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Abstract: The search of new organic emitters is receiving a strong motivation by the development
of ORTP materials. In the present study we report on the preparation, optical and photophysical
characterization, by both steady state and time resolved techniques, of two pyrene-functionalized
cyclic triimidazole derivatives. Together with the already reported mono-substituted derivative, the
di- and tri-substituted members of the family have revealed as intriguing emitters characterized
by impressive quantum yields in solution and RTP properties in the solid state. In particular,
phosphorescence lifetimes increase from 5.19 to 20.54 and 40.62 ms for mono-, di- and trisubstituted
compounds, respectively. Based on spectroscopical results and theoretical DFT/TDDFT calculations
on the di-pyrene molecule, differences in photophysical performances of the three compounds have
been assigned to intermolecular interactions increasing with the number of pyrene moieties appended
to the cyclic triimidazole scaffold.

Keywords: fluorescence; organic room temperature phosphorescence; DFT and TDDFT calculations

1. Introduction

Organic room temperature phosphorescent materials (ORTP), due to their increased
biocompatibility and reduced cost with respect to their organometallic counterparts, are
the subject of intense research in the field of functional materials, appearing promising for
applications spanning from bioimaging [1,2] to anti-counterfeiting [3,4] and displays [5].
Many strategies have been developed to realize ORTP materials. Among them, π· · ·π
stacking interactions [6–8], host–guest systems [9–11], co-assembly based on macrocyclic
compounds [12], crystallization [13–15], halogen bonding [16,17], and doping in a polymer
matrix [18], can be mentioned. Triimidazo[1,2-a:1′,2′-c:1”,2”-e][1,3,5]triazine, TT [7], is the
prototype of a family of ORTP materials, showing in the crystalline phase ultralong phos-
phorescence (up to 1 s) associated with the presence of strong π· · ·π stacking interactions [6].
Introduction of one or multiple halogen atoms on the TT scaffold results in a complex
excitation dependent photoluminescent behavior including dual fluorescence, molecular
and supramolecular phosphorescences, together with ultralong components [8,19–21]. The
introduction of one chromophoric fragment, namely 2-fluoropyridine, 2-pyridine and
pyrene (TTPyr1) has further enriched the photophysical behavior, preserving the solid
state ultralong component [22–24]. In particular, the pyrene functionality was chosen due
to its favorable emissive properties (i.e., high fluorescence quantum efficiency and good
hole-transporting ability) which can be exploited in a large number of applications [25–27].
TTPyr1 was isolated and characterized in two solvated phases and two not solvated poly-
morphs. In particular, the two solvated and one polymorph, belonging to centrosymmetric
space groups, are obtained at room temperature, while a non-centrosymmetric polymorph
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can be irreversibly prepared by proper thermal treatment in air starting from the room
temperature phases. While in solution the chromophore is characterized by a single fluo-
rescence (quantum yield Φ = 90%, see Table 1), in the solid state intermolecular interactions
impart rigidification to the molecule favoring the appearance of a long-lived component
whose lifetime and intensity strongly depend on the crystallinity of the sample. Moreover,
differently from the room temperature phases, the non-centrosymmetric one displays not
only second order nonlinear optical features (SHG ten times that of standard urea), but also
an additional fluorescence associated with the presence of two possible almost isoenergetic
conformers in its crystals. Additionally, the material in aggregate-state was tested for
cellular and bacterial imaging in view of its applications in bioimaging [24].

Table 1. Photophysical parameters of Pyrene, TTPyr1, TTPyr2 and TTPyr3 at 298 K.

Φ % λem
(nm) τav

kr
(107 s−1)

knr
(107 s−1)

Pyrene DMSO
(2.5 × 10−6 M) 33.4 374 94.15 ns 0.355 0.707

TTPyr1

DMSO
(10−5 M) 92 420 2.76 ns 33.3 2.90

Ground Crystal
(TTPyr RT) 54

475 2.15 ns
25.1 21.4514 5.19 ms

TTPyr2

DMSO
(2.5 × 10−6 M) 78 419 9.22 ns 8.46 2.39

Powders 40.2
490 4.64 ns

8.66 12.9528 20.54 ms

TTPyr3

DMSO
(2.5 × 10−6 M) 74.4 422 11.16 ns 6.67 2.29

Powders 36.9
476 5.12 ns

7.21 12.3522 40.62 ms

Here, we report the synthesis, characterization and photophysical studies of the
analogue derivatives with two and three pyrene moieties on the TT scaffold, TTPyr2 and
TTPyr3, respectively. The photophysical behavior of the solid compounds, comprising one
fluorescence and one phosphorescence, is similar to that of TTPyr1 in the room temperature
phases. However, a systematic increase of the phosphorescence lifetime is observed by
increasing the number of pyrene groups. Unfortunately, due to the impossibility to get
single crystals suitable for X-ray diffraction analysis, an explanation of this phenomenon
can be given only at a qualitative level.

