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Abstract: Flexible textile strain sensors that can be directly integrated into clothing have attracted
much attention due to their great potential in wearable human health monitoring systems and
human–computer interactions. Fiber- or yarn-based strain sensors are promising candidate materials
for flexible and wearable electronics due to their light weights, good stretchability, high intrinsic and
structural flexibility, and flexible integrability. This article investigates representative conductive
materials, traditional and novel preparation methods and the structural design of fiber- or yarn-based
resistive strain sensors as well as the interconnection and encapsulation of sensing fibers or yarns.
In addition, this review summarizes the effects of the conductive materials, preparation strategy
and structures on the crucial sensing performance. Discussions will be presented regarding the
applications of fiber- or yarn-based resistive strain sensors. Finally, this article summarizes the
bottleneck of current fiber- or yarn-based resistive strain sensors in terms of conductive materials,
fabrication techniques, integration and performance, as well as scientific understanding, and proposes
future research directions.
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1. Introduction

As the demand for the real-time monitoring of human motion and physiological
information has recently grown, miniature and intelligent wearable electronic devices have
been rapidly developed. Nowadays, a variety of wearable electronic products, such as
electronic skins, smart watches and sports wristbands, are becoming an indispensable part
of our lives and changing our behavior patterns and lifestyles. Strain sensors are important
components of wearable electronic devices, which register and transmit changes in human
motion parameters and physical health indicators through electrical signal responses [1].
However, the rigidity of traditional semiconductor or metal sensors [2,3] limits effective
interactions with the curved surface of the human body, resulting in the distortion or
inaccuracy of the collected electrical signals. In addition, they are not deformable enough
to meet the large strain requirements of the human body [4], as the tensile exerts stress
and strain on the sensors in the various deformation modes (tensile, compression, bend-
ing, shear and torsion) [5]. Therefore, it is necessary to develop flexible and stretchable
strain sensors.

According to the substrate structure, flexible sensors are divided into 1D fiber or yarn
strain sensors [6–9], 2D film [10–12], fiber mat [13,14] or fabric [15–18] strain sensors, and
3D aerogel [19–21] or foam [22,23] strain sensors. Compared with 2D or 3D flexible strain
sensors, fiber-based and yarn-based sensors are smaller in size and more flexible to better
fit the soft and curved human body, and thus detect subtle movements more accurately.
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Additionally, the multihierarchy nature of the fiber or yarn structure (fiber-yarn-fabric
garment) shows outstanding softness and stretchability, enabling it to deform appropriately
when subjected to additional stress or its own gravity. A large number of fibers can also
disperse the stress to avoid excessive damage to the device structure. Moreover, they
are easy to interconnect with the components of wearable electronics and hide in fabrics
with different complex structures. Therefore, fiber or yarn sensors meet the requirements
of excellent flexibility, air permeability and comfort for wearable electronic devices due
to their advantages of softness, portability, ductility and easy implantation into complex
structures. They are more suitable for the development of a new generation of flexible
strain sensors. The characteristics of flexible strain sensors with different substrates are
summarized in Table 1.

Table 1. Features of flexible strain sensors with different structures.

Strain
Sensors Advantages Disadvantages

Fibers or yarns

Good stretchability and flexibility,
and easy to realize accurate

detection of joint movement with a
single direction.

Poor stability.

Fiber mats Good stretchability
and permeability.

Uneasy to integrate into clothing
and realize the accurate detection

of joint movement with
single direction.

Fabrics Easy to fabrication with
various structures.

Poor stretchability, stability
and durability.

Films Good stretchability and
easy-to-design patterns.

Poor permeability, difficult to
integrate and unable to accurately

detect joint movement with a
single direction; poor comfort.

Aerogels or foams Suitable for detect pressure. Poor stretchability and hysteresis.

