taking advantage
of the hydrophobic extraction, this new strategy has also been used for extraction and
chromatographic/mass spectrometric analysis of such analytes under investigations.

Anslyn et al. used a powerful but cost-effective micellar sensor comprised by com-
mercially available, nonionic, polysorbate surfactant-based (viz. Tween 80) to detect ni-
troaromatic and nitramine explosives [21] with high (96%) accuracy with a detection limit
of 19 µM. The sensor design is encouraged by the fundamental concept of ratiometric
luminescence quenching of pyrene monomer and excimer emission; and by the quenching
of a pyrene–perylene FRET pair based dual emission.

When pyrene and perylene are co-dissolved in Tween 80, excitation of pyrene (λex = 336 nm)
results in slightly relaxed pyrene monomer emission along with a significant perylene emis-
sion via FRET. In the presence of nitrated analytes (e.g., TNT as a representative example
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shown in Figure 9), this FRET-pair sensor did not display any ratiometric luminescence
quenching in emission spectroscopic titration, however, both the pyrene and perylene-based
emissions quenched substantially by these electron poor nitroaromatics and nitramines.
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Figure 9. Emission spectroscopic titration of pyrene−perylene (20 µM/20 µM) in Tween 80 (2 mM
aqueous medium) micellar probe against the incremental addition of TNT (0 mM to 0.4 mM). This
figure is reproduced with permission from reference [21], Copyright © 2022 WILEY-VCH Verlag
GmbH & Co. KGaA, Weinheim, Germany).

Another interesting example of a dimeric pyrene-based luminophoric system (Py-diIm-
Py) was reported by Ding et al. demonstrating explosive sensing [22] by the quenching of
excimer emission. This dicationic luminophore effectively encapsulated the surface of the
anionic sodium dodecyl sulfate (SDS) micelle as a result of electrostatic interactions from
a highly luminescent micellar probe. However, in cationic dodecyl trimethyl ammonium
bromide (DTAB) or in neutral Triton X-100 (TX100) micellar medium, py-diIm-Py mostly
dispersed in solvent without significant interactions with surfactants. Such variation of the
fluorophore location in the micellar medium drastically influences the sensing property of
the adduct to the analytes. As noted by the authors, this system effectively sense explosives
by means of presumed quenching of excimer emission with a favorable geometrical and
electronic (D–A) complementarity with analytes. The results shown in Figure 10 revealed
that the electron poor NACs are sandwiched by two pyrene moieties that results in the
disintegration of excimers.
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Figure 10. (a–c) Proposed fluorophoric distribution in 8 mM SDS, 14 mM DTAB, and 0.24 mM TX100
at ambient condition. (d) Emission spectra of 1.0 µM Py-diIm-Py solution in water, and various
micellar media. (e) The emission spectroscopic titration result of Py-diIm-Py@SDS micellar adduct
with incremental addition of PA as analyte. (f) The bar diagram depicting emission quenching
efficacy of 100 µM explosive analytes to the Py-diIm-Py@SDS micellar sensor. [Py-diIm-Py] = 1.0 µM;
[SDS] = 8 mM; [DTAB] = 14 mM; [TX100] = 0.24 mM; λex = 345 nm in each case. Inset: The chemical
structures of Py-diIm-Py, SDS, DTAB, and TX100, respectively. This figure is reproduced with
permission from reference [22], Copyright © 2022, American Chemical Society.

A similar type of monomeric and dimeric pyrene-derivatives were reported by Cho
et al. to detect the ppb level of TNT and RDX in the CTAB micellar medium [24]. Like the
cationic Py-diIm-Py-based micellar systems discussed earlier, these neutral monomers and
dimeric probes show the sensing behavior by exhibiting excimer quenching phenomenon
in the presence of explosive analytes.

