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Abstract: Textiles with antimicrobial functionality have been intensively and extensively investigated
in the recent decades, mostly because they are present in everyday life in various applications:
medicine and healthcare, sportswear, clothing and footwear, furniture and upholstery, air and water
purification systems, food packaging etc. Their ability to kill or limit the growth of the microbial
population in a certain context defines their activity against bacteria, fungi, and viruses, and even
against the initial formation of the biofilm prior to microorganisms’ proliferation. Various classes of
antimicrobials have been employed for these highly specialized textiles, namely, organic synthetic
reagents and polymers, metals and metal oxides (micro- and nanoparticles), and natural and naturally
derived compounds, and their activity and range of applications are critically assessed. At the same
time, different modern processing techniques are reviewed in relation to their applications. This
paper focuses on some advances and challenges in the field of antimicrobial textiles given their
practical importance as it appears from the most recent reports in the literature.

Keywords: antimicrobial textiles; synthetic antimicrobial reagents; polymers; natural antimicrobial
compounds; applications

1. Introduction
1.1. General Background

Health risks management has been constantly considered in recent decades in all
relevant domains in daily life due to the spectacular worldwide increase in number and
variety of microbial infestation and proliferation, ranging from local to global, and from
aggressive to violent and nonresponsive epidemics/pandemics (plague, SARS, West Nile,
SARS-CoV-2, COVID-19, cholera, smallpox, scarlet rash, HIV-AIDS, Marburg, Ebola, Span-
ish flu, MERS) [1–3]. Thus, the employ of textiles with antimicrobial functionality has
expanded up to unexpected rates. This market was estimated at USD 10.7 billion in
2021 and was projected to reach a 50% increase by 2026 at a compound annual growth rate
(CAGR) of 6.5% in the same interval [4].

Subsequently, the scientific literature recorded an increase in the number of articles
reporting on antimicrobial textiles and their specific finishing, reagents, and processing.
A bibliometric analysis indicated in 2021 a number of publications of 534 articles per
year [5], but the domain is very active and the rapid progress is abundantly documented by
the most recent literature reports, which also illustrate the variety of new features connected
to the subject [6–25].

Furthermore, recent surveys confirmed this trend. For example, data from the Web of
Science Core Collection confirmed a number of 50 review articles published in the interval
2018–2023 on topics considered relevant for this manuscript. Moreover, a significant number
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of patents—245—has been reported in the interval 2018–2023 (https://patents.google.com;
accessed on 26 April 2023). Some of these data are illustrated in Figures 1 and 2, where the
selection criteria are given in the legend.
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Figure 1. Review articles published in 2018–2023 (data from Web of Science Core Collection).

First and foremost, textiles with antimicrobial finishing have to comply with several
requirements: prevent, control, and/or eliminate microbial infestation, growth, and cross-
infection over a wide spectrum; reduce odor, prevent staining, and maintain freshness for
long intervals; must be stable, safe, durable, and reusable (in certain applications) [26].
Considering their antimicrobial effectiveness and the mechanism of action, as well as
their toxicity versus tolerance, nature of fibers, and durability, textiles with antimicrobial
functionality may be divided into several classes [18]:

- biostats, biocides (antibacterial, antifungal, antiviral), barriers, and antibiofilm;
- textiles with bound or leaching antimicrobial finishing;
- textiles made of natural (cotton, wool, silk, linen) or synthetic fibers (PP, PE, PES) or

blends (cotton/elastane, cotton/PES, wool/acrylic);
- textiles able to release compounds with biologic activity;
- wearable and washing resistant.

Commonly, microorganisms are divided into different classes: bacteria, archaea, pro-
tozoa, algae, fungi, viruses, and multicellular animal parasites [27]. They have distinct
features; most of them do not negatively interfere with human biota, but some can be
or become pathogenic when certain favorable conditions are met. Bacteria are mainly
divided into Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli).
Other pathogenic bacteria (Plasmodium malariae, Mycobacterium tuberculosis, Clostridium
tetani, Corynebacterium diphtheriae, Treponema pallidum), fungi (Cryptococcus neoformans, Can-
dida auris, Aspergillus fumigatus, Candida albicans, Candida glabrata), and viruses (Ebola,
herpes, hantavirus, papillomavirus, HIV, COVID-19) of particular concern have been used
to evaluate the level of performance of antimicrobial textiles.

https://patents.google.com
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Figure 2. Patents published in the interval 2018–2023 (data acquired from https://patents.google.com;
accessed on 26 April 2023).

The present review surveyed some of the most recent and relevant papers in the field
of highly specialized textiles with acquired antimicrobial functionality. This allowed the
identification not only of new trends and advances, but also of challenges in the field,
mainly when it came to the use of high-tech processing methods, variety of applications,
employ of complex formulations which include several antimicrobial agents that act in
synergy, manufacture of multitask antimicrobial textiles, safety, and environmental risks.

1.2. Processing Techniques

Textiles with antimicrobial functionality are materials of high interest; therefore, their
processing is a key factor in their activity and stability. Padding, spraying, grafting, and
cross-linking are some of the most relevant techniques. However, the development of
biocide/biostatic textiles made of synthetic fibers has allowed new methods, such as com-
pounding extrusion and melt blending [28,29]. At the same time, the employ of colloidal
solutions, plasma treatments, magnetron sputtering, sol–gel processes, microencapsulation
techniques, or even in situ formation/growth of different antimicrobials onto textile sup-
ports are modern processing methods that grant textiles enhanced activity and stability [28].

Coating is one of the most popular procedures and is suitable for both yarns and
fabrics, natural and synthetic fibers, knitted, woven, and nonwoven textiles. Direct coating
can be achieved by knife, roller, or calendaring, and the finishing must be viscous in order to
form a satisfactory coating. The spray-coating technique uses an airbrush and the finishing

https://patents.google.com
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solution must be less viscous. The method may be applied to nanoparticles deposition
as well [30].

The exhaust method was “imported” from dyeing processing and comprises the
transfer of the active reagent from a batch to the textile substrate, sometimes in the presence
of a binder, and a curing stage is required to stabilize the coating. Thiazole-derived reagents
have been successfully applied by this method to textiles which subsequently exhibited
high effectiveness against Gram-positive and Gram-negative bacteria [31].

The pad–dry–cure approach, also known as the mechanical thermal fixation or padding,
is suitable for micro- and nanoparticulate coating materials with low or no affinity toward
the textile substrate. The thermal treatment must be short (1–5 min) and at high tempera-
tures (100–150 ◦C) in order to reach an appropriate cross-linking degree (thermal fixation).
The method is simple and effective [28].

Textile substrates may be submitted to different methods of surface modification in
order to achieve better compatibility with the antimicrobial finishing reagents. Plasma
techniques, microencapsulation and ultrasound methods are among the most employed.

Plasma treatments are highly effective and environmentally friendly, despite their
drawbacks (high-energy-consuming process, expensive equipment), and are used to
clean/etch or create new functional groups onto textile surfaces, to deposit thin films
of nanometric thickness, or even grow nanoparticles in situ. The possibility to limit the
in-depth alteration of the support is considered the main advantage of this method because
it prevents the alteration of the bulk properties of the textile [21,32]. Plasma grafting and
polymerization can be applied to a wide range of antimicrobial finishing reagents (quater-
nary ammonium salts derivatives, dichlorophenol, triclosan, chitosan, guanidine-based
compounds, metal and metal oxides nanoparticles) when natural, synthetic, or blended
textiles are used as support [21]. Plasma and magnetron sputtering were preferred for
metals and metal oxides nanoparticles deposition (Ag, Ti, Cu) onto different substrates
when stable coatings were obtained [9,33,34]. Moreover, it was recently reported that
the emergence of highly effective antiviral textiles for personal protective equipment was
favored by the employ of plasma processing [35,36].