According to the sensing mechanism, textile strain sensors are mainly categorized
as resistive, capacitive [24–27], piezoelectric [28,29], inductive [30,31], triboelectric [32], or
optical [33]. In terms of fiber- and yarn-based strain sensors, resistive and capacitive sensors
are the most widely studied, as shown in Table 2. Resistive sensors realize strain detection
by detecting changes in resistance. They have the advantages of a simple assembly process
and easy signal identification, but their linearity is low. Capacitive sensors are composed of
a dielectric layer and two electrode layers. The dielectric layer is sandwiched between the
two electrode layers and deformed under the applied strain. This kind of strain sensor has
a good linear response to strain, but it is easily affected by the environment, considering
aspects such as temperature and humidity. This review mainly focuses on the research
progress of resistive strain sensors.

There are two common methods for preparing 1D flexible resistive strain sensors.
One is to prepare stretchable conductive composite fibers by a spinning method. The
other is to coat conductive materials on the surface of a substrate to form stretchable
conductive strain sensors by methods such as dip coating, in situ polymerization, layer-
by-layer assembly and so on. The performances of strain sensors (in terms of mechanical
properties, workable strain range, sensitivity, repeat stability, response time, linearity,
etc.) are affected by the conductive materials and elastic matrix, conductive network and
yarn structure. Although plenty of studies have been conducted and great progress has
been made in the field of flexible strain sensors, most of the reported sensors are far from
being implemented in practical applications due to technical obstacles and challenges. At
present, there is still a lack of comprehensive reviews covering the selection of conductive
materials, the preparation and structural design of fiber and yarn strain sensors, and
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interconnection packaging and applications. In this review, the latest research progress and
various modification strategies of fiber and yarn resistive strain sensors are first introduced,
and the emphasis is placed on the influence of conductive materials on the electrical
performance of the sensor, as well as the influence of different fabrication technologies
and structural design on sensing performance. Moreover, the integration strategy and
application prospects of existing fiber and yarn strain sensors are discussed. Finally, the
limitations and prospects of fiber- and yarn-based strain sensors in terms of performances
and scientific understanding are summarized and analyzed.

Table 2. Features of resistive and capacitive strain sensors.

Strain
Sensor Principle Gauge Factor Benefits Drawbacks

Resistive

Detection of
resistance
changes to

achieve strain
detection

(R = ρl/A ).

[(R − R0)/R0]/ε

Easy to identify
signals, wide

working strain
range, good

frequency response
characteristics, and

high sensitivity.

Poor linearity,
poor long-term
cycle stability,

and high
hysteresis.

Capacitive

Detection of
capacitance
changes to

achieve strain
detection

(C = ε0εrA/d).

[(C − C0)/C0]/ε

Good linearity,
long-term cycle

stability, and low
hysteresis.

Limited to
working strain

range,
susceptible to

the surrounding
environment,

and small
sensitivity.

2. Conductive Materials

In terms of the resistive flexible strain sensors, the conductivity of conductive materials
and the structure of the conductive network not only determine their initial resistances,
but also affect the range of resistance variation and the working strain. On the one hand,
if the initial resistance of the strain sensor is too large, its resistance will easily increase
beyond the range of the test instrument under large strain, which limits the application
range of the strain sensor [34]. Additionally, it will cause an excessive static load and large
power consumption. Therefore, the initial resistance range of the sensor should preferably
not exceed megohms. On the other hand, if the initial resistance of the strain sensor is
too small, it can easily be affected by other external resistances, such as interconnected
contact resistance, which leads to a lower sensitivity and inaccurate measurement. Apart
from the electrical resistance, the stability and the compatibility with the elastic matrix
should also be considered when conductive materials are selected. At present, the common
conductive materials include intrinsic conducting polymers, such as polypyrrole (PPy) [35],
polyaniline (PANI), polythiophene (PTh) and PEDOT:PSS [36]; advanced carbon-based
materials, such as carbon black (CB) [37], carbon nanotubes (CNTs) [38–40] and graphene
(Gr) [4,41]; metal materials, such as gold (Au) [42], silver (Ag) [43–45], copper (Cu) [46,47]
and liquid alloys [48]; and a new transition metal carbon/nitride 2D nano-layered material,
MXene [16,49]. The characteristics of each conductive material are summarized in Table 3.