2. Materials and Methods

All reagents were purchased from chemical suppliers and used without further
purification. Pyrene was crystallized from hot toluene solution before photolumines-
cence measurements. Triimidazo[1,2-a:1′,2′-c:1”,2”-e][1,3,5]triazine (TT) [28], its dibromo-
and tribromo-derivatives (namely 3,7-dibromotriimidazo[1,2-a:1′,2′-c:1”,2”-e][1,3,5]triazine,
TTBr2, and 3,7,11-tribromotriimidazo[1,2-a:1′,2′-c:1”,2”-e][1,3,5]triazine, TTBr3) [19] and
TTPyr1 [24] were prepared according to literature procedures.

1H and 13C NMR spectra were recorded on a Bruker AVANCE-400 instrument (400 MHz).
Chemical shifts are reported in parts per million (ppm) and are referenced to the residual
solvent peak (DMSO, 1H 2.50 ppm, 13C 39.5 ppm; CH2Cl2, 1H 5.32 ppm, 13C 54.0 ppm).
Coupling constants (J) are given in hertz (Hz) and are quoted to the nearest 0.5 Hz. Peak
multiplicities are described in the following way: s, singlet; d, doublet; m, multiplet.

Mass spectra were recorded on a Thermo Fisher (Thermo Fisher Scientific, Waltham,
MA USA) LCQ Fleet Ion Trap Mass Spectrometer equipped with UltiMate™ 3000 HPLC
system. UV-Visible spectra were collected by a Shimadzu UV3600 spectrophotometer
(Shimadzu Italia S.r.l., Milan, Italy).
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Absolute photoluminescence quantum yields were measured using a C11347 (Hama-
matsu Photonics K.K). A description of the experimental setup and measurement method
can be found in the article of K. Suzuki et al. [29]. For any fixed excitation wavelength, the
fluorescence quantum yield Φ is given by:

Φ =
PN(Em)

PN(Abs)
=

∫
λ
hc

[
Isample
em (λ)− Ireference

em (λ)
]

dλ∫
λ
hc

[
Ireference
ex (λ)− Isample

ex (λ)
]

dλ

where PN(Em) is the number of photons emitted from a sample and PN(Abs) is the number
of photons absorbed by a sample, λ is the wavelength, h is Planck’s constant, c is the
velocity of light, Isample

em (λ) and Ireference
em (λ) are the photoluminescence intensities with and

without a sample, respectively, Isample
ex (λ) and Ireference

ex (λ) are the integrated intensities of
the excitation light with and without a sample, respectively. PN(Em) is calculated in the
wavelength interval [λi, λf], where λi is taken 10 nm below the excitation wavelength, while
λf is the upper end wavelength in the emission spectrum. The error made was estimated at
around 5%.

Steady state emission and excitation spectra and photoluminescence lifetimes were
obtained using a FLS 980 (Edinburgh Instrument Ltd., Livingston, United Kingdom) spec-
trofluorimeter. The steady state measurements were recorded by a 450 W Xenon arc lamp.
Photoluminescence lifetime measurements were performed using: Edinburgh Picosecond
Pulsed Diode Laser EPL-375, EPLED-300, (Edinburg Instrument Ltd.) and microsecond
flash Xe-lamp (60 W, 0.1 ÷ 100 Hz) with data acquisition devices time correlated single-
photon counting (TCSPC) and multi-channel scaling (MCS) methods, respectively. Average
lifetimes are obtained as:

τav ≡
∑m

n=1 αnτ2
n

∑m
n=1 αnτn

,

where m is the multi-exponential decay number of the fit.