Amphiphilic pyrene-based luminophores can be self-assembled to form micellar struc-
tures in an aqueous phase and can be used for sensing explosive traces. This technique elim-
inates the need of using additional surfactants-based micelles. Although this strategy looks
attractive and promising, very little exposure has been given in this topic. Chupakhin et al.
synthesized a series of amphiphilic pyrene derivatives [25] and investigated their structural
dynamics, luminescence behavior for sensing performance in aqueous phase. Their studies
showed that by introducing various hydrophilic tail groups to the hydrophobic pyrene
head results in the formation of micellar structures in an aqueous solution at a concentration
of ≤10−5 M. Interestingly, in aqueous micellar structures, the system showed exclusively
monomer emission without exhibiting excimer emission. The monomeric pyrene emission
peaks (at 384 and 402 nm) with high quantum yield (up to 0.76) were obtained in an
aqueous micellar form, which is much higher than the emission quantum yield of pyrene
in an organic phase. Taking advantage of π-electron rich pyrene-based micellar probes,
another series of chemosensors is also reported [26], demonstrating sensing of ultra-trace
nitramine explosive in an aqueous medium at a 12-ppb level. The sensing mechanism
involves photo-induced electron transfer (PET) from the LUMO (−1.64 eV) of pyrene-based
micellar adduct to the LUMO of RDX (−2.96 eV) or other nitroaromatic compounds as
inferred from DFT calculations.
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A perylene monoamide-based fluorescent micellar probe (PMI-OH) was reported [27]
by Zhou and Yu et al. The ability of this system to detect PA was investigated in a solution
phase using UV–vis and emission spectroscopic techniques. The PMI-OH sensor (cf.
Figure 11, Inset) exhibits enhanced excimer emission at λmax at 630 nm with a nonionic
surfactant Triton X-100 (TX100) which significantly quenched upon incremental addition of
PA as a result of electron transfer (ET) from the PMI-OH donor to the PA acceptor.
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Figure 11. Schematic representation of the “ON” and “OFF” states of the PMI-OH@TX100 micellar
probe in the presence of PA.

A significant quenching efficacy of 91.53% was reported in presence of PA, whereas,
DNP and NP show 62.26% and 53.13%, respectively under identical experimental condi-
tions. This observation is directly related to the lowest reduction potential of PA among
the tested analytes which therefore, serve as the most efficient electron acceptor among
this series. The proposed mechanism (see Figure 11) is associated with the reverse micellar
system wherein PMI-OH excimers formed at the hydrophilic core resulted in luminescence
switched “ON”. However, in the presence of PA, an “OFF” state resulted due to the electron
transfer transition from the PMI-OH excimer (−3.73 eV) to the LUMO of PA (−3.89 eV).
It was speculated that the hydroxyl groups play an important role on forming such a
luminous micellar core by proper geometrical arrangement within the hydrophilic pocket.

Apart from pyrene- or perylene-based fluorogenic systems, star-shaped truxene-based
hyperbranched π-conjugated polymeric (HCP) chemosensors [75] were also used for sens-
ing the explosive materials in an aqueous medium. Inspired by the pioneering works of
Swager [76,77] on poly(p-phenyleneethynylene) (PPE)-based fluorogenic polymers, these
hyperbranched truxene derivatives were introduced which exhibit high efficacy towards ex-
plosive sensing due to a “molecular wire effect” owing to the presence of multiple acetylene
moieties. When the hydrophobic HCPs are mixed with amphiphilic block copolymer, e.g.,
F127 (a polyethyleneglycol-polypropyleneglycol polymer) highly luminophoric nanomicel-
lar systems can be produced that works more efficiently in aqueous medium compared
to organic solvent (e.g., in THF). Upon addition of the explosive analytes in an aqueous
medium, substantial quenching of HCP-based luminescence was seen (Figure 12). It is
speculated that the presence of alkyl and alkyloxy side chains might play an important role
on sensing performance of these HCPs. Moreover, the pluronic F-127 assists to solubilize
the hydrophobic HCP polymers into the aqueous phase which triggered effective sensing
of explosive analytes in the aqueous medium. The luminescence quenching phenomena
in presence of explosives resulted from the Förster energy transfer (FRET) mechanism
operating within the HCP polymer and the added explosive analytes as indicated by the
non-linear nature of Stern–Volmer plots. It is reported that the luminescence quenching
efficiency and the Ksv values follows the trend 2NA > PA > NP > TNT > DNB > DNT >
3NA > NB. The limit of detection (LOD) of HCPs and their micelles for the analytes are
provided in Table 1.
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polymers, viz. poly(9,9′-dioctylfluorene (PFO), and poly(2,7-(9,9-hexylfluorene)-alt-4,4′-
phenylether (PFPE), which can effectively sense the trace amount of NACs in an aqueous 
medium. In the presence of Pluronic F127, these hydrophobic polymeric probes self-as-
sembled in the form of nanoaggregates [78] or nanomicelles [79] in water. Like other pol-
ymeric systems, in the case of these hybrid polymeric probes, the sensing mechanism fol-
lows a similar deactivation pathway in the presence of NAC analytes. 