2.1. Conducting Polymer

Conducting polymers have a conjugated long-chain structure and the delocalized
π electrons on the double bond migrate to the molecular chain to form a current, and
thus the material exhibits conductivity. Due to the general solubility of their correspond-
ing monomers, conducting polymers can be formed in situ in a soft polymer matrix and
are flexible in processing and compatible with elastomeric polymers. However, their
charge/discharge stability and ramp voltage are low, since the electron transfer of the con-
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ducting polymers are controlled by the doping concentration (10–50%). The conductivity of
conducting polymers is much lower than that of metal. Furthermore, conducting polymers
are more brittle and rigid than linear aliphatic polymers, because their π-conjugated main
chain structure is composed of olefin bonds or aromaticity [55]. Seyedin et al. reported
PU/PEDOT: PSS elastomeric composite fibers by a wet-spinning method and their re-
sistance shifted towards higher resistances with the increase in the stretching–releasing
cycle period [56]. In actual applications, the stability of conducting polymers is not good
enough, especially doping materials when considering air oxidation stability. Therefore,
the combination of conducting polymers and carbon-based nanomaterials as conductive
sensing materials is another used method [57]. For example, Li et al. proposed a wear-
able strain sensor by using thermoplastic polyurethane fibers as the core support, aligned
and interconnected carbon nanotubes in the sub-outer layer as conductive filaments and
the outer layer of PPy coating as the cladding layer [58]. It has a wide detectable range
(from 0.1% to 50% tensile strain) and performs a multichannel detection of deformation
capabilities (tension, bending and torsion). Wu et al. prepared a PEDOT: PSS/CNT/TPU
composite fiber strain sensor by dip coating. In this layered microstructure, PEDOT: PSS is
used as a sensing material to reduce the initial resistance and improve the sensitivity of the
sensor, while the CNT aggregate acts as a conductive bridge to ensure conductivity at large
strains, providing a larger sensing range for the sensor [59].

Table 3. Common conductive materials and their characteristics [4,50–54].

Types Conductive
Materials Conductivity (S/cm) Characteristics

Conducting polymers

PPy 2000 Solution
processability,

low-temperature
synthesis route.

PANI 112
PTh 560

PEDOT: PSS 4700

Carbon based
CB 1000 Light, good chemical

and thermal stability,
difficult to disperse.

CNT 3.8 × 105

Gr 7200

Metal

Au 4.10 × 107 Excellent electrical
conductivity, brittle,
heavy, poor interface

compatibility.

Ag 6.31 × 107

Cu 5.96 × 107

EGaIn 4.8 × 105

Transition metal
carbon/nitride

material
MXene 4600

Hydrophilicity, good
biocompatibility, but

expensive, easy to
oxidize.

2.2. Carbon-Based Materials

Carbon-based materials with excellent conductivity and multidimensional struc-
tures are suitable for manufacturing large-strain, high-sensitivity flexible strain sensors.
Seyedin et al. used a variety of conductive fillers (such as spherical CB, rod-shaped SWC-
NTs and chemically converted Gr sheets) to prepare different conductive fibers by wet-
spinning technology [60]. It was found that the electrical and mechanical properties of
composite fibers depend on the length and the length-diameter ratio of fillers as well as
the interaction between the fillers and the elastomer. Overall, CB has a lower cost and
better dispersion than CNTs and graphene. Doping CB in CNTs and Gr can improve sensor
performance while reducing manufacturing costs. For example, Zhang et al. prepared a
simple and low-cost strain sensor by sequentially coating CNTs and CB on the PU yarn
by a layer-by-layer assembly method [61]. Under small strain, the conductive network of
the CB layer breaks, while the conductive network of the CNT layer does not break until
a large enough strain is reached. The CB layer and CNT layer rupture successively with
strain, so that the sensor exhibits super stretchability and a large linear range (15–150%).
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Compared with CNTs with a high length-diameter ratio, 0D CB has a higher degree of
freedom of deformation, so the point-to-point conductive network will be destroyed more
obviously during the stretching process, giving the strain sensor better sensitivity [62–64].