The microencapsulation technique is a modern method used to manufacture antimi-
crobial textiles, having the advantage that the core is protected and thus the degradation
under the action of external factors is prevented. Moreover, the microcapsules are stable
and safe to handle and apply to the textile support [37,38]. The approach is preferred when
natural and naturally derived compounds are used as antimicrobial finishing reagents.
It can be achieved by chemical (in situ polymerization in oil-in-water emulsion; interfa-
cial polymerization) and physico–chemical (coacervation, molecular inclusion complexes)
methods, and the obtained coatings are resistant to friction, sunlight, washing, and wet/dry
cleaning [39].

Nanotechnology is also employed in the manufacture of antimicrobial textiles in
various manners. The sol–gel method is a wet chemical procedure and uses colloidal
solutions of monomers as precursor to form an interpenetrated network with the textile
support or to deposit particles onto the textile surface [28,40]. Metals and metal oxides can
also be applied onto textiles by this method, as in the case of titanium dioxide and zinc
oxide nanoparticles used for coating fabrics able to prevent the spreading of nosocomial
infections [41] or for textiles with antibacterial activity and self-cleaning properties [42].
Cotton, wool, and silk fabrics are suitable for this method and a wise selection of reagents
for the sol phase can impart in the end a multiple functionality to the textiles, alongside
their biocide activity [28].

In situ synthesis of nanoparticles has the advantage of nanoparticles deposited di-
rectly onto the textile support, rather homogeneously, without binders or stabilizers, thus
significantly reducing the waste and pollution (and the safety and environmental risks,
respectively) and increasing the stability of deposition. Metals and metal oxides (Ag, ZnO,
Fe, Au) are mostly used for this technique applied to natural or synthetic textiles [1,28,43].
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Highly specialized fibers with antimicrobial activity have been successfully obtained by
electrospinning, a modern technique that allows materials made of biopolymers or synthetic
polymers, with fibrous/porous morphology, and having tailored biocide properties [44,45].

In the following, some new trends and advances in the field of highly specialized
textiles with antimicrobial functionality are presented, as illustrated by recent reports.

2. Synthetic Antimicrobial Agents for Textile Finishing

Antimicrobials encompass a large variety of chemical compounds and physical agents
that act on microbes (bacteria, fungi, viruses, protozoa) in general. They are used to kill
bacteria or to prevent their development. However, many of them exhibit some serious
drawbacks that restrict or prohibit their use, such as the emergence of resistance developed
shortly after their introduction, and undesired side effects. At the same time, chemical
biocides are potentially harmful substances for the environment and human health if not
handled or processed properly.

N-halamine compounds are organic biocides capable of killing microorganisms with-
out releasing free oxidative halogen until they come into contact with microorganisms.
They present efficiency against a broad spectrum of microorganisms, long-term stability,
non–toxicity to humans, regenerability upon exposure to aqueous free chlorine solutions,
and excellent biocompatibility. In addition, microorganisms do not develop resistance
to this class of antimicrobials. The surface of the materials influences the antibacterial
mechanism of N-halamines and has an important role in their antibacterial effectiveness.
A large number of places of contact with bacteria increases the inactivation rate and is
favored by a larger surface area.

N-halamine biocides have been used in different applications such as water filtration
systems, disinfectants in pools, textiles, and medical devices [46]. N-halamines and some
other synthetic compounds, such as quaternary ammonium compounds, polyhexamethy-
lene biguanide, and triclosan, have been applied for antimicrobial treatment of textiles.
Antimicrobial fabrics have found different applications in pharmaceutical, medical, en-
gineering, agricultural, and food industries [47,48]. The N-halamine-treated fabrics can
be rendered as having excellent antimicrobial activity through a bleaching process and
can inactivate a broad spectrum of microorganisms, including Gram-negative and Gram-
positive bacteria, in relatively short contact times. When the oxidative halogen is consumed,
textiles modified with N-halamines regain their antimicrobial properties by exposing them
to diluted household bleach. However, the practical application of N-halamines involves
some disadvantages. For example, the cost of the treatment increases in the case of the use
of organic solvents necessary to dissolve some N-halamine derivatives, which also presents
safety risks.

As surfactants, quaternary ammonium compounds concentrate at the interface be-
tween the lipid-containing bacterial cell membrane and the surrounding aqueous envi-
ronment. There are two types of interaction between quaternary ammonium salts and
microbes: a polar interaction, occurring by cationic nitrogen, and a non–polar one, at-
tributed to the hydrophobic chain. The cationic ammonium group can interact with the
negatively charged cell membrane of bacteria. This attraction force induces the generation
of a surfactant–microbe complex which can interrupt the activity of proteins, including all
of the important functions in the cell membrane and even bacterial DNA. Furthermore,
hydrophobic groups can penetrate into the microorganism and cancel all of the key cell
functions. Increasing the length of the alkyl chain results in increasing the antibacterial
activity of quaternary ammonium salts [49].

Quaternary ammonium compounds have no effectiveness against difficult-to-kill non–
enveloped viruses. Among the extremely effective disinfectants with a wide spectrum and
short contact times (3–5 min), we can count the formulations with low alcohol content used
against bacteria, enveloped viruses, pathogenic fungi, and mycobacteria. Disinfectants
based on quaternary ammonium salts with the addition of alcohol or solvents bring about
a much faster drying of the products on the applied surface, which results in an ineffective
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or incomplete disinfection. In addition, quaternary ammonium compounds kill algae and
are used in industrial water systems to counteract unwanted biological growth. Cetrim-
ide (alkyltrimethylammonium bromide) and benzalkonium chloride have antibacterial,
antifungal, and antiviral (enveloped viruses) properties and can be applied to the skin
or mucous membranes to avoid or minimize the risk of infection. Hard water, anionic
detergents, and organic matter reduce the activity of these disinfectants based on quater-
nary ammonium salts, which is a disadvantage. Moreover, Pseudomonas can metabolize
cetrimide, using it as a carbon, nitrogen, and energy source.

Triclosan has antiseptic and disinfectant properties and a significant action against
Gram-negative and Gram-positive bacteria. The acaricide benzyl benzoate in its structure
accounts for protection against mites and it is used in acaricide (spray or powder) formulas,
and for the treatment of scabies as a solution (25% concentration). Triclosan has been widely
used in a large number of consumer products, such as cosmetics, toothpastes, deodorants,
soaps, toys, and surgical cleaning treatments, based on its non-toxicity and antibacterial
properties. Although triclosan is not considered to be as toxic as other pollutants, its
occurrence in wastewaters, biosolids, and aquatic and terrestrial environments remains a
concern. Furthermore, triclosan exhibits certain physicochemical characteristics that make
it difficult to remove from the environment. There are studies that attribute some harmful
health effects to triclosan, such as skin irritation, hormonal disruption, interference with
muscle function, and contribution to antibacterial resistance [50].

