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Abstract: Instead of contributing to global warming by the traditional method—burning crop
wastes—in this study, discarded pineapple leaves were rapidly turned into multifunctional fibers:
pineapple leaf fibers (PALF). In addition, the presence of pure hydrogen during treatment can be
a competitive advantage. PALF were extracted by a conventional technique, then immersed into
sodium hydroxide 6% before it was treated with an electrolysis system of sodium chloride 3%. The
crystallinity index increased 57.4% of treated PALF, and was collected from XRD. Meanwhile, the
removal of hemicellulose and lignin in the fiber formation was presented at the absorbance peak of
around 1730 cm−1 by FTIR spectrums. Simultaneously, the purity of hydrogen reached 99% and was
confirmed by GC analysis. The obtained PALF and hydrogen can be used for further consideration,
aiming for a circular economy.
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1. Introduction

Pineapple is the favored and the third most consumed fruit in the world. In 2017, the
worldwide area for growing pineapple was 1.1 million hectares, equivalent to 1318 thou-
sand ton parts of leaves released as agro-wastes [1]. Most discarded leaves will be burned
and fermented to provide organic fertilizer, as in the conventional method [2]. However,
enormous particulate matter (PM) with high concentration has appeared from burning that
may cause cardiovascular diseases to humans exposed to it [3]. Furthermore, a significant
amount of carbon dioxide (CO2) released from the pyrolysis of organic compounds will
certainly contribute to the dire state of global warming. This affects to net-zero carbon
emission target between 2040 and 2060 [4].

Recently, pineapple leaf has become a candidate to develop into a natural fiber since it
contains up to 80–81% cellulose, just 4.6–12% lignin and 6–19% hemicellulose [5]. There
are several functions that pineapple leaf fiber (PALF) can take responsibility for, such as
heavy metal adsorbent [6], green acoustic absorber [7], thermal insulation material [8], and
biodegradable plastic [9].

In the fabrication of PALF, the extraction is a mechanical treatment that was a conven-
tional procedure. This process removed the epidermal tissue of the pineapple leaf to form
PALF [10]. There were several kinds of extraction, such as manual extraction, machinery
extraction, and the retting process. Adad et al. [11] were successful in using a ceramic
plate to extract fiber bundles by applying friction force, but this method is only suitable
for the long leaves and requires human effort. Meanwhile, Das et al. [12] revealed the
effectiveness of using a machine to extract fibers; it can produce at least 15 kg of fiber per
day. However, the operation of this process and the reduction of damage to fiber products
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might be considered. According to Asim et al. [13], in the retting process, pineapple leaf
was immersed in a solution that contained diammonium phosphate or urea to release the
fibers. This method requires a long treatment time and is also a non-eco process. Although
those processes can certainly collect PALF, its properties may not satisfy expectations.
Hence, chemical treatment, including the softening and bleaching process, was applied as
a method to enhance the quality of PALF. The objective here was to remove hemicellulose,
lignin, and other substances [14]. In the softening process, sodium hydroxide usage was
widely spread [15]. To decolorize and eliminate excess hemicellulose and lignin, the bleach-
ing process with oxidation agents (e.g., hydrogen peroxide, sodium hypochlorite) was an
encouraging aid [16,17]. In addition, this chemical treatment also assists to improve the
crystallinity and surface morphology of PALF [18]. Gadzama et al. [19] conducted a study
that treated PALF with 2% NaOH and 10% NaOCl in 3.25 h can form a fiber in the diameter
range of 25–58 nm. Likewise, Cordeiro et al. [20] also reported that surface properties of
PALF can be enhanced by treating raw leaves with 4% NaOH and some other chemicals
within a couple of hours.

Despite traditional mechanical and chemical methods being dominant in the treatment
of pineapple leaves, the application of electrochemical methods to PALF formation seems
to be a good alternative; it not only shortens the treatment time, but also reduces CO2
emission and generates pure hydrogen.