CNTs tend to aggregate and entangle with each other when mixed with polymers
due to the high length-diameter ratio and large specific surface area. Consequently, it is
difficult for them to uniformly disperse in the polymer matrix, not allowing for the excellent
conductivity they show in composite fibers. In addition to using dispersants, CNTs can also
be modified with polar functional groups, such as carboxyl (-COOH) and hydroxyl (-OH),
to improve the dispersibility and adhesion of CNTs in the matrix. However, the graphitized
structure of CNTs will be destroyed, resulting in a decrease in electrical conductivity [65],
and the same is true for reduced graphene oxide. Compared with CNT sensors, graphene-
based strain sensors generally have a higher sensitivity and lower sensing strain due to
their small size, sheet-like structure, which is easy to slide, and poor stretching ability.
Therefore, appropriate materials should be selected according to the actual requirements
in terms of prepared strain sensors. Additionally, the viscoelasticity of the stretchable
substrate and the fracture of the carbon material will cause the hysteresis of the sensor
under large strain [66], leading to a low sensitivity and poor repeatability and stability. In
summary, it is still a challenge to manufacture flexible carbon-based strain sensors with
good sensitivity and a broad strain range at low cost.

2.3. Metal-Based Materials

For flexible strain sensors, low-dimensional metal nanostructures are very attractive
due to their excellent electrical conductivity. In general, silver has better conductivity
and stability than copper, and has a lower cost than other precious metals, such as gold.
Copper nanowires (CuNWs) are considered as a promising alternative to silver nanowires
(AgNWs) due to their comparable electrical and thermal conductivity, abundance and low
cost. However, CuNWs have high inherent resistance and contact resistance due to their
sensitivity to oxygen and moisture [47]. In addition, liquid metal has been used to prepare
strain-sensing yarns. Zhu et al. reported super-stretched conductive fibers by injecting
liquid alloy (EGaIn) into hollow SEBS fibers [48]. Due to the electrical continuity of the
liquid metal, the fiber can maintain a certain degree of conductivity at a strain of more
than 700%. Additionally, its resistance change mainly depends on the real-time geometrical
size change when the fiber is stretched, showing less hysteresis and a higher durability.
However, the limitation of this method is that the liquid core of the fiber will collapse under
concentrated pressure or large strain, although the conductivity can be restored.

Metal nanomaterials can be assembled on the surface of fibers or yarns by methods
such as in situ reduction, sputtering, electrochemical deposition and chemical deposi-
tion [67]. However, the bonding force between the conductive coating and the polymer
fiber layer is usually poor, and the conductive coating easily peels off due to mechan-
ical deformation, resulting in poor stability. Another method is to prepare stretchable
conductive composite fibers by filling metal nanomaterials into a polymer matrix with
elasticity through traditional spinning technology. However, the poor dispersibility of
metal nanomaterials in the polymer matrix can easily lead to the clogging of the spinneret
and poor performance of the composite fiber. To solve this issue, Lu et al. proposed using
surface-modified AgNWs and elastic polyurethane (PU) to prepare stretchable conductive
composite fibers, in which polyethylene glycol (PEG) derivatives were used to modify the
surface of AgNWs [43]. The compatibility between the PU and AgNWs was remarkably
improved, resulting in a high filling load and the effective dispersion of AgNWs in the
PU. It was found that the electrical conductivity of the yarn without surface modifica-
tion is 147 S/cm, while the electrical conductivity of the yarn with modified AgNWs was
331 S/cm. Although metal nanomaterials can realize the preparation of flexible electronics
with good electrical conductivity, metal-based strain sensors are prone to failure due to
the fragility and weak interfacial forces of metal. Therefore, it is worth make efforts to
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enhance interfacial adhesion, such as the improvement of the interactions between metal
nanoparticles and fiber functional groups.

2.4. MXene

MXene has shown good potential in the field of wearable electronics due to its excellent
properties, such as metal-like electrical conductivity, large specific surface area, excellent
thermal conductivity, layered structure, etc. [68]. In addition, it has good dispersibility in
aqueous solutions due to the large number of functional groups formed on the surface
of MXene by hydrofluoric acid etching. Therefore, it is suitable for modifying textiles
through solution processing methods. However, exposure to high humidity or air may
cause the oxidation of MXene, thereby reducing its various properties, especially electrical
properties [16,49]. For example, Gong et al. developed a spandex composite yarn sensor
with a composite coating using MXene nanosheets as “bricks” and PDA/Ni2+ as “mortars”
through alternate dip-coating methods [69]. The yarn strain sensor has high sensitivity,
a low detection limit (0.11%) and a wide sensing range (0.11–61.2%). However, due to
the poor oxidation stability of MXene in water, the conductivity of the yarn gradually
deteriorates at a temperature of 30–50 ◦C over a 20 h washing cycle.