Figure 12. (a,b) The chemical structures of truxene-based polymeric luminophores HCP-1 and HCP-2.
Inset: The photographs of HCP-1 and HCP-2 under ambient light and upon irradiation provided by
a UV lamp. (c,d) Fluorescence quenching efficiencies of HCPs-M and PPEs-M for different analytes
(left) and fluorescence quenching efficiencies of HCP-1, HCP-2, HCP-1-M, and HCP-2-M respectively,
for different analytes (right). The z-axis denotes the Stern–Volmer constant KSV. This figure is
reproduced with permission from reference [75], Copyright © 2022, American Chemical Society.

Table 1. LOD for HCPs and HCPs/Micellar adducts (viz. HCP-1-M and HCP-2-M) towards
various analytes.

Analytes HCP-1
[mol/L]

HCP-2
[mol/L]

HCP-1-M
[mol/L]

HCP-2-M
[mol/L]

NB 6.8 × 10−5 1.2 × 10−4 2.4 × 10−6 8.3 × 10−6

3NA 4.1 × 10−5 1.3 × 10−4 1.4 × 10−6 8.4 × 10−6

DNT 8.6 × 10−6 1.7 × 10−5 9.5 × 10−7 4.2 × 10−6

DNB 3.3 × 10−6 1.3 × 10−5 5.5 × 10−7 1.7 × 10−6

TNT 2.8 × 10−6 9.4 × 10−6 5.3 × 10−7 1.6 × 10−6

NP 2.2 × 10−6 5.1 × 10−6 5.2 × 10−7 1.5 × 10−6

PA 1.2 × 10−6 2.4 × 10−6 2.8 × 10−7 9.0 × 10−7

2NA 5.0 × 10−7 1.3 × 10−6 1.8 × 10−7 9.0 × 10−7

Wang and Sun et al. reported a more simplified version of conjugated fluorescent
polymers, viz. poly(9,9′-dioctylfluorene (PFO), and poly(2,7-(9,9-hexylfluorene)-alt-4,4′-
phenylether (PFPE), which can effectively sense the trace amount of NACs in an aqueous
medium. In the presence of Pluronic F127, these hydrophobic polymeric probes self-
assembled in the form of nanoaggregates [78] or nanomicelles [79] in water. Like other
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polymeric systems, in the case of these hybrid polymeric probes, the sensing mechanism
follows a similar deactivation pathway in the presence of NAC analytes.

Bhattacharya et al. synthesized two p-phenylenevinylene-based inexpensive micellar
chromogenic probes, 24 [80], (Figure 13, inset) with various conjugation to demonstrate
naked eye sensing of TNT in an aqueous medium. Significant fluorescence quenching (4.5
to 5 fold) in the presence of TNP was demonstrated with the help of both the probes.
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based fluorophore for trace level detection of nitroaromatic explosives in water [81]. Their 
strategy used an amphiphilic cationic cellulose derivative where hydrophobic long alkyl 
chains were introduced. The cellulose molecule forms micellar structures in aqueous me-
dium and the hydrophobic TPE fluorophore gets encapsulated in its core through hydro-
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of electron-deficient nitroaromatic explosive molecules (TNT, TNP, DNP, DNT, NT, and 
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In addition to these fully organic classic luminophoric systems, cyclometallated 
metal complexes can be used as an alternate source to construct potential luminophoric 
adducts. For example, few of the current authors reported [23] an interesting lumino-
phoric micellar adduct for sensing the nitroaromatic explosives in a solution phase, vapor 
phase, as well as a solid-state paper strip at ambient condition by using the cyclometalated 
Pt(II)C^N^N-based luminophoric units. As the hydrophobic alkyl chains (C12H25) are im-

Figure 13. Fluorescence response of molecular probe 24 (10 µM) against various explosive ana-
lytes in water (pH 7.0), (a); in 1mM Brij-58 micellar adduct, (b); in THF, (c); respectively, at 298
K (λex = 390 nm). (d) The emission spectroscopic changes of 14 mM of probe 24 (λex = 390 nm)
in sol and gel in THF and in the presence of 2 equiv TNP at 298 K. (e) The photographs of the
luminescent solution of 24 as seen in the absence and presence of indicated explosive analytes with
irradiation provided by 365-nm UV lamp at ambient condition. Inset: The chemical structures of the
chromophoric units with various conjugations used for sensing nitroaromatic explosives in these
multiple media. This figure is reproduced with permission from reference [80], Copyright © 2022,
American Chemical Society.