Chlorhexidine has a cationic molecular component that attaches to negatively charged
cell membrane area and causes cell lysis. As an antiseptic, chlorhexidine is used as a
mouth rinse and endodontic irrigant due to long-lasting antimicrobial effect attributed
to its binding to hydroxyapatite. It is commonly held that chlorhexidine would be less
caustic than sodium hypochlorite. Similar to sodium hypochlorite, heating chlorhexidine
in low concentration increases its local efficacy in the root canal system and maintains low
systemic toxicity. Chlorhexidine presents drawbacks, such as its incapacity to dissolve
necrotic tissue remnants and chemically clean the canal system, and lower effectiveness on
Gram-negative than on Gram-positive bacteria [51].

Common antimicrobial agents are prepared from natural or low-molecular-weight
compounds. Due to biocidal diffusion, they present toxicity to the human body. In addition,
they are easily susceptible to resistance and can lead to environmental contamination. An-
timicrobial polymeric materials can overcome these problems by promoting antimicrobial
efficiency and reducing residual toxicity. Moreover, antimicrobial polymers exhibit chemi-
cal stability, non–volatility, and long-term activity. Polymers containing covalently linked
antimicrobial moieties avoid the penetration of low-molecular-weight biocides from the
polymer matrices, unlike antimicrobial polymers obtained by physical methods (trapping
or coating of organic and/or inorganic active agents during or after processing). These
antimicrobial polymers are environmentally friendly and show durability over time. The
most studied antimicrobial polymeric materials, and probably the most used, are those
based on quaternary ammonium and/or phosphonium salts [52]. In addition, polymeric
N-halamines with or without reactive functional groups were used to coat different fabrics
by various approaches [49].

During the last two decades, synthetic (co)polymers have been designed to mimic
the prominent physio–chemical characteristics of host defense peptides. Although these
polymers have revealed a broad-spectrum antimicrobial activity, rapid bactericidal kinet-
ics, and a very low propensity to induce resistance, none of them has been currently in
clinical trials [53]. The schematic reaction mechanism of passive and active action of the
antimicrobial polymers is presented in Scheme 1.
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Concerning the conducting polymers, namely, polyaniline, polypyrrole, and polythio-
phene, their biomedical applications have not been well studied even though they have
good antimicrobial activity. This limitation may be dampered by the preparation of polymer
blends and nanocomposites with different (bio)polymers and nanomaterials, respectively,
to achieve the desirable biocompatibility and physicochemical properties [54]. Table 1
summarizes the most relevant antimicrobial agents presented above, their applications,
and mechanism of action, and Scheme 2 illustrates the chemical structures of the most
important antibacterial compounds.

Table 1. Synthetic antimicrobial products, their applications, and mode of action.

Antimicrobial Agent Properties and Applications Antimicrobial Mechanism Ref.

Quaternary ammonium
compounds

Polymeric materials having
onium salts (quaternary

ammonium and/or
phosphonium salts)

Quaternary ammonium
polyethylenimine

- Healthcare, household products, surface
preservation, food industry,
pharmaceutical/cosmetic (preservation)
- Highly effective as antimicrobial agents in
orthodontic cements to introduce antibacterial
activity toward S. mutants and L. casei

The long, lipophilic alkyl chain of
the quaternary ammonium
compounds perforates cell

membranes, and produces the
release of cytoplasmic

components, autolysis and cell
death of the microbial strain

[52,55–59]

Halogenated phenols
Triclosan

- Antiseptic, disinfectant, fungicide, pesticide,
antimicrobial, antiseptic, preservative
- Antimicrobial activity against many types of
Gram-positive and Gram-negative non-
spore-forming bacteria, some fungi
- Clinical settings, consumer products
(cosmetics, cleaning products, paint, plastic
materials, toys)
- Durable antifungal finishing of cotton fabrics

Inhibits the active site of
enoyl-acyl carrier protein

reductase enzyme, which is
essential to the fatty acids

synthesis of bacteria and the
building of the cell membrane

[10,58,60,61]
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Table 1. Cont.

Antimicrobial Agent Properties and Applications Antimicrobial Mechanism Ref.

Chlorhexidine
Hexametaphosphate salt of

chlorhexidine (as
nanoparticles)

Polyhexamethylene
biguanide (PHMB)

- Preoperative skin cleansing preparations,
hand disinfectants, and oral mouth rinses
- Efficient antimicrobial agent against
gram-negative and -positive bacteria
and yeasts.
- Biomedical materials and consumer products
- Antimicrobial efficacy against MRSA and
P. aeruginosa, in both planktonic and biofilm
growth conditions
- Healthcare uniforms
- Nonspecific antimicrobial properties and
remained efficient (>99% against S. aureus and
K. pneumoniae) after use for 5 months

Chlorhexidine inhibits
membrane-bound ATPase, based
on cell membrane disruption and

leakage of intracellular
constituents, a rapid process with

most damage occurring within
20 s of exposure

The positively charged
biguanidines bind to negatively
charged phosphate group of the

bacterial cell wall or virus
envelope, breaking the

membrane integrity, which leads
to cell lysis and subsequent cell

death

[25,62–64]

N-halamines

- Antimicrobial activity against a broad
spectrum of microorganisms, rechargeability,
nontoxicity to humans
- Medical devices, water purification, hospitals,
antibacterial modification of cotton fabrics
- Antimicrobial activity against
aerosolized bacteria
- Air filtration technology
- Biocidal properties against S. aureus and E. coli
- Food packaging and biomedical applications

The direct transfer of oxidative
halogens to a cell after contact

resulting in oxidation of the
amino acids in the cell membrane

and inactivation the
microorganism

[46,49,65–68]

5,5-dimethylhydantoin Cotton fabric with regenerable antibacterial
properties against S. aureus

Coating dimethylhydantoin on
cotton fabric (by

pad–dry–plasma–cure process)
followed by chlorination inhibits

the bacteria

[69]

Cinnamic acid derivatives Pharmacological, antifungal, and
antibacterial action

Plasma membrane disruption,
nucleic acid and protein damage,
and the induction of intracellular

reactive oxygen species

[70–72]

Polyaniline and its
derivatives

- Bacteria-resistant surfaces against S. aureus
and E. coli
- Wall and room-door coatings in hospitals

Different oxidation states of
polyaniline and presence of

functional groups
[73]

Polypyrrole (nanoparticles) Antimicrobial treatment against S. aureus and
E. coli of polyester fabrics

The positive charges (=NH+) in
the polypyrrole backbone that are

created by dopant compounds
[74,75]

Polythiophenes
Antimicrobial compounds able to kill bacteria
selectively by damaging negatively charged
cell envelopes

Cationic charges with capacity to
create huge amounts of singlet

oxygen that interact with
organism

[76]
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3. Natural Compounds with Biocide Activity Applied to Antimicrobial Textiles

Natural compounds are best suited to meet the biocidal activity requirements of
textile-based materials and present important specific characteristics, being non–harmful
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in relation to the toxicity issues, environmentally friendly, and renewable. This biocidal
property is manifested towards microorganisms’ inherent presence, namely, bacteria and
fungi, which may cause microbiological destruction of the textile materials. Such issue is
of real significance when applications relying on the use of textile materials derived from
natural fibers are considered. The most sensitive components of the textile materials to the
microbiological action are the cellulose fibers. Some effective biocidal formulations applied
to impart antimicrobial properties to textile materials were recently reviewed [77], with
focus mainly on the natural compounds such as pectin and lignin, which exhibit important
biocidal peculiarities, and the methods which can be employed in order to confer increased
resistance as biocidal effect in relation to textile materials’ applications. Methods employed
in order to apply natural compounds having antimicrobial activity on textile materials are
presented in Scheme 3.

