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Light energy, absorbed as photons by chlorophylls and other pigment molecules
consisting of light-harvesting complexes (LHCs), is transferred to the reaction centres
(RCs), where, through charge separation, electrons flow from photosystem II (PSII) through
cytochrome b6f and diffusible electron carriers to photosystem I (PSI) [1–3]. This is a
highly regulated process in which PSII and PSI work coordinately for an efficient elec-
tron transfer and are located in the photosynthetic membranes of chloroplasts (i.e., the
thylakoids) [1,3–5]. The outcomes of light reactions are the formation of ATP and reduc-
ing power (reduced ferredoxin and NADPH) requiring coordination with the activity
of metabolic processes for the synthesis of carbohydrates and other essential organic
molecules [1–4]. Still, in the light reactions of photosynthesis, at both photosystems (PSII
and PSI), reactive oxygen species (ROS), such as superoxide anion radical (O2

•−), hydrogen
peroxide (H2O2), and singlet oxygen (1O2), are continuously produced at basal levels but
are scavenged by different antioxidant mechanisms [6–9].

Under excess light conditions or other abiotic or biotic stresses, the overexcitation of
PSII increases the probability of the formation of the triplet chlorophyll state (3Chl*) from
the singlet excited states (1Chl*) through the intersystem crossing, producing single oxygen
(1O2) [9–14]. Photoprotection mechanisms preventing ROS formation by downregulating
1Chl* through the process of non-photochemical quenching (NPQ), by quenching 3Chl*,
or by scavenging ROS are activated to prevent damage and improve fitness [6,7,15,16].
Constant overexcitation is neutralised by the long-term reduction in the PSII antenna’s
size [17]. Thus, if the absorbed light energy exceeds that which can be used, this excess
excitation energy must be quenched by the photoprotective mechanism of NPQ, so as to
not damage the photosynthetic apparatus by the increased ROS production that can lead to
oxidative stress [6,7,18–21].

ROS (e.g., O2
•−, H2O2, OH•, 1O2) are partially reduced or activated forms of atmo-

spheric oxygen (O2) and, in plant cells, are constantly formed by the unavoidable leakage
of electrons onto O2 from energy metabolism activities in chloroplasts, mitochondria, and
peroxisomes, in plasma membranes, or as by-products in the various metabolic pathways
located in diverse cellular parts [22–25], with chloroplasts and peroxisomes rather than
mitochondria being considered as the main ROS birthplaces in irradiated photosynthetic
cells [26].

The hydroxyl radical (OH•) reacts with almost all molecules, as it is the most reactive of
all ROS and yet the shortest lived (half-life of 1 ns) [27]. Electron leakage to O2 at PSI results
in O2

• formation, which is shorter lived than H2O2, into which it rapidly converts [28]. The
superoxide anion radical (O2

•−) is also shorter lived than 1O2 but longer lived than OH•,
while H2O2 is the most stable and least reactive ROS with the longest lifetime, as it is able to
easily diffuse through the membranes [28]. The global ROS levels in cells must be controlled
and balanced, allowing only a basal ROS level to employ its beneficial function [24,29]. The
efficient utilisation of sunlight photons for the production of energy-rich carbohydrates and
other essential organic molecules must be accompanied by the harmless removal of unused
photons that would otherwise transfer excitation energy to potentially toxic ROS [30].
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Abiotic or biotic stress-induced ROS accumulation is scavenged by enzymatic an-
tioxidants, such as superoxide dismutase (SOD), ascorbate peroxidase (APX), monode-
hydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), glutathione
reductase (GR), glutathione peroxidase (GPX), guaiacol peroxidase (GOPX), glutathione-S-
transferase (GST), and catalase (CAT), and non-enzymatic metabolites such as ascorbic
acid, glutathione, a-tocopherol, carotenoids, phenolic compounds, flavonoids, and pro-
line [11,31,32].

ROS produced in chloroplasts generate oxidative stress, but also confer an important
biological function (e.g., plant growth, development, and redox signalling) [23,25,28]. As
the ROS formed by energy transfer (1O2) and electron transport (O2

•−, H2O2) are produced
simultaneously, it seems likely that the signalling pathways of one occasionally interfere
with the signalling pathways of the other, therefore sometimes it may antagonize each
other [5,9,11,25,33]. The role of chloroplast antioxidants, often having covering or interde-
pending functions, does not totally remove ROS but rather accomplishes a suitable balance
between creation and deletion, so as to match the process of photosynthesis, allowing an ef-
fective scattering of signals to the nucleus [33–35]. Accordingly, ROS provide cells with tools
to monitor electron transport and, thus, avoid over-reduction or over-oxidation and also
create redox regulatory networks that enable plants to sense and react to biotic and abiotic
stress conditions [34,36–38]. ROS activate the plant’s defence mechanisms in order to cope
with oxidative stress, and are important signalling molecules for the regulation of a plethora
of metabolic functions, accomplishing plant function and development [20,21,37–40]. Con-
sequently, at the same time, as cells maintain high enough energy reserves to scavenge
ROS, ROS are beneficial to both biotic and abiotic stresses, permitting them to regulate
their metabolism and support a proper acclimation response [41–44]. There are more than
150 genes able to encode ROS-producing and ROS-detoxifying proteins in Arabidopsis
cells consisting of the ROS gene network [29].

Environmental stresses such as drought, salinity, chilling, metal toxicity, and UV-B
radiation, as well as pathogen attacks, lead to an enhanced generation of ROS in plants due
to the disruption of cellular homeostasis [39,45]. During the last few decades, fluctuations
in weather conditions have enormously affected rainfall patterns, influencing plant growth
and development, eventually affecting crop yield and quality, as well as plant survival [39].
As a consequence of global climate change, the frequency, intensity, and duration of
drought and high-temperature scenarios are increasing, resulting in reduced worldwide
productivity [39]. Water deficit, among all environmental factors, has been characterised
as one of the key hazards for the future of agriculture [39]. Under drought stress, as
well as other environmental stresses, the absorbed light energy exceeds what can be used
for photochemistry and, thus, an excess accumulation of ROS occurs able to damage the
chloroplast, with photosystem II (PSII) being particularly exposed to damage [2,18,39,46].

Though ROS were initially believed to be toxic by-products of aerobic metabolism
having to be scavenged to avoid the oxidative damage of cells, now it is widely accepted
that ROS are used by most organisms as crucial signal transduction molecules [29]. It is
well documented that a basal level of ROS is essential to sustain life [24,25]. Hence, the
amount of ROS in cells needs to be retained [16].

The scenarios of global climate change demand a better understanding of the rela-
tionship between plant photochemistry and the role of ROS as signalling molecules for
photoprotection, but also for generating oxidative stress under different environmental
conditions. The elucidation of the mechanism in this interaction could help to enhance
agricultural sustainability under global climate change.

In this Special Issue of Photochem, we expect to publish a collection of papers regarding
recent advances in plant photochemistry, reactive oxygen species, and photoprotection.
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