Interestingly, the probes are equally effective in micellar, organogel, and solid-state
strip as shown in Figure 13, which can be used for on-site detection of the explosive
materials in the nanomolar range. The visual optical change under 365-nm UV lamp of
20 µM solution of 24 in the presence of Brij-58 micellar (1mM) adduct in the presence of
2 equiv of TNP as analyte exhibits a significant emission quenching (cf. Figure 13e). A
similar type of D–A supramolecular ET transition from the electron rich chromophoric
probes (23 and 24) to the electron poor nitroaromatic (NACs) analytes was thought to be
operational in a sensing event.

Zhang et al. also reported an amphiphilic cellulose-based micelle encapsulated TPE
based fluorophore for trace level detection of nitroaromatic explosives in water [81]. Their
strategy used an amphiphilic cationic cellulose derivative where hydrophobic long alkyl
chains were introduced. The cellulose molecule forms micellar structures in aqueous
medium and the hydrophobic TPE fluorophore gets encapsulated in its core through
hydrophobic interaction with alkyl chains. An enhanced orange emission (λmax = 533 nm)
of the micelle encapsulated TPE fluorophore was observed which gets quenched in the
presence of electron-deficient nitroaromatic explosive molecules (TNT, TNP, DNP, DNT,
NT, and NP). The reported sensor showed the highest detection efficiency for TNP with a
detection limit of 50 nM.

In addition to these fully organic classic luminophoric systems, cyclometallated metal
complexes can be used as an alternate source to construct potential luminophoric adducts.
For example, few of the current authors reported [23] an interesting luminophoric mi-
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cellar adduct for sensing the nitroaromatic explosives in a solution phase, vapor phase,
as well as a solid-state paper strip at ambient condition by using the cyclometalated
Pt(II)CˆNˆN-based luminophoric units. As the hydrophobic alkyl chains (C12H25) are
immersed into the lyophilic micelle core, the PtCˆNˆN head-groups might have been po-
sitioned on the surface of micelles to create a highly luminophoric platform which can
effectively detect these explosives in an aqueous medium by quenching the Pt(II)CˆNˆN-
based intense luminescence. It was speculated that the quenching mechanism involves an
intermolecular supramolecular charge transfer (CT) transition originating from Pt(II)CˆNˆN-
antenna moiety to the electron deficient explosives (cf. Figure 2b). Photoluminescence
titrations of various Pt(II)CˆNˆN/micellar adducts (e.g., Pt(II)CˆNˆN-NC12H25/Triton X-
100, Pt(II)CˆNˆN-NC12H25/SDS, and Pt(II)CˆNˆN-NC12H25/CTAB) against incremental
addition of TNP (upto 200 µM) as shown in Figure 14 a–c, indicate significant luminescence
quenching phenomena as the result of excited state photo-induced electron transfer (PET)
process. Lifetime measurements were performed to understand the effect of nitroaromatic
analytes on excited state behavior of Pt(II)CˆNˆN-NC12H25/micellar adduct. Moderate
reduction of lifetime values from 49 ns to 35 ns (in presence of 2 equiv of TNT) and 31 ns
(in presence of 2 equiv of TNP) were seen which support the luminescence quenching by
PET from Pt(II)CˆNˆN-NC12H25/micelle donor to the electron poor explosive acceptors.
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due to the induced vibrational rigidity [82]. The most common strategy to realize AIE is 

Figure 14. (a–c) Emission spectroscopic titration results of Pt(II)-CˆNˆN-NC12H25 impregnated
micelles (Triton X-100, SDS, CTAB, respectively) with incremental addition of 0 µM to 200 µM TNP as
explosive analyte in aqueous medium at 298 K. (d) Stern-Volmer plots obtained from each individual
emission spectroscopic titration experiments. Inset: The chemical structures of Pt(II)CˆNˆN-based
luminophoric materials with two different alkyl chains (e.g., C3H7 and C12H25) used for making the
micellar adducts. This figure is reproduced with permission from reference [23], Copyright © 2022,
American Chemical Society.
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2.4.2. Aggregation-Induced Emission (AIE)-Based Luminescent Micellar Systems for
Explosive Sensing