2.1. Synthesis of 3,7-Di(pyren-1-yl)triimidazo[1,2-a:1′,2′-c:1”,2”-e][1,3,5]triazine (TT-Pyr2)

TTPyr2 was prepared by Suzuki coupling between TTBr2 and pyrene-1-boronic acid
(see Scheme 1). In a typical reaction, TTBr2 (595 mg; 1.67 mmol), pyren-1-ylboronic acid
(970 mg, 3.94 mmol), potassium carbonate (1.3 g, 9.42 mmol), Pd(PPh3)2Cl2 (170 mg,
0.24 mmol), water (3 mL) and DMF (25 mL) were transferred inside a 100 mL Schlenk flask
equipped with a magnetic stirrer. The system was heated under static nitrogen atmosphere
at 130 ◦C for 12 h. The reaction was then cooled to room temperature, precipitated with
water (200 mL) and filtered on a Büchner. The solid crude reaction mixture was further
purified by automated flash chromatography on SiO2 with DCM/CH3CN as eluents to give
the TTPyr2 product as a yellow solid (724 mg; Yield 72%; Rf = 0.5 in DCM/CH3CN = 95/5).
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Scheme 1. Synthetic path for the preparation of TTPyr2.

NMR data (9.4 T, DMSO-d6, 298 K, δ, ppm): 1H NMR 8.46–8.07 (18H, m), 8.01 (1H, d,
J = 1.5 Hz), 7.53 (1H, s), 6.98 (1H, s), 6.88 (1H, d, J = 1.5 Hz); 13C NMR 136.7, 136.6, 135.9,
131.4, 131.3, 130.9, 130.7, 130.4, 130.3, 129.8, 129.5, 128.8, 128.4, 128.2, 128.1, 128.0, 127.7,
127.5, 127.3, 127.2, 126.4, 125.7, 125.6, 125.4, 124.3, 124.2, 124.1, 123.7, 123.6, 123.5, 110.9.
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MS (ESI-positive ion mode): m/z: 599 [M + H]+.

2.2. Synthesis of 3,7,11-Tri(pyren-1-yl)triimidazo[1,2-a:1′,2′-c:1”,2”-e][1,3,5]triazine (TT-Pyr3)

TTPyr3 was prepared by Suzuki coupling between TTBr3 and pyrene-1-boronic acid
(see Scheme 2). In a typical reaction, TTBr3 (400 mg; 0.91 mmol), pyren-1-ylboronic
acid (702 mg, 2.85 mmol), potassium carbonate (1.3 g, 9.19 mmol), Pd(PPh3)2Cl2 (64 mg,
0.09 mmol), water (2 mL) and DMF (10 mL) were transferred inside a 100 mL Schlenk flask
equipped with a magnetic stirrer. The system was heated under static nitrogen atmosphere
at 130 ◦C for 12 h. The reaction was then cooled to room temperature, precipitated
with water (200 mL) and filtered on a Büchner. The solid crude reaction mixture was
further purified by automated flash chromatography on SiO2 with Hexane/Et2O/DCM as
eluents to give the TTPyr3 product as a pale yellow solid (435 mg; Yield 60%; Rf = 0.5 in
Hexane/Et2O/DCM = 60/20/20).
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Scheme 2. Synthetic path for the preparation of TTPyr3.

NMR data (9.4 T, CD2Cl2, 300 K, δ, ppm): 1H NMR 8.34–8.06 (27H, m), 7.04 (3H, s);
13C NMR 136.9, 132.7, 131.9, 131.4, 130.3, 129.0, 128.8, 127.9, 126.9, 126.3, 126.1, 125.6, 125.1,
124.7, 123.7.

MS (ESI-positive ion mode): m/z: 799 [M + H]+.

2.3. Computational Details

Geometry optimization of TTPyr2 has been performed at the ωB97X/6-311++G(d,p)
level of theory [30], in agreement with the computational protocol previously developed to
study TT [7] and its derivatives, in particular TTPyr1 [24]. The adopted functional was in
fact demonstrated to be able to accurately describe ground and excited states properties of
TT and its derivatives, besides dispersive intermolecular interactions which are essential
to interpret the multi-faceted properties of this family of compounds. Calculations on the
tri-pyrene derivative have not be performed due to the required high computational costs.
All calculations have been performed with Gaussian 16 [31].