The electrolysis of brine with conditions of no separator and low concentration was
mentioned as the procedure to produce high oxidized ions (OCl−) [21]. Moreover, a massive
amount of pure hydrogen continuously released at the surface of negative electrode [22].
These processes would happen after electrochemical and chemical reactions. Firstly, the
reduction of water (Equation (1)) and the oxidation of chloride (Equation (2)) take place on
the cathode and the anode surface, respectively:

2H2O + 2e− → 2OH− + H2 (1)

2Cl− → Cl2 + 2e− (2)

In the second stage, the hypochlorite formation process begins:

Cl2 + 2OH− → OCl− + Cl− + H2O (3)

Overall reaction:
NaCl + H2O→ NaOCl + H2 (4)

In this work, the utilization of a brine electrolysis system for handling pineapple
leaves was investigated. Afterwards, the PALF would be analyzed for surface morphology
with scanning electron microscopy (SEM), crystallinity index (CI) with X-ray diffraction
(XRD), and functional groups with Fourier transform infrared (FTIR) analyzer. Additionally,
through gas chromatography (GC) analysis, the presence of hydrogen from electrolysis
process also was noticed.

2. Materials and Methods
2.1. The Formation of PALF

The pineapple leaves used collected from a pineapple (Ananas comosus) plant in
Taiwan (R. O. C.), which is located in East Asia. Similar to the principle of machinery
extraction [23], a wooden hammer was used to extract the microfibrils below the leaf epi-
dermis to form PALF. For softening process, the extracted leaves were immersed in sodium
hydroxide (NaOH, was purchased from Union Chemical Works Ltd., Hsinchu, Taiwan)
which was prepared by stirring 24 g of pellets in 376 g of water to obtain 400 g solution for a
concentration of 6%. After 1 h, the softened PALF was moved to the electrolysis system for
bleaching with 3% sodium chloride solution (NaCl, was purchased from Union Chemical
Works Ltd., Hsinchu, Taiwan) which was acquired from 12 g of particles dissolved in water
to 400 g and Pt coated Ti electrodes, and the operating condition 10 V–1.1 A was provided
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by DC regulated power supply (TES 6210, Taipei, Taiwan) in 3 h (illustrated in Figure 1).
The chemicals used in this work were certified reagent grade. Finally, PALF was dried in
a dryer oven (Deng Yng DO45, New Taipei, Taiwan) at 80 ◦C for 4 h and next ready to
analyze the characterizations.
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Figure 1. Illustration of electrolysis system with hydrogen collection for GC analyzer by 1 mL syringe.

2.2. Characterization of PALF

The specimen of three different stages was characterized as named untreated-PALF
(U-PALF), softened-PALF (S-PALF), and bleached-PALF (B-PALF). The analyzed samples
must be dried.

2.2.1. Scanning Electron Microscopy and Visual Appearance

SEM is a necessary analysis that helps to determine the basics of surface morphology
and structural changes. The morphological study was performed by SEM machine (Hitachi
S4800, Fukuoka, Japan). This instrument was operated with an emitted current of 10,600 nA,
accelerated voltage of 3 kV, and working distance between the aperture and specimen was
adjusted from 9.2 to 10.4 mm. In addition, the apparent color change visually also verifies
the transformation on the fibers structure.

2.2.2. X-ray Diffraction

X-ray diffraction patterns of PALF were collected by using an X-ray diffractometer
(Bruker D2 phaser, Billerica, MA, USA) with the operating conditions of voltage and current
at 30 kV and 10 mA, respectively. The value of crystallinity index of untreated, softened,
and bleached PALF samples were calculated using the method (Equation (5)) proposed
by [24].
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C =
I200 − Ia

I200
× 100% (5)

where I200 corresponds the maximum intensity of diffractogram (at about 22◦ of 2θ), Ia
gives the intensity of amorphous band appeared as the valley between 110 and 200 at 18◦

of 2θ [25,26]. Furthermore, the crystallite sizes of the PALF samples were determined by
Debye-Scherrer’s law in Equation (6):

D =
Kλ

β cos θ
(6)

With D represents the crystallite size (CS), λ is the wavelength of the Cu-K radiation
of 0.154 nm, β is Full-Width-Half-Maximum (FWHM) (radians), K is the correction factor
of 0.94, and θ (radians) is collected as the diffraction Bragg’s angle of the highest peak from
XRD diffractogram.

2.2.3. Fourier Transform Infrared Spectroscopy

All dried samples were characterized by using an FTIR spectrometer (PerkinElmer,
France). Attached ATR spectroscopy was used to determine the change of functional
groups in PALF before and after each treatment step. The spectrums were graphed with
wavelengths from 4000 to 650 cm−1.