Aggregation-induced emission is a distinctive photophysical phenomenon where
structurally flexible weak luminescent probes exhibit strong emission upon aggregation due
to the induced vibrational rigidity [82]. The most common strategy to realize AIE is to add
a nonsolvent in the solution of such molecules to stimulate aggregation by decreasing the
solubility or making solid state material of such molecules through polymerization. Micellar
structures with AIE active molecules also result in strong emission through aggregation
of the monomer units in the micellar core and are the potential candidates for detection
of explosive traces in the aqueous phase. Moreover, extraction of hydrophobic explosives
from aqueous phase to the micellar core is an added advantage. The most widely used
AIE compound used in present days is tetraphenylethylene (TPE). Liang et al. successfully
anchored TPE to an amphiphilic triblock polymer, which self-assembled to form micellar
structures in an aqueous medium (cf. Figure 15) [83]. As described, the hydrophobic TPE
chromophore of the block polymer is self-organized in the micellar core-shell interface
region, resulting in significant aggregation. Consequently, around 60-fold luminescence
enhancement was noticed. The hydrophobic aromatic pollutants (e.g., benzene, toluene,
xylene, ehtylbenzene, etc.) present in the aqueous medium can be efficiently extracted
to the micellar core. This causes swelling of micelles as evidenced by their increased
hydrodynamic diameter. However, the swelling process reduces aggregation among TPE
chromophores, that exhibit quenched fluorescence intensity. The process is ultrafast and
a nice concentration dependent fluorescence quenching phenomenon was observed with
ultralow detection limit of 1 µg/L.
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Figure 15. Schematic illustration of swellable micelles of fluorescent polymers for sensing pollu-
tants in water. This figure is reproduced with permission from reference [83], Copyright © 2022
Elsevier B.V.

The excited state lifetime of TPE micelle was found to be 3.95 ns, which gradually
decreases upon gradual addition of aromatic compounds and hence it was confirmed
that a dynamic collisional quenching mechanism is operative within the micelle–pollutant
host–guest supramolecular system.

A very similar TPE-based amphiphilic molecule was synthesized by Nabeel et al.,
where arboxyl functionalized hyperbranched polymer, poly(3-ethyl-3-oxetanemethanol)-
star-poly(ethylene oxide) was linked with TPE (Figure 16) [84]. The AIE chromophore
anchored amphiphilic polymer forms spherical aggregates in aqueous THF and the re-
sulted construct showed highly enhanced TPE-based aggregation induced emission. This
aggregated chromophore was utilized for sensitive detection of PA in aqueous phase by
fluorescence quenching process. PA being highly electron poor analyte readily forms
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donor–acceptor adduct with aggregated TPE moieties by π–π interactions that resulted in
fluorescence quenching through electron transfer process. Ultralow detection limit (up to
20 ppb) was achieved and hence the strategy is very effective for trace level detection of PA
in an aqueous phase.
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Figure 16. Illustration of self-assembly of the copolymer (HSP-TPE) containing fluorescent TPE probe
and sensing behavior of HSP-TPE aggregates towards picric acid (PA). In HSP-TPE. the blue, red, and
grey color present hydrophobic core, hydrophilic arms, and probe molecules resp. The PL intensity
of HSP-TPE aggregates is quenched upon addition of picric acid. This figure is reproduced with
permission from reference [84], Copyright © 2022 Elsevier B.V.

Metal complex as AIE chromophore have also been successfully demonstrated by
Rajagopal et al. for trace level detection of explosives [85]. Two alkoxy-bridged binuclear
Re(I) complexes 25a,b were used (see Figure 17, Inset), which showed poor luminescence in
organic solvent (CH2Cl2) where the complexes are highly soluble. However, upon addition
of a nonsolvent (e.g., acetonitrile, in which 25a,b is sparingly soluble) or in common
surfactant (CTAB, SDS, Triton X-100, where the solubility of 25a,b is less)-based micellar
environment show highly enhanced emission (~500 times) which results through AIE.
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Figure 17. (a) Emission change of nanoaggregates of complexes 25b (20 µM) in CH2Cl2/CH3CN
mixture (10:90 v/v) with incremental addition of PA. (b) The bar diagram representing the relative
emission quenching of complex 25b after adding 20 equiv of various added analytes. Inset: The
structure of the alkoxy-bridged binuclear Re(I) complexes. This figure is reproduced with permission
from reference [85], Copyright © 2022, American Chemical Society.
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The long hydrophobic alkyl chain of these complexes enables their incorporation in the
hydrophobic region of the micelle or in reverse micelle. Among various NAE, PA showed
the highest quenching of the emission spectra with a very high Stern–Volmer constant of
1 × 105 M−1 and the authors demonstrated selective sensing of PA among other NAE.