3. Results
3.1. Synthesis and Molecular Structures

TTPyr2 and TTPyr3 were prepared by Suzuki coupling between pyrene-1-boronic acid
and the corresponding di- and tri-brominated TT precursors (see Schemes 1 and 2). The new
pyrene derivatives were characterized by 1H and 13C NMR spectroscopy (Figures S1–S5)
and mass spectrometry (Figures S3 and S6), samples with the purity grade required for
photophysical characterization were obtained by repeated crystallizations.

In order to get insight on the structural features of the investigated compounds, DFT
calculations were performed on the smaller derivative, TTPyr2 (see optimized structures in
Figure 1). Owing to the lack of the crystal structure of this compound, suitable models were
built up starting from structural information previously obtained on TTPyr1 by both X-ray
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diffraction analysis and theoretical calculations [24]. For this latter compound, crystallizing
in different phases and polymorphs, two possible conformations were detected, which
correspond to different orientation of pyrene with respect to the TT moiety as denoted
by the (H)C1-C2-C10-C11(H) torsion angle τ (C2-C10 being the bond connecting TT with
pyrene). In particular, the room temperature phases display τ values equal to about 129◦

(RT conformation), while the polymorph obtained at high temperature shows τ equal to
49◦ (HT conformation) [24]. DFT geometry optimization of the two conformations leads to
different almost isoenergetic minima (having τ = 110.3 and 67.4◦, respectively) in a very flat
region. The HT conformation is only 0.6 kcal/mol more stable than the RT one, suggesting
that both conformations are expected to be present in solution. To build up the TTPyr2
model, an additional pyrene moiety was added, in the proper position, to both the RT
and HT optimized geometries of TTPyr1 imposing the same RT or HT conformation. The
resulting optimized structures (see Figure 1), denoted respectively as ‘RT/RT’ and ‘HT/HT’
conformations, display C1–C2–C10–C11 and C1′–C2′–C10′–C11′ torsion angles equal to
112.3 and −67.2◦ (RT/RT) and 67.4 and 67.3◦ (HT/HT conformation), the latter being more
stable by 0.54 kcal/mol. Of course, also the mixed ‘RT/HT’ conformation is envisaged to be
present in solution, but no significant differences in the electronic levels are expected with
respect to those computed by TDDFT for the RT/RT and HT/HT conformations, which
are themselves very similar (see Table S1).
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Figure 1. ωB97X/6-311++G(d,p) optimized geometry of TTPyr2 in the RT/RT (left) and HT/HT
(right) conformations (hydrogen, carbon and nitrogen atoms in white, grey and blue, respectively).

Owing to the twisted arrangement of TT and pyrene in the investigated systems,
a Quantum Theory of Atoms in Molecules (QTAIM) topological analysis [32] on the
TTPyr1 and TTPyr2 electron density was performed to detect the possible presence of
intramolecular interactions between the two moieties. In all cases, a bond critical point
(bcp) between a TT nitrogen atom (N3) and the pyrene C10 carbon atom, located at about
3.18 Å from each other, has been found (ρbcp ∼ 0.05 e Å−3, see Figures S7 and S8 for the
TTPyr1 and TTPyr2 molecular graphs). Owing to the nature of the involved atoms, such
N· · ·C bond paths cannot be considered as classical non-covalent interactions [33], though
contributing to stabilize the molecule due to the privileged electron-exchange channel
associated with the bond path [34].

Interestingly, the molecular graphs substantially change when considering the op-
timized geometries of TTPyr1 and TTPyr2 in the excited state (see Figures S9 and S10).
The relaxed S1 geometries are characterized by lower molecular twisting than the ground
state one. In particular, for TTPyr1 τ varies from 110.3 to 138.5◦ (RT conformation) and
from 67.4 to 41.5◦ (HT conformation), respectively, with a concomitant shortening of the
C2-C10 bond (from 1.478 to 1.435 Å), implying a greater conjugation between the TT and
pyrene moieties compared with the ground state [24]. For TTPyr2, on the other hand, only
one pyrene unit undergoes a substantial relaxation with respect to TT, τ varying from
112.3 to 139.0◦ (RT/RT conformation) and from 67.3 to 40.8◦ (HT/HT conformation). The
corresponding C2–C10 bond shortens from 1.477 to 1.422 and 1.433 Å (RT/RT and HT/HT
conformation, respectively). For the other pyrene unit, τ shows only slight variations
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(from −67.2 to −64.6◦ in the RT/RT conformation and from 67.4 to 64.0◦ in the HT/HT
conformation) and the C2′–C10′ bond remains almost unvaried. These results indicate that,
as determined for TTPyr1, also TTPyr2 shows in the excited state a greater conjugation,
which is however extended on TT and only one pyrene unit. The associated molecular
graphs (see Figures S9 and S10) reveal, for both conformations of TTPyr1 and TTPyr2,
the formation of an intramolecular C–H· · ·N hydrogen bond between the TT and pyrene
moieties. This interaction stabilizes the two conformations in the excited state allowing to
reduce the molecular twisting.