Natural compounds with biocide activity applied for textiles protection are referred
to as biopolymer matrices (such as chitosan, lignin, starch, cyclodextrins, zein, gelatin)
and biological active components extracted from plants (such as essential oils) [18,78–81].
Cellulose-based fibrous scaffolds produced by electrospinning have effectively encap-
sulated cinnamon, lemongrass, and peppermint essential oils and could be very useful
for topical treatments even at low concentration levels due to their significant biocidal
resistance against a Gram-negative bacilli, namely Escherichia coli [82].
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Natural-fibers-based fabrics present valuable enhanced properties through application
of natural compounds for their functional finishing, including [18,77,82,84]:

- UV protection properties (conferred by using lignin extracts, natural dye extracts);
- Antioxidant properties (conferred by using natural dye extracts);
- Antimicrobial properties (conferred by using chitosan, lignin, cyclodextrins, essential oils).

Generally, the natural compounds, polysaccharides and oligosaccharides, employed
for the antimicrobial finishing of textiles (chitosan, starch, cyclodextrins), as well as lignin,
are largely abundant as environmentally friendly waste products [85].

Chitosan modified with hinokitiol (a natural monoterpenoid, namely, a tropolone
derivative, found in the wood of trees in the family Cupressaceae) is a natural product with
very good prospective as antibacterial agent for textiles. The treated cotton fabric exhibited
good antibacterial properties while maintaining its initial properties such as hydrophilicity,
handle, and strength [86]. Significant antibacterial properties were also conferred to cotton
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fabrics when using Aloe vera gel for finishing, with the bacterial growth being strongly
inhibited [87].

In the following, aspects referring to some biopolymer matrices usually applied for
textiles finishing and protection are considered.

3.1. Chitosan

Chitosan, a cationic polysaccharide originating from crustaceans and fungi, is obtained
by alkaline deacetylation of chitin. Its valuable advantages for adding functionalities to the
textile surfaces finishing include biocompatibility, biodegradability, and properties such
as antimicrobial, antistatic, nontoxicity, chelating ability, deodorizing, film-forming ability,
reactivity in chemical media, presence of ionizable groups, dyeing enhancement, efficacy
of cost, thickening ability, and wound alleviation [85,88]. Application of chitosan under
hydrogel form on cellulosic fabric conferred antibacterial resistance against bacteria strains
such as Staphylococcus aureus, Escherichia coli, and Listeria monocytogenes [89].

The poor binding ability of chitosan with the fibers from textile materials is usu-
ally addressed by employment of various cross-linking agents which grant an improved
antimicrobial activity. Mostly used and safer agents are:

- 1,2,3,4-butanetetracarboxylic acid (BTCA) and citric acid (CA), when cellulose fibers
are considered;

- organic anhydrides, such as succinic and phthalic ones, for grafting chitosan on
wool fabrics;

- citric acid in combination with oxidizing agents having reduced toxicity, such as
potassium permanganate and sodium hypophosphite, for an effective cross-linking
between chitosan and textile substrates—cotton cellulose, wool fabrics).

The application of chitosan on textiles by UV radical curing is also a feasible innocuous
methodology for yielding fabrics with finishes having lasting microbial resistance [90].

3.2. Lignin

Lignin, a dark-colored phenolic compound provides resistance against microbial attack
in lignocellulose resources (plants and trees). It is generally separated during the processing
(delignification or pulping process) when cellulose fibers are obtained. Lignocellulose
resources mainly comprise biopolymers with resistance against microorganisms, cellulose
and lignin; therefore, these materials can have antimicrobial potential [91].

A coating formulation using lignin extracts derived from sugarcane bagasse was
proved to impart good antibacterial activity against Staphylococcus epidermidis to the textile
support, and the effect was manifest by the reduction of the inherent formation of bacteria
onto the textile sample [92,93].

3.3. Cyclodextrins

Cyclodextrins (CDs) are a family of water-soluble cyclic oligosaccharides having two
components, one hydrophilic (outer surface) and one lipophilic (central cavity). They are
produced during enzymatic conversion of the starch by the enzyme, namely cyclodextrin
glycosyltransferase. CDs are composed of alpha-1,4-linked glucopyranosides subunits, and
the most commonly available types are α-CD (6 moieties), β-CD (8 moieties)—the most
used in research studies, and γ-CD (10 moieties).

The main advantages of using CDs in different applications [85] include eco-friendly
character, ability to form inclusion complexes, insecticides carrier ability, fragrances slow-
releasing ability, solubilization ability, facile production, efficacy of cost, ability for chelation,
and drug-delivery ability. Application of cyclodextrins in textile functional finishing
can effectively aid properties such as antimicrobial, fragrance, and dyeing (CDs act as
encapsulating, dispersing, and leveling agents) [94].

Feasible interactions between β-CD and some textile fibers include ionic interactions
(for wool fibers), covalent bonds, cross-linking agents, and graft polymerization (for both
cotton and wool fibers). CDs can impart better UV protection and odor reduction through
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complexing and controlled releasing of different fragrances (perfumes, aromas), substances
with therapeutical effects or “skincare-active” compounds (vitamins, caffeine, menthol), as
well as bioactive agents (biocides, insecticides—mosquito repellents).

A significant application of CDs for various textile materials finishing is represented
by water and soil remediation and catalysis (e.g., adsorption of small pollutants from
waste waters and polluted soil) when such fabrics act as effective selective filters—so-called
“preparation of textile nanosponges” [95]. Last, but not the least, CDs have an essential
contribution as guest molecules employed in antimicrobial textile modifications by grafting
using citric acid as cross-linker in the presence of sodium hypophosphite when a most
efficient, lasting antibacterial textile having a pleasurable fragrance was obtained [96].

Improvement in the grafting yield of the cyclodextrin derivative monochlorotriazinyl-
β-cyclodextrin (MCT-β-CD) on organic cotton was attained by previously applying a
biopolishing procedure, a cellulase enzyme treatment of the textile substrate [97]. An
enhanced antibacterial activity and improved durability (upon repeated washing pro-
cess) for the MCT-β-CD grafted enzymatic treated organic cotton were imparted through
incorporation of thymol.

A recent report [98] presented the ability of β-CDs to form complexes with essential
oils, and the application of β-CD nano/microcapsules to produce aromatic textiles with
focus on the various assembly methods of these aromatic β-CD nano/microcapsules by
incorporation of essential oils, as well as on the large range of methodologies employed for
the production of such textiles with aromatic character.

3.4. Sericin

Sericin is a natural protein derived from silk worm, Bombyx mori, with important
characteristics being biocompatible, biodegradable, UV-resistant, oxidative-resistant, good
moisture retention receptor, antibacterial, prone to gelling, and adherent [85]. The action
against microbes in testing resistance of cotton fabric against bacterial strains, namely
Escherichia coli and Staphylococcus aureus, was enhanced after applying a sericin-based
coating [99].

4. Metal and Metal Oxide Nanoparticles

The associations of fibers and textile materials with metal stripes, wires, or plates
made of gold, silver, copper, or their alloys have been used in artworks and luxury objects
since ancient times [100]. Later on, the progress in both metal and textile processing also
led to practical uses, starting with protective/strengthened items and, more recently, to
multilayered and composite textiles with an extended range of engineered functionalities,
from stimuli-responsive clothes and devices to medicine and electronics [101–103].