2.3. Gas Chromatography

To guarantee hydrogen’s presence during the period of electrolysis, an gas chromatog-
raphy (8700 T) has a thermal conductivity detector with carrier gas (argon), stainless-steel
pipe column (with a dimension of 1/8 mm ID × 4 m), detector (at 40 ◦C), injector (40 ◦C),
column (at 28 ◦C). All hydrogen samples would be collected by taking the gas output from
a rubber stopper with 1 mL laboratory syringe.

3. Results and Discussion
3.1. Hypochorite Production

In the past decade, hypochlorite (OCl−) was known as a potent oxidizing agent that
can react with biological molecules [27]. Thus, it plays a crucial role in oxidizing pineapple
leaves to PALF in this study. According to Mohamed et al. [28], immersing PALF into
containing OCl− solution can also reinforce PALF properties. Electrochemical with the
presence of chloride can release OCl−, Equations (1)–(4) have performed that. The amount
of hypochlorite can be determined by Faraday’s law equation [29]:

m =
MIt
nF

(7)

where m is the production of OCl− (g), M and n are molar mass of OCl− (g mol−1) and
electrons exchanged (n = 2), respectively, I is applied current (A), and F represents Faraday
constant (96,487 C mol−1) in time t (h). As such, the total amount of hypochlorite was 3.17 g
in 3 h of treatment. The experimental volume was set at 400 mL, the hypochlorite rate per
volume (mg L−1) thus was 7919. Similarly, Saleem, et al. [30] showed the electrochemical
method can apply to the onsite production of sodium hypochlorite, and the optimal
concentration of NaOCl in the study was around >7000 mg L−1 in 3 h. This result revealed
that hypochlorite can be produced greatly by electrolyzing chloride-containing solution.
In such manner, the amount of produced hypochlorite with the experimental condition is
sufficient to improve PALF in this study.
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3.2. Surface Morphology

Based on Figure 2, visual observation showed a difference in the intensity of color and
brightness after each treatment step. Plus, cellulose fibers in Figure 2c with an off-white
ensured that the oxidation and decolorization occurred during the electrolysis of brine.
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Figure 2. Visual images of (a) U-PALF, (b) S-PALF, (c) B-PALF after oven-dried in 4 h at 80 ◦C.

The SEM analysis results in Figure 3 display the average diameter size of a fiber bundle
fluctuated from 30 to 50 µm. It is similar to the Josephine pineapple cultivar, which is
known as a species supply the finest fiber bundle with a diameter below 0.1 mm [28]. The
surface of untreated fiber bundle presented several defects such as roughness and irregular
significantly due to the existence of hemicellulose, lignin, and other impurities. Figure 3b
revealed that a part of hemicellulose, lignin, and other substances was removed, and a
few single cellulose fibers with a diameter of 3.8 to 5 µm also were observed. Afterwards,
Figure 3c exhibited absolutely improvement in morphology. The surface of PALF became
smoother with a neat arrangement along with the apparent formation of cellulose fibers
after softening and bleaching treatment. In general, electrolysis bleaching was an akin
performance compared to Fareez, et al. [31], who conducted PALF formation with NaOH
and pure NaOCl instead of NaOH and NaOCl from the electrolysis of weak brine.

Textiles 2023, 3, FOR PEER REVIEW 5 
 

 

per volume (mg L−1) thus was 7919. Similarly, Saleem, et al. [30] showed the 
electrochemical method can apply to the onsite production of sodium hypochlorite, and 
the optimal concentration of NaOCl in the study was around >7000 mg L−1 in 3 h. This 
result revealed that hypochlorite can be produced greatly by electrolyzing chloride-
containing solution. In such manner, the amount of produced hypochlorite with the 
experimental condition is sufficient to improve PALF in this study. 

3.2. Surface Morphology 
Based on Figure 2, visual observation showed a difference in the intensity of color 

and brightness after each treatment step. Plus, cellulose fibers in Figure 2c with an off-
white ensured that the oxidation and decolorization occurred during the electrolysis of 
brine. 

 
Figure 2. Visual images of (a) U-PALF, (b) S-PALF, (c) B-PALF after oven-dried in 4 h at 80 °C. 