2.4.3. Ratiometric Luminescence Sensing of Explosives by Micellar Structure Containing
Two Luminophores

Sensing of target analytes by means of ratiometric luminescence probes is an effective
technique compared to that of single luminophoric “Turn ON/OFF” molecular sensors.
This is mainly due to the high sensitivity and reliability of a ratiometric probe which is
reflected by their self-calibration resulted from two (or more) distinguished spectral signa-
tures [86]. Likewise, ratiometric sensing of explosives by luminophoric micellar adducts
could be realized by introducing two different luminophores in the same medium. The
design strategy could be made by considering selective interactions of explosives with
one of the luminophores while the other luminophore remains innocent towards analytes.
Recently, Maity et al. successfully demonstrated a ratiometric luminescence probe for the
detection of nitroaromatic explosives by employing two different luminescent metal com-
plexes (viz. red luminescent Eu(III)-complex and green luminescent Pt(II)CˆNˆN-complex)
in micellar host [87]. In a nonionic surfactant-based aqueous micellar structure (e.g., in
TX100), both the luminophores were added simultaneously wherein the hydrophobic
Eu(III)-complex occupies the hydrophobic micellar core, and partially ionic Pt(II)CˆNˆN-
complexes remain attached on a micellar surface. The addition of PA to the micellar adduct
resulted in significant quenching of Pt(II)CˆNˆN-based emission (at 508–545 nm) as a result
of supramolecular D–A interactions with Pt(II)CˆNˆN-luminophore grafted on the surface.
However, the red emission (614 nm) contributed by Eu(III)-complex remains slightly in-
creased (Figure 18). In contrary, when the titration was performed against PA in CH2Cl2,
quenching of both emission peaks was observed and hence confirms the very similar D–A
supramolecular interactions between PA with both luminophores (Figure 19).
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3. Conclusions and Future Scope

In summary, we reviewed various luminescent micellar probes used as chemosensors
for different analytes (e.g., metal ions, anions and biomolecules, in brief) with major focus
on explosive sensing in an aqueous medium. Overall, these micellar systems offer several
advantages including simple operation techniques, and production of low-cost sensing
materials with synthetically less-challenging steps. Moreover, these functional materials
are highly sensitive with fast response time, which also provide available options of using
hydrophobic, hydrophilic, or amphiphilic luminophoric adducts on desired. Likewise,
efficient extraction of hydrophobic explosive analytes to micellar core were demonstrated
for sensitive detection of target analytes. The luminophores comprising small organic or
inorganic metal complexes, large organic macromolecules/polymers, and AIE systems,
used for effective sensing of explosives are exclusively described. Although the micellar
luminescence sensing of explosives is quite encouraging for analytical chemists in terms of
simplicity, cost effectiveness, and sensitivity, but there are some real challenges that remain
unsolved and need to be explored in coming years. Firstly, among various categories of
explosive analytes, nitroaromatic explosives have been explored exclusively, however, only
a handful of model sensor systems are reported so far which showcased selectivity and
sensitivity for non-aromatic nitramine explosives like RDX, PETN, and HMX. Secondly, in
terms of mechanistic understanding, these complex supramolecular systems are still not
fully understood, which required more in-depth photophysical studies coupled with theo-
retical modeling. Moreover, the existing sensing strategies are mainly relied on spherical
micellar systems, although other micellar structures, like for example liposome, niosome,
vesicles, and planar bilayers may open new sensing opportunities considering selectivity
and sensitivity. Furthermore, properly designed fluorescent surfactants capable of forming
micellar structures in an aqueous medium in the absence of additional surfactant with
effective sensing performance is another opportunity to explore. Finally, as discussed in
this current review article we believe that the luminescent nanomaterials constructed by
metal clusters while encapsulated within a self-assembled micellar medium may provide
effective sensor systems.
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