This evolution was highly enhanced in the last decades by the significant advances
made in the field of nanotechnologies, polymer nanocomposites, and nanosized inorganic
particles. In this regard, a major breakthrough in healthcare and medical tools was the
successful integration of metal and metal oxide nanoparticles within a large spectrum of
natural and synthetic fibers, yarns, and fabrics, otherwise prone to microbial colonization
and conveyance, to impart their antibiotic and even antiviral properties. Additional ben-
efits consist of increased resilience at discoloration, decay, and odor formation [104–107].
Unlike other inorganics, such as clays, graphene, or carbon nanotubes, which, rather, pas-
sivate the textile host, metal-based nanoparticles also act as biocides through the active
release of metal ions that compromise the cell membrane and subsequently the cytoplas-
mic metabolism in a cascade of events driven by enhanced free radical formation and
biomolecule conjugation [108]. A generally accepted mechanism of action is depicted in
Figure 3.
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antimicrobial active agents.

However, despite the fact that various effects against a plethora of microbial and viral
types and strains are frequently reported and reviewed, specific mechanisms, targets, and
taxonomies are still far from a complete elucidation [109–116].

The most studied and used to date for textile modification are silver and copper oxide
nanoparticles, which are considered to be the most effective antimicrobial agents, followed
by zinc oxide and titanium dioxide (Tables 2–5). Other metals and metal oxides are also
applied; however, to a lesser extent [117]. The application of other potential metal-based
nanoparticles may be limited either by price (gold) or facile surface oxidation (copper),
or is prohibited due to their higher toxicity to humans and environment, as in the case of
chromium and nickel. It must be mentioned that a high number of heavy metal species,
including copper, zinc, and titanium salts and complexes, could be present in traces to
sizeable amounts within the unmodified textile materials, originating from raw materials
and processing, but especially from the dyeing steps, which may interfere with the further
added nanoparticles [118,119].
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Table 2. Examples of textile modification with silver nanoparticles (AgNPs).

Fiber/Textile
Type Preparation Morphology/Content Microbial Strains Applicative

Characteristics Refs.

Plain weave
100% bleached
organic cotton

fabric

Dip and dry coating

49.23 mg/kg,
73.28 mg/kg; eventually

embedded in
alginate matrix

Gram-positive
Staphylococcus aureus
ATCC 6538/Gram-
negative Escherichia
coli ATCC 873937

Antibacterial and UV
protection; superior

coloration effect; leakage
of about

2.04 mg/kg/cycle
during first fifteenth

washing cycle

[120]

Brown cotton
fiber

In situ one-step
process under

heating

8−21 nm spherical
particles; 12.8 µg/kg

weight fraction
formation of Ag NPs

Gram-positive
Staphylococcus aureus
ATCC 6538/Gram-

negative
Pseudomonas

aeruginosa ATCC
9027

Stable antibacterial
activity for 50 cycles
of laundering; good
dispersion; potential

applications in
sportswear,

underwear, and medical
textiles

[121]

Commercial
polyamide
6,6 fabric

PVP-AgNP
dispersions

deposited on
PA66 with/without

DBD plasma
pretreatment

20 nm PVP-AgNP
colloids

Gram-positive
Staphylococcus aureus
ATCC 6538/Gram-
negative Escherichia

coli ATCC 25922

Plasma-treated
polyamide fabric

maintains antimicrobial
activity even at very low
Ag concentration after

five washing cycles

[122]

Cellulosic/cotton
fabrics

Photochemical
reduction in

Na–CMC solutions

2–8 nm/5–35 nm
spherical polydis-

perse/monodisperse
nanoparticles

Staphylococcus
epidermidis/Candida

albicans

Antifungal effect;
prevents odor formation [123]

Polyamide
6 fibers

Electroless plating
method; fibers

pretreated with a
dopamine/CuSO4/

H2O2 system

Average particle size of
223 nm; surface
continuous and
compact silver

layer

Escherichia coli
AATCC

11229/Staphylococ-
cus aureus AATCC

6538

Antimicrobial
efficiency of 99.9% and
100% against E. coli and

S. aureus decrease to
83.5% and 87.9%,
respectively after

1 h/2 h of ultrasonic
washing; potential use

as antibacte-
rial/conductive

textiles

[124]

Commercial
prewashed PES

fabric

Spray coating of PES
with layers of

chitosan or HMDSO
before

and after AgNP
deposition

Quasi-spherical particles
of 20–30 nm with
relative uniform

distribution

Staphylococcus
aureus/Escherichia

coli

Fast and cost-effective
method; controlled

release of silver;
antimicrobial effect

reduced by washing;
applications in medical

textiles

[23]

Reusable and
single use face

masks

Testing of
commercial face

masks from a
safe-by-design

perspective

Silver detected in both
the external and the
internal layer under

both ionic and
nanoparticulate form;
mostly near-spherical

particles of 13 to 155 nm

viral pathogens

Evaluation of content,
type and in situ
localization of

silver-based biocides
face; safety of

silver-containing masks

[125]
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Table 2. Cont.

Fiber/Textile
Type Preparation Morphology/Content Microbial Strains Applicative

Characteristics Refs.

Scoured and
bleached 100%
cotton fabric of

plain weave
structure

In situ
deposition of Ag
nanoparticles on

cotton fabrics
premodified with

dopamine

Medium size of
33–43 nm

Staphylococcus
aureus/Escherichia

coli

Dopamine is effective in
nanoparticles

immobilization; ~98%
remanent activity after

twenty wash cycles

[126]

Na–CMC: sodium–carboxymethylcellulose. DBD: dielectric barrier discharge. PVP: poly(N-vinylpyrrolidone).

Table 3. Examples of textile modification with copper oxides nanoparticles (CuO NPs).

Fiber/Textile
Type Preparation Morphology/Content Microbial Strains Applicative

Characteristics Refs.

Bleached and
mercerized

cotton
fabric (100%)

Pure and hybrid
CuO/colloidal

chitosan nanosol
sonochemically

prepared; cotton
coating by

pad–dry–cure method

Spherical morphology
with irregular formation;

medium size of 58 nm

Staphylococcus
aureus/Escherichia

coli

Improved antibacterial
activity for hybrid

coatings after ten wash
cycles

[127]

Fine–medium-
weight 100%
cotton woven

fabric

Ex situ by wet
chemical method/

pad–dry–cure method

Spherical shape; size of
60–75 nm

Staphylococcus
aureus/Escherichia

coli

Antimicrobial activity
decreases at laundering

(S. aureus:
74.36%/12.05% after
10/20 cycles; E. coli:
69.54%/9.85% after

10/20 cycles washes;
potential healthcare and

hygiene uses

[128]

Cotton fabrics
Green synthesis

with R. tuberosa leaf
extract

Polydisperse nanorods
ranging from 20 to

100 nm

Staphylococcus aureus;
Escherichia coli;

Klebsiella
pneumoniae

Prevention of fabrics
microbial damage;
bioremediation of

industrial dyes

[129]

Polyester/cotton
65/35 blend

fabric
(PES/CO)

In situ impregnation
by the pad–dry/pad–
dry/pad–thermofix

process

Sizes of about 3 nm and
20 nm

antiviral species:
SARS-CoV-
2_COV2019

ITALY/INMI1 and
Human Corona

Virus 229E strain
ATCC VR-740;

Escherichia coli ATCC
25922 strains

99.93%; 99.96%
inactivation efficiency
(30; 60 min exposure)
against SARS-CoV-2;

99% efficiency on E. coli
growth after 20 wash
cycles; reusable face

masks with
antiviral/antibacterial

properties and reduced
environmental
contamination

[130]

70% cotton and
30% polyester
mixed textiles

In situ and ex situ
green and chemical

syntheses

Green route: spherical
morphology with sizes

of 2.4 ± 0.5 nm;
chemical route: no

defined geometry with
average size of

75 ± 28 nm

E. coli ATCC No.
8739/S. aureus ATCC

No. 6538 bacteria;
Aspergillus brasiliensis

ATCC No. 16
404 fungus

In situ method and
734 ppm Cu2O gives

better antifungal effects;
high potential against

aspergillosis

[131]
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Table 3. Cont.