3.2. Photophysical Studies

TTPyr2 and TTPyr3 have been photophysically characterized both in solution and
in solid state by steady state and time resolved spectroscopy. The results are reported in
Table 1 together with those previously obtained for the room temperature non-solvated
species of TTPyr1 and those of pyrene molecule in the same conditions.

Diluted DMSO solutions of the three compounds show two absorptions with peaks at
257, 268, 279 nm (ES2) and 332, 347 nm (ES1) respectively, with molar absorption coefficients,
ε, computed at 347 nm, equal to 34,894, 46,408 and 84,443 M−1 cm−1 for TTPyr1, TTPyr2
and TTPyr3, respectively. Such bands, even though strongly red shifted and broadened
with respect to the parent pyrene moiety (see Figure 2), are ascribed to transitions of main
pyrene character, as previously suggested based on the similarity with the absorption
spectrum of pyrene itself in the same conditions and theoretical calculations [24]. Looking
at the HOMO and LUMO energies of pyrene, TTPyr1, and TTPyr2, it is found that, while
the HOMO energy is almost constant along the series, the LUMO one significantly decreases
(by 0.17 or 0.19 eV according to the conformation) from pyrene to TTPyr1, and remains
almost unvaried going to TTPyr2.
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Figure 2. Molar absorption coefficient for 2.5 10−6 M DMSO solution of TTPyr1 (blue line), TTPyr2

(red line), TTPyr3 (black line) and pyrene (green line). Inset: expansion of 350 nm region for
normalized spectra of TTPyr1 (blue line), TTPyr2 (red line) and TTPyr3 (black line).

For the three compounds, perfectly overlapped emission spectra, consisting in an
intense very broad single fluorescent emission at about 420 nm, are measured (see Figure 3).
The three compounds display impressively high quantum yields when compared with
pyrene itself (Φ = 33.4%) in the same conditions (see Table 1), suggesting that the TT moiety
successfully suppresses the ACQ (aggregation caused quenching) phenomena affecting
pyrene fluorescence [35–37]. Specifically, Φ equal to 92, 78 and 74% have been measured for
TTPyr1, TTPyr2, TTPyr3, respectively, with lifetime, τ, equal to 2.76 [24], 9.22 and 11.16 ns
(Figures S11 and S14), resulting in kr values 33.3, 8.46 and 6.67 × 107 s−1 and knr 2.90, 2.39
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and 2.29 × 107 s−1, respectively (see Table 1). The observed quantum yields are similar or
higher than those reported in the literature for other mono-, di- and tri-pyrene substituted
families. For example, DCM solutions of di- and tri-pyrene derivatives of carbazole and
mono-, di- and tri-pyrene functionalized adamantane display Φ equal to 94 and 72% [32]
and 17, 19 and 19% [38] respectively.
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Figure 3. Normalized emission (λexc = 350 nm, solid lines) and excitation (λem = 420 nm, dashed lines) 
spectra of 2.5 × 10−6 M DMSO solutions at 298 K of TTPyr1 (blue line), TTPyr2 (red line) and TTPyr3 
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Figure 3. Normalized emission (λexc = 350 nm, solid lines) and excitation (λem = 420 nm, dashed
lines) spectra of 2.5 × 10−6 M DMSO solutions at 298 K of TTPyr1 (blue line), TTPyr2 (red line) and
TTPyr3 (black line).