The SEM analysis results in Figure 3 display the average diameter size of a fiber 
bundle fluctuated from 30 to 50 µm. It is similar to the Josephine pineapple cultivar, which 
is known as a species supply the finest fiber bundle with a diameter below 0.1 mm [28]. 
The surface of untreated fiber bundle presented several defects such as roughness and 
irregular significantly due to the existence of hemicellulose, lignin, and other impurities. 
Figure 3b revealed that a part of hemicellulose, lignin, and other substances was removed, 
and a few single cellulose fibers with a diameter of 3.8 to 5 µm also were observed. 
Afterwards, Figure 3c exhibited absolutely improvement in morphology. The surface of 
PALF became smoother with a neat arrangement along with the apparent formation of 
cellulose fibers after softening and bleaching treatment. In general, electrolysis bleaching 
was an akin performance compared to Fareez, et al. [31], who conducted PALF formation 
with NaOH and pure NaOCl instead of NaOH and NaOCl from the electrolysis of weak 
brine. 

 
Figure 3. SEM images of a fiber bundle with (a) U-PALF, (b) S-PALF, (c) B-PALF. 

3.3. Crystallinity Index 
The objective of XRD analysis was to realize the crystallinity proceeding of cellulose 

fibers. The crystallization characteristics and XRD patterns of untreated, softened, and 

Figure 3. SEM images of a fiber bundle with (a) U-PALF, (b) S-PALF, (c) B-PALF.

3.3. Crystallinity Index

The objective of XRD analysis was to realize the crystallinity proceeding of cellulose
fibers. The crystallization characteristics and XRD patterns of untreated, softened, and
bleached PALF were shown in Figure 4. It presents three peaks of Bragg diffraction
angle (denoted by 2θ) from 15.39◦ to 15.54◦, 16.45◦ to 16.65◦, and 22.2◦ to 22.35◦ for
reflection assigned to 1–10, 110, and the 200 crystallographic planes, respectively. This
result accurately indicated the presence of cellulose I crystal as demonstrated by French [32].
Additionally, the crystalline phase of cellulose was an essential factor that decides the
properties of natural fibers [33]. Hence, these peaks have increased conspicuously after
each stage of the treatment was a positive result in applying electrochemical for handling
discarded pineapple leaves.
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Based on Segal’s equation, the crystallinity index of bleached cellulose was affirmed
higher than untreated cellulose, approximately 57.4%. The index of each stage has shown in
Table 1. In fact, the CI of cellulose may differ on the source and extraction procedure [34,35].
The crystallinity increased after softening and bleaching cellulose fibers has been revealed
in several studies. The CI of isolated cellulose from pineapple leave was treated with
sodium hydroxide, sodium hypochlorite, and acetic acid was higher than the untreated
one [31]. After being treated with sodium hydroxide, acetic acid, and sodium chloride,
coconut fiber showed the CI of cellulose was greater than a usual fiber [36]. According to
Mtibe et al. [37] and Rambabu et al. [38], the crystallinity increase is due to the realignment
of cellulose molecules in the crystal lattice. It will occur during the hemicellulose and lignin
removal process in amorphous regions.

Table 1. Crystallinity index and crystallite size of PALF.

PALF Crystallinity Index (%) Crystallite Size (nm)

Untreated 28.12 2.28
Softened 36.9 2.56
Bleached 44.26 2.49

The crystallite size of bleached cellulose had a diameter of 2.5 nm was larger than
2.2 nm of the untreated cellulose, which was calculated by using the Debye-Scherrer
equation. Line broadening of Full-Half-at-Width-Maximum value is inversely proportional
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to the crystallite size value [39]. Therefore, the crystallite size of bleached cellulose was
decreased which compared to softened cellulose might be due to local conditions during
the electrolysis process, it caused the degree of line broadening relative highly.