Fiber/Textile
Type Preparation Morphology/Content Microbial Strains Applicative

Characteristics Refs.

Rolls of cotton,
plain

unbleached
woven cotton

In situ sonochemical
method; “throwing the

stones” (TTS)
technology with

preformed colloids
and ultrasound
impregnation

Homogeneous layer of
~40 nm nanoparticles on
cotton fibers (0.9% w/w

CuO)

HDF/HepG2 cells

Low toxicity (>95% HDF
cell viability);

nanoparticles do not
penetrate the skin

barrier; potential uses as
antimicrobial fabrics for
bed sheets, curtains, and

laboratory coats

[132]

100% cotton
fabric

In situ by exhaust
dyeing method

Small nanoparticles of
different sizes and
shapes randomly

distributed on fiber
surfaces

Escherichia coli

Still efficient after
20 washes, could be an

economic alternative for
antimicrobial textiles

[133]

Fabric samples

CuO biosynthesis with
Aspergillus terreus
strain AF-1; ex situ

pad–dry–cure method

Homogeneous
distributions of

spherical, 11–47 nm
nanoparticles; 6.1%

elemental composition

Bacillus subtilis ATCC
6633, Staphylococcus
aureus ATCC 6538,

Escherichia coli ATCC
8739, and

Pseudomonas
aeruginosa ATCC

9027

Green synthesis;
potential uses in
healthcare and

hygiene products

[134]

Cotton fabric

Plasma pretreated
cotton fabric; ex situ

coating by
pad–dry–cure method

Fabric roughness
gradually rises with
increases in plasma

treatment time; 40 nm
sized CuO nanoparticles

Bacillus subtilis,
Staphylococcus aureus,

Salmonella
typhimurium,

Klebsiella pneumoniae

Potential uses in various
biomedical

applications
[135]

Table 4. Examples of textile modification with zinc oxide nanoparticles (ZnONPs).

Fiber/Textile
Type Preparation Morphology/Content Microbial Strains Applicative

Characteristics Refs.

Bleached
woven cotton
fabric (100%;
144 g/m2)

Single-step
sonoenzymatic process

30–120 nm Zn
nanoparticles

Staphylococcus aureus;
Escherichia coli

Nanoparticles
agglomeration regardless
the enzyme used; 33.4%
Zn retained on fabrics

after ten washing
cycles; potential

antibacterial medical
textiles

[136]

100% plain
woven cotton

fabrics

Plasma pretreated
cotton woven fabric; in

situ, sonochemically

Spherical shape with
20–90 nm diameter Staphylococcus aureus

Stability improves by
cotton fabric

prefunctionalization
with plasma; Zn content
goes from 5.63% to 5.41%
after five washing cycles

[137]

Polyamide 6
(PA),

polyethylene
terephthalate

(PET) and
polypropylene

(PP) textiles

Chemical bath
deposition; washing;

thermal
stabilization;

hydrothermal
formation of

nano/microrods

Irregular needles,
flower-like

agglomerates and
nano/microrods

Escherichia coli;
Staphylococcus aureus

Significant antibacterial
activity, particularly in the

case of PA/ZnO and
Gram-negative bacteria;

potential uses in everyday
life applications

[138]
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Table 4. Cont.

Fiber/Textile
Type Preparation Morphology/Content Microbial Strains Applicative

Characteristics Refs.

100% cotton
yarns and

polyester/cotton
(67/33) blend

yarns

Exhaust–dry–cure
method

Sizes ranging between
30 and 90 nm

Staphylococcus aureus;
Escherichia coli

Antimicrobial efficacy of
samples increases at

blends, higher yarn twists
and lower particle sizes

[139]

100% cellulose
cotton

Pad–dry–cure method
assisted by open-air
plasma modification;
green sonochemically
nanoparticle synthesis
with Psidium guajava
Linn (guava) plant

extract

Hexagonal
nanoparticles

of about 41 nm
agglomerated into

larger clusters

Staphylococcus aureus;
Escherichia coli

Open-air plasma
treatment enhances

nanoparticle adsorption;
self-cleaning activity of

94% after five
washing cycles

[140]

Gray cotton
fabric (100%

cotton) of plain
weave

structure

Pad–dry–cure method
and thermo-fixation
with sonochemically

synthesized ZnO
nanoparticles

Nearly spherical
nanoparticles with an

average size of
40–100 nm; 0.5%, 1%,
and 2% ZnO content

Staphylococcus aureus;
Escherichia coli

86% reduction of
microorganisms after

15 washes; uses as
multifunctional textiles

with antimicrobial,
self-cleaning,

and UV protective
properties

[141]

Table 5. Examples of textile modification with titanium dioxide nanoparticles (TiO2NPs).

Fiber/Textile
Type Preparation Morphology/Content Microbial Strains Applicative

Characteristics Refs.

Polyamide
66 cloth in

plain weave
Pad–dry–cure process 700 nm particles

Aspergillus niger
NRRL-A326 (fun-

gus)/Staphylococcus
aureus ATCC 6538-P
(G+)/Escherichia coli

ATCC 25933
(G)/Candida albicans
ATCC 10231 (yeast)

Hydrophobic;
photocatalytic

self-cleaning activity; UV
protection activity;

potential applications in
air filters, outdoor textiles,

furniture, and medical
textiles

[142]

Nylon
66 knitted

fabrics

Synthesized by sol–gel
method; subsequently

applied by layer by
layer (LBL) technique

Medium size of
40–60 nm; tendency to

aggregation

Staphylococcus aureus
(NCTC

3750)/Escherichia coli
(AATCC-10148)

Potential applications in
optics, biosensing,

separation membranes
and technical textile

[143]

Cotton–
polyester twill
fabric (70–30%)

In situ coating Average diameter size
of 98 nm - UV protective properties [144]

Cotton fabric

Immersion in a
mixture of

perfluorodecyl
triethoxysilane and
TiO2NPs solution

Medium size of 50 nm;
uniform coating E. coli

Water repellency;
self-cleaning; oil–water

separation; stain
resistance; antibacterial

properties

[145]
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Table 5. Cont.

Fiber/Textile
Type Preparation Morphology/Content Microbial Strains Applicative

Characteristics Refs.