To justify the slight decrease of quantum yield for TTPyr2 and TTPyr3 with respect to
TTPyr1, close inspection of optical properties has been performed. When better focusing
on the 347 nm absorption of the three compounds (ES1, see inset of Figure 2), besides
the already mentioned macroscopic red shift and broadening with respect to pyrene, a
slight red shift and widening of the band from TTPyr1 to TTPyr2 and TTPyr3 can also be
recognized. Based on DFT/TDDFT calculations, such band results from an envelope of
more transitions (see Table S1 and Figures S20 and S21 for the simulated absorption spectra).
In particular, two transitions are computed at low energy for pyrene (at 301 and 294 nm
with oscillator strength f = 0.0003 and 0.347, respectively) and TTPyr1 (at 304 and 302 nm
with f = 0.060 and 0.498, respectively), with a bathochromic displacement of the stronger
transition and intensification of the low energy one, justifying the experimental red shift
and broadening of TTPyr1 ES1. Going to TTPyr2, four transitions are computed in the same
region (at 306, 304, 303 and 301 nm with f = 0.380, 0.101, 0.066 and 0.445, respectively, see
Table S1 and Figures S20 and S21), implying further broadening of the associated band with
very minor red shift with respect to TTPyr1. It is as well to be taken into account that more
conformations of similar energy are expected in solution, due to the flatness of the potential
energy surface associated with the rotation of pyrene with respect to TT [24]. As reported
in Table S1, such conformations are characterized by the same position of the transitions
but slightly different oscillator strengths, further contributing to the band broadening.
Similar results are expected for the tri-pyrene derivative, which was not submitted to
theoretical calculations owing to the computational costs required by the further increased
number of conformational degrees of freedom. Geometry optimization of S1 for both
conformations of TTPyr2 leads, as determined for TTPyr1, to a reduced molecular twisting
(see Figures S9 and S10) with a large energy separation from the higher excited states and
approximately the same energy position (λ = 372 nm), oscillator strength (0.693) and orbital
composition (HOMO-LUMO with 93% weight) as found for TTPyr1 (λ = 370 nm, f = 0.698,
HOMO-LUMO with weight = 94%). Based on the strict similarity between TTPyr1 and
TTPyr2 at molecular level, minor ACQ phenomena should be taken into account for TTPyr2
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and TTPyr3. A similar result was previously obtained for pyrene-functionalized carbazole
derivatives, with fluorescence quantum yield decreasing by increasing the number of
pyrene moieties [39].

The three compounds are good emitters also in the solid state (see Table 1), where
the emission is implemented by the presence, as already reported for TTPyr1 [24], of one
phosphorescent component in addition to the fluorescent band (at 475, 490 and 476 nm
for TTPyr1, TTPyr2, TTPyr3, respectively, see Figure 4). The long lived component (at
514, 528 and 522 nm, with lifetimes equal to 5.19 [24], 20.54 and 40.62 ms for TTPyr1,
TTPyr2, TTPyr3 respectively, see Figures S13 and S16) can be selectively activated by ex-
citing at low energy (480 nm). Based on the conclusions drawn for TTPyr1 [24], even for
TTPyr2 and TTPyr3 such long-lived emission could be explained by (i) easy singlet-to-
triplet intersystem crossing due to almost overlapped singlet and triplet energy levels (see
Figure S20), and (ii) interchromophoric interactions in the solid state which inhibit the
molecular motions reducing the thermal non-radiative dissipation. Unfortunately, differ-
ently from TTPyr1 where such interactions have been deeply analyzed for the different
isolated and crystallized phases, for TTPyr2 and TTPyr3 no single crystals suitable for
X-ray diffraction analysis could be obtained. However, based on the longer lifetimes of
TTPyr3, a high number of interactions are expected for this latter with respect to the other
members of the family. Such interactions are not efficacious for producing crystals due to
the large number of conformational degrees of freedom (as expected, even though at lower
extent, for TTPyr2).
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Figure 4. Normalized emission spectra (λexc = 350 nm solid line, λexc = 480 nm dashed line) at 298 K 
of powders of TTPyr2 (red) and TTPyr3 (black). 
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Figure 4. Normalized emission spectra (λexc = 350 nm solid line, λexc = 480 nm dashed line) at 298 K
of powders of TTPyr2 (red) and TTPyr3 (black).