3.4. Functional Groups

FTIR was commonly used to determine the difference of functional groups in fiber
chemical composition after and before treatment. The spectrums of untreated, softened,
and bleached PALF were shown in Figure 5. All the strong and broad transmittance bands
were located at around the region of 3340, 2920, 1733, 1635, 1425, 1243, 1160, 1102, and
1032 cm−1. These wavelength positions may vary slightly depending on the analyzed PALF
samples. The location at around 3340 cm−1 has revealed the hydrogen bond of the O–H
functional group [14] which was identified as the represented group for the main chemical
properties of cellulose matrix. In addition, the reduction in transmittance intensity of O–H
vibration stretching after each treatment stage indicated the participation of free hydroxyl
groups existed in chemical reactions [40].
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Furthermore, a narrow band at valley 2920 cm−1 proved the presence of C–H stretching
from methyl groups (–CH3) of hemicellulose and cellulose [41]. The amount of this group
has tended to decrease gradually in this study. The protrusion of absorbance peaks at
1733, 1518, and 1243 cm−1 indicated the –C=O group of lignin and hemicellulose, the
–C=C– group of lignin, and the –COO group of hemicellulose, respectively. In general,
the rearrangement of amorphous cellulose and the removal of lignin, hemicellulose, and
other impurities during processing were the validation for this agreement [31]. Oven-
drying was a key point in preventing the water molecules interacting with the cellulose
fibers. Thus, there was no appearance of water molecules at band 1635 and 1640 cm−1
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in S-PALF and B-PALF, respectively, which was found. According to Lee et al. [42], the
observed vibrational bands from around 1450 to 1400 cm−1 (at 1458 and 1425 cm−1 in
this study) were due to the existence of CH2 symmetrical bending. Besides, the bending
of CH was supposed to form the absorbance peak at band 1369 cm−1. The region from
1260 to 1350 cm−1 had a few scattered absorption peaks as an effect of C–O stretching
vibration [42]. Corresponding to the research has been revealed by Fareez et al. [31], the
presence of small peaks at wavenumber 1160, 1102, 1052, 1032, and 902 cm−1 presented for
the stretching of C–O–C, stretching of C–O at C–3, stretching of C–O at C–6, stretching of
C–O–C, and bending of C–CH, respectively. Lastly, the attribution of monoclinic phases
cellulose was attributed to the band at around 665 cm−1 wavelength [43].

3.5. The Presence of Hydrogen

GC is a common type of chromatography applied to separate and analyze the percent-
age of hydrogen in a gas mixture. The presence of hydrogen during the whole electrolysis
process has been shown in Table 2. Numerous hydrogen was produced continuously
within the first couple of minutes when electrochemical started. Simultaneously, the pu-
rity of hydrogen was reached approximately 99% at this time. Therefore, this technique
has been considered the most suitable for hydrogen production without the emission of
pollution [44]. Moreover, continuity is also crucial in generating pure hydrogen during
pineapple leaf treatment. According to Tennakone [22], hydrogen has been released contin-
uously at the negative electrode (cathode) in the electrolysis of brine. Thus, its percentage
has remained stable and fluctuated at around 99% throughout the reaction time. On the
other hand, oxygen was also known as a basic gas of water electrolysis. However, with
the presence of chloride, the chlorine-produced reaction has been more dominant than
the oxygen-produced reaction. It can be explained that the standard electrode potential of
chlorine (1.35 V) is larger than standard electrode potential of oxygen (1.23 V) [45]. There-
fore, oxygen was produced insignificantly in this study. There are still some deficiencies in
analyzing released gases, therefore more investigations should be conducted for further
consideration in another study.

Table 2. Percent composition of hydrogen in a mixture of 1 mL of gas.

Gas
Percentage in 1 mL of Gas (%)

15 min 1 h 2 h 3 h

Hydrogen (H2) 98.68 ± 0.15 99.23 ± 0.23 99.15 ± 0.18 99.28 ± 0.21

Others (N2, CO2) 1.31 ± 0.15 0.77 ± 0.23 0.85 ± 0.18 0.72 ± 0.21

4. Conclusions

This study demonstrated the successful use of the electrolysis of brine in pineapple
discarded leaves treatment. A significant improvement in the morphology and color of
PALF, with a diameter of 3.8 to 5 µm and smoother and neater on surface, was indicated
by visual and SEM images. Based on XRD diffractograms, the CI of the final treated
samples was higher 57.4% than the raw one; crystallite size also changed after each stage.
Meanwhile, the removal of hemicellulose and lignin was confirmed by FTIR spectrum,
at bands of 1733 cm−1, the absorption peaks have decreased conspicuously. Lastly, GC
analysis presented the hydrogen gas with 99% purity.
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