Plain woven
cotton

mercerized
fabric

Pad–dry–cure method;
functionalization with

trimethyl[3-
trimethoxysilyl)

propyl] ammonium
chloride to enhance

the affinity

Particles of 30 nm;
4% dried TiO2 NPs by

weight
S. aureus/E. coli

Dye degradation;
antibacterial properties;
multifunctional cotton

fabric for outdoor,
industrial and medical

applications

[146]

Cotton fabrics
lab coat and

indiolino
fabrics

In situ impregnation;
sonochemically,

hydrothermal and
solvothermal synthesis

of TiO2 particles

Homogeneous
distribution on the

cotton fabric surface

Escherichia
coli/Bacillus pumilus

Sonosynthesis with Ti
isopropoxide as precursor
enhances the bactericidal

activity; self-cleaning
properties; potential use

for face masks

[147]

Despite their proven efficiency and specific advantages, the application of metallic and
metal oxide nanoparticles as antimicrobial additives for textile materials should always take
into account their toxicity and environmental impact by leaching and disposal [148–150].
Leaching, furthermore, limits the type and number of uses for a given item, but also exhibits
higher biocidal activity [18,151].

There are basically two methods of producing antimicrobial textiles based on metal and
metal oxides: ex situ and in situ [13,152–154]. Ex situ methods are related to the incorporation
of previously synthesized nanoparticles through direct application to the targeted textile
matrix, commonly by the pad–dry–cure technique, which involves a chain sequence of
immersion into the nanoparticulate colloidal solution followed by pressurization, drying,
and curing. The main drawback of this simple technique, given by the poor adhesion to
the constitutive fibers, which favors nanoparticle leaks, agglomeration, and inhomogeneity,
could be addressed by the addition of carboxylic acids, thiols, or generation of reactive
and negatively charged groups onto the initial fabric surface through chemical or physical
means, cross-linking, as well as by incorporating macromolecular stabilizing agents in
either one or both raw media.

In situ methods suppose the initial adsorption of metal ions at the level of fiber surfaces
followed by their conversion to nanoparticles by chemical reduction or radiation, which
improves the stability and distribution. Before, during, or after nanoparticles formation, the
surface of textile scaffold may be modified in similar ways. As an alternative, nanoparticles
could be also synthesized during polymerization or fiber spinning, followed by processing
into final textile products.

5. Challenges in Antimicrobial Textiles Manufacturing

Antimicrobial textiles have to meet a series of requirements due to their wide range of
applications (hydrophilic/hydrophobic, breathable, safe, nontoxic, resistance to cleaning
cycles, etc.) and one of the most relevant for their purpose is the antimicrobial activity.

Tests for antimicrobial activity are standardized by international organizations and
can be divided into two classes [7,14,155]:

a. qualitative tests—AATCC TM147, AATCC TM30 (American Association of Textile
Chemists and Colorists Test Method), ISO 20645, ISO 11721 (International Organiza-
tion for Standardization) and SN 195920, SN 195921 (Swiss standard);

b. quantitative tests—AATCC TM100, ISO 20743, SN 195924, JIS L 1902 (Japanese
industry standards) and ASTM E 2149 (or its modification) [156].

Qualitative evaluation is fast and simple, based on the formation of an inhibition
area around the tested sample. This does not necessarily mean the sample is biocide, but
that it is only biostatic. Therefore, it is not possible to compare the activity of different
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antimicrobial agents or textiles. Quantitative assessment provides information on the level
of performance, but it can be also used as criterion for the optimization of the finishing
reagent and/or method. It requires more time and is more specific as it relies on the count
of microorganisms. The main drawback of these tests is their high susceptibility to be
contaminated and compromised. Therefore, they are performed under strictly controlled
conditions. At the same time, the lack of a unitary standard, the poor reproducibility, and
the effectiveness of the microbial extraction from samples are factors that affect the tests
accuracy in a negative way. Complementary tests, such as viability tests, colorimetric
analysis, staining, and microscopy, are useful and their results can be corroborated.

Another issue that has to be addressed is the environmental impact of antimicrobial
textiles waste. On one hand, there is the problem of the non-biodegradable textile support
(synthetic polymers), and the most eloquent example is the massive accumulation of pro-
tective masks discarded in nature in the last years. On the other hand, some antimicrobial
reagents used as textile finishing may end up in water biotopes and their accumulation
will negatively affect the natural balance, as in the case of quaternary ammonium salts
and derivatives, and triclosan (half-life in lake water is approximately 10 days and the
degradation products, such as methyl triclosan, are more toxic) [7].

Associated with this issue is the problem of nanoparticles released from the antimi-
crobial textile and which migrate into the human body, where they can accumulate within
various tissues as they can easily penetrate the cell wall barrier. This concern arose along
with the development of nanotechnology and its applications in medicine, healthcare,
pharmaceutics, and cosmetics. For example, clinical studies on the accumulation of silver
nanoparticles in living tissues confirmed its toxicity [157].

Other challenges in antimicrobial textiles that have been already tackled are:

- the use of natural plant fibers with intrinsic antimicrobial activity, raw or modified [158];
- employ of biopolymers with intrinsic antimicrobial activity (i.e., chitosan) as both

support and antimicrobial finishing, and with multiple functionality [159];
- combining various antimicrobial compounds in order to enhance the effect in the

final product; for example, plant extracts and plant-derived molecules with biologic
activity have been encapsulated in chitosan particles that were subsequently used as
antimicrobial finishing for cotton fabrics [160];

- use of complex antimicrobial formulations including metals, metal oxides, and other
nanoparticles (Ag, TiO2, silica), natural compounds (curcumin, Aloe vera), and binders;

- increasing the compatibility between the textile substrate and the antimicrobial finish-
ing in order to achieve materials with enhance stability and wearability;

- a constant concern to maintain the production cost of most of these materials in the
affordable range for the public—this can be achieved through an increased funding of
research, both from public and private funds, and a more active involvement of the
business community in healthcare and environmental protection.

6. Conclusions and Future Trends

The domain of highly specialized textiles with antimicrobial functionality is, without
a doubt, a very active field of research, both theoretically and practically, and a contin-
uously expanding market as a result of the societal demand. The multivalent nature of
the textile substrate (natural fibers, synthetic fibers, blends of natural and synthetic fibers,
biopolymers, natural plant fibers with intrinsic biocide/biostatic activity), the wide variety
of antimicrobial finishing materials (organic synthetic compounds, synthetic polymers,
natural and naturally-derived compounds, metals and metal oxides, raw or functionalized
silica micro- and nanoparticles), the broad range of processing techniques (coating, microen-
capsulation, grafting and copolymerization, plasma processing, electrospinning, sol–gel
methods, etc.) and applications (biocides/biostatics, antibacterial, antifungal, antiviral,
water and air filtration media, protective personal clothing and masks, sports- and footwear,
upholstery, hospital beddings, wound dressings, etc.) are factors that clearly illustrate the
complexity of this domain. At the same time, each and every one of them can become a
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driving force orienting the research toward new frontiers, as presented in this paper using
some of the most recent advances reported in the literature.

New trends have already emerged. One major advance is represented by the highly
specialized textiles with antiviral activity which are even more relevant given the viruses’
natural ability to evolve by mutations, as substantiated by studies on aggressive epi-
demics/pandemics (SARS-CoV, MERS-CoV, SARS-CoV-2, Ebola, West Nile, etc.). The
development of up-to-date antiviral drugs and vaccines is time-consuming, so antiviral
textiles are a realistic alternative and can contribute to significantly limit, or even control,
the viruses’ proliferation and spreading (textile biosensors). Even more, computational
modeling can be considered a valuable tool in order to assess the virus–receptor interaction
and factors affecting the binding affinity, and then to model the corresponding counter-
parts designed to bind and neutralize the virus. Modern processing techniques, such as
plasma-assisted methods, are helpful as well.