4. Conclusions

In conclusion, two new intriguing chromophores, TTPyr2 and TTPyr3, have been
prepared and characterized. Their photophysical behavior fully analyzed in solution and in
solid state has been compared with that of parent TTPyr1 revealing a trend depending on
the number of pyrene moieties appended to the TT scaffold. In particular, the fluorescence
quantum yield in solution (much higher than that of pyrene itself) slightly decreases
by increasing the number of pyrene units, while, in the solid state, the phosphorescent
component, visible for all compounds at room temperature, possesses lifetimes increasing
in the same order due to stabilizing interchromophoric interactions.
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Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/photochem1030031/s1, Figure S1. 1H NMR spectrum and expanded region of TTPyr2
(400 MHz, DMSO-d6), Figure S2. 13C NMR spectrum and expanded region of TTPyr2 (400 MHz,
DMSO-d6), Figure S3. LC-MS profile of TTPyr2, Figure S4. 1H NMR spectrum and expanded
region of TTPyr3 (400 MHz, CD2Cl2), Figure S5. 13C NMR spectrum and expanded region of
TTPyr3 (400 MHz, CD2Cl2), Figure S6. LC-MS profile of TTPyr3, Figure S7. Molecular graphs
of TTPyr1 in ground state RT (left) and HT (right) conformation with bond paths, bond critical
points (green circles) and ring critical points (red circles), Figure S8. Molecular graphs of TTPyr2 in
ground state RT/RT (left) and HT/HT (right) conformation with bond paths, bond critical points
(green circles) and ring critical points (red circles), Figure S9. Molecular graphs of TTPyr1 in excited
state RT (left) and HT (right) conformation with bond paths, bond critical points (green circles) and
ring critical points (red circles), Figure S10. Molecular graphs of TTPyr2 in excited state RT/RT
(left) and HT/HT (right) conformation with bond paths, bond critical points (green circles) and
ring critical points (red circles), Figure S11. Lifetime measurement (exc = 374 nm, em = 420 nm)
of TTPyr2 in DMSO at 298 K, Figure S12. Lifetime measurement (exc = 375 nm, em = 490 nm) of
TTPyr2 powders at 298 K, Figure S13. Lifetime measurement (exc = 340 nm, em = 530 nm) of TTPyr2
powders at 298 K, Figure S14. Lifetime measurement (exc = 374 nm, em = 420 nm) of TTPyr3 in
DMSO at 298 K, Figure S15. Lifetime measurement (exc = 300 nm, em = 470 nm) of TTPyr3 powders
at 298 K, Figure S16. Lifetime measurement (exc = 340 nm, em = 520 nm) of TTPyr3 powders at
298 K, Figure S17. Lifetime measurement (exc = 374 nm, em = 394 nm) of Pyrene in DMSO at 298 K,
Figure S18. Photographs of TTPyr2 (left) and TTPyr3 (right) solutions under UV light OFF (left) or
UV light ON (right, exc = 366 nm), Figure S19. Photographs of powders of TTPyr2 (left) and TTPyr3
(right) under UV light OFF (left) or UV light ON (right, exc = 366 nm). Table S1. Excitation energies
(nm), oscillator strength (f ) and composition of the first singlet transitions computed for pyrene,
TT-Pyr1 (HT and RT conformations) and TT-Pyr2 (HT/HT and RT/RT conformations), Figure S20.
Electronic levels computed for pyrene, TTPyr1 and TTPyr2 at molecular level. In blue are reported
the singlet levels with oscillator strength f 0.001 and the corresponding values of f (see detailed
information in Table S1), Figure S21. Simulated absorption spectra of pyrene (top), TTPyr1, RT
conformation (middle) and TTPyr2, RT/RT conformation (bottom) at B97X/6-311++G(d,p) level of
theory, resulting from convolution of the singlet excitation energies with 0.1 eV of half-bandwidth
(singlet levels plotted as blue sticks according to their oscillator strength), Figure S22. Plots of
the B97X/6-311++G(d,p) MOs mainly involved in the lowest energy transitions of TT-Pyr1 in RT
conformation (isosurfaces value 0.02), Figure S23. Plots of the B97X/6-311++G(d,p) MOs mainly
involved in the lowest energy transitions of TT-Pyr2 in RT/RT conformation (isosurfaces value
0.02). Table S1. Excitation energies, oscillator strength and composition of the first singlet transitions
computed for pyrene, TT-Pyr1 and TT-Pyr2.
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