Combining green processing, such as sonochemical methods, plasma-assisted pro-
cedures, sol–gel techniques, in situ growth of nanoparticles (i.e., green synthesis of Ag
nanoparticles is nontoxic, cost-effective, and accurate), and green antimicrobial reagents
(natural and naturally-derived compounds) for textile finishing represent another trend
that has already confirmed most expectations. By this approach, antimicrobial textiles with
multiple functionality (anti-inflammatory, antibacterial, antifungal, anti-odor, etc.) can
be manufactured.

Last, but not least, the increasing awareness of the environmental risk associated with
the careless disposal of textiles with antimicrobial finishing must be considered. Medical
waste is disposed of in a controlled manner, but the reckless discharge of some antimicrobial
textiles from domestic applications has become rapidly a source of concern (i.e., the massive
accumulation in nature of personal masks after the SARS-CoV-2 pandemics). The manage-
ment of non-biodegradable plastic waste, as well as the monitoring and neutralization of
toxic reagents accumulated in various biotopes, are valid solutions that must be considered
in a general plan for the coherent elimination of antimicrobial textiles, or even the partial
recycling of some of them, at least those designed to be wearable and resistant to multiple
cycles of washing and wet/dry cleaning.

Highly specialized textiles with antimicrobial functionality are becoming more and
more part of our everyday lives. Therefore, regardless of how much we appreciate the
advantages, we must not minimize the risks and disadvantages of their use. In order to
control and limit them, we need a very active research–development–innovation flow,
which has been shown, and the commitment to transfer the solutions offered by research
to practice.
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Deposition of Zinc Oxide on Different Polymer Textiles and Their Antibacterial Properties. Materials 2018, 11, 707. [CrossRef]

139. Palaniappan, G. Study on the Antimicrobial Efficacy of Fabrics Finished with Nano Zinc Oxide Particles. J. Textile Sci. Eng.
2020, 10.

140. Irfan, M.; Naz, M.Y.; Saleem, M.; Tanawush, M.; Głowacz, A.; Glowacz, W.; Rahman, S.; Mahnashi, M.H.; Alqahtani, Y.S.; Alyami,
B.A.; et al. Statistical Study of Nonthermal Plasma-Assisted ZnO Coating of Cotton Fabric through Ultrasonic-Assisted Green
Synthesis for Improved Self-Cleaning and Antimicrobial Properties. Materials 2021, 14, 6998. [CrossRef]

141. Tania, I.S.; Ali, M.; Akter, M. Fabrication, Characterization, and Utilization of ZnO Nanoparticles for Stain Release, Bacterial
Resistance, and UV Protection on Cotton Fabric. J. Eng. Fiber. Fabr. 2022, 17, 114238. [CrossRef]

142. Abdel Salam, K.A.; Ibrahim, N.A.; Maamoun, D.; Abdel Salam, S.H.; Fathallah, A.I.; Abdelrahman, M.S.; Mashaly, H.; Hassabo,
A.G.; Khattab, T.A. Anti-Microbial Finishing of Polyamide Fabric Using Titanium Dioxide Nanoparticles. J. Text. Color. Polym. Sci.
2023, 20, 171–174. [CrossRef]

143. Kale, R.D.; Meena, C.R. Synthesis of Titanium Dioxide Nanoparticles and Application on Nylon Fabric Using Layer by Layer
Technique for Antimicrobial Property. Adv. Appl. Sci. Res. 2012, 3, 3073–3080.

144. Rabiei, H.; Farhang Dehghan, S.; Montazer, M.; Khaloo, S.S.; Koozekonan, A.G. UV Protection Properties of Workwear Fabrics
Coated with TiO2 Nanoparticles. Front. Public Health 2022, 10, 929095. [CrossRef]

145. Tudu, B.K.; Sinhamahapatra, A.; Kumar, A. Surface Modification of Cotton Fabric Using TiO2 Nanoparticles for Self-Cleaning,
Oil-Water Separation, Antistain, Anti-Water Absorption, and Antibacterial Properties. ACS Omega 2020, 5, 7850–7860. [CrossRef]
[PubMed]

146. Riaz, S.; Ashraf, M.; Aziz, H.; Younus, A.; Umair, M.; Salam, A.; Iqbal, K.; Hussain, M.T.; Hussain, T. Cationization of TiO2
Nanoparticles to Develop Highly Durable Multifunctional Cotton Fabric. Mater. Chem. Phys. 2022, 278, 125573. [CrossRef]

147. Alvarez-Amparán, M.A.; Martínez-Cornejo, V.; Cedeño-Caero, L.; Hernandez-Hernandez, K.A.; Cadena-Nava, R.D.; Alonso-
Núñez, G.; Moyado, S.F. Characterization and Photocatalytic Activity of TiO2 Nanoparticles on Cotton Fabrics, for Antibacterial
Masks. Appl. Nanosci. 2022, 12, 4019–4032. [CrossRef] [PubMed]

148. Riaz, S.; Ashraf, M.; Hussain, T.; Hussain, M.T.; Rehman, A.; Javid, A.; Iqbal, K.; Basit, A.; Aziz, H. Functional Finishing and
Coloration of Textiles with Nanomaterials. Color. Technol. 2018, 134, 327–346. [CrossRef]

149. Abu-Qdais, H.A.; Abu-Dalo, M.A.; Hajeer, Y.Y. Impacts of Nanosilver-Based Textile Products Using a Life Cycle Assessment.
Sustainability 2021, 13, 3436. [CrossRef]

150. Ramzan, U.; Majeed, W.; Hussain, A.A.; Qurashi, F.; Qamar, S.U.R.; Naeem, M.; Uddin, J.; Khan, A.; Al-Harrasi, A.;
Razak, S.I.A.; et al. New Insights for Exploring the Risks of Bioaccumulation, Molecular Mechanisms, and Cellular Toxicities of
AgNPs in Aquatic Ecosystem. Water 2022, 14, 2192. [CrossRef]

151. Owen, L.; Laird, K. Development of a Silver-Based Dual-Function Antimicrobial Laundry Additive and Textile Coating for the
Decontamination of Healthcare Laundry. J. Appl. Microbiol. 2021, 130, 1012–1022. [CrossRef]

152. Shahidi, S.; Jamali, A.; Dalal Sharifi, S.; Ghomi, H. In-Situ Synthesis of CuO Nanoparticles on Cotton Fabrics Using Spark
Discharge Method to Fabricate Antibacterial Textile. J. Nat. Fibers 2018, 15, 870–881. [CrossRef]

153. Shahid-ul-Islam; Butola, B.S.; Kumar, A. Green Chemistry Based In-Situ Synthesis of Silver Nanoparticles for Multifunctional
Finishing of Chitosan Polysaccharide Modified Cellulosic Textile Substrate. Int. J. Biol. Macromol. 2020, 152, 1135–1145. [CrossRef]
[PubMed]

154. Huang, C.; Cai, Y.; Chen, X.; Ke, Y. Silver-based nanocomposite for fabricating high performance value-added cotton. Cellulose
2021, 29, 723–750. [CrossRef] [PubMed]

155. Haase, H.; Jordan, L.; Keitel, L.; Keil, C.; Mahltig, B. Comparison of Methods for Determining the Effectiveness of Antibacterial
Functionalized Textiles. PLoS ONE 2017, 12, e0188304. [CrossRef]
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