3. Fabrication and Structure Design

Fiber- and yarn-based strain sensors are mainly manufactured by spinning and coating.
For example, the conductive filler is mixed into the spinning solution to prepare conductive
composite fibers. The structure of composite fibers prepared by spinning is round with
uniformly distributed conductive materials, or coaxial, porous, hollow, and so on. In terms
of coating conductive materials on fibers and yarns, the conductive coating can be designed
as a microcrack, fold buckling, multilayer composite structure. Additionally, the geometry
of the yarns was designed to control the sensing performance of strain sensors. These
preparation strategies and structural design features will be discussed in the following
sections. The performances of fiber and yarn strain sensors reported in the literature are
summarized in Tables 4–6.

3.1. Conductive Composite Fibers
3.1.1. Uniform Mixing of Conductive Materials

Traditional spinning techniques, such as wet spinning, dry spinning and melt spinning,
are the most common methods to prepare a 1D stretchable conductive composite materials;
they mix the conductive filler and the elastic matrix directly and uniformly, and then
extrude it through the spinneret hole to a coagulating bath to form the composite fiber.
Li et al. uniformly mixed Gr into SBS and prepared SBS/Gr composite fiber flexible strain
sensors by a simple wet-spinning method, and the Gr content had a significant impact on
the morphology, mechanical properties and electromechanical properties of the composite
fiber (Figure 1) [70]. The fiber with the 5 wt% graphene content has a wide working
strain, which reaches 100%. However, its sensitivity increases with the increase in strain,
and the sensitivity within 50% strain is changeable at different stretching speeds. He
et al. proposed multiwalled carbon nanotube/thermoplastic polyurethane (MWCNT/TPU)
fibers by wet spinning [71]. The gauge factors (GF) of the MWCNT/TPU fiber are about
550 and 2800 in the strain ranges of 1 to 4% and 5 to 100%, respectively. The strain of
the MWCNT/TPU fibers decreases significantly under large hysteresis after multiple
stretching–releasing cycles, indicating poor sensing repeat stability. At the same time, the
influence of different weight ratios of MWCNTs to TPU on the mechanical and electrical
properties of composite fibers has been studied. It was found that the concentration and
arrangement of MWCNT would change the working strain range and GF of the sensor [72].
Wang et al. manufactured a fiber strain sensor with a wide response range (320%) and
a fast response time (<200 ms) based on MWCNTs and TPU by a simple wet-spinning
method [39]. However, the electrical response of the MWCNT/TPU strain sensor decreased
slightly in the initial stage when multiple stretching–releasing cycles were carried out
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at 100% strain, and it exhibited unstable sensitivity at the same time. To improve the
conductivity and the stability of the conductive network, hybrid conductive fillers have
been used to achieve a composite synergistic effect to prepare strain-sensing fibers. For
instance, Zhang et al. demonstrated a highly conductive AgNW/MWCNT/TPU composite
fiber by wet spinning, in which MWCNTs were regarded as the sensitive materials and
silver nanowires were used to improve electrical conductivity [73]. When the contents of
AgNWs reached the optimal amount (3%), the working strain range was 254%, and the
conductivity was 0.0803 S/cm (Figure 2). Compared with single-filler composite fibers, the
increase in AgNWs improves the conductivity and working strain range of the composite
fiber, but its sensitivity decreases. In the case of a strain range of 50–150%, the relative
resistance change of the sensor continues to decrease in stretching–releasing tests within
1000 s, showing poor stability.
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3.1.2. Selective Localization of Conductive Materials

The conductive network was also designed by controlling the distribution of the fillers,
such as selective positioning in multiple phases to form a co-continuous structure or a
sea-island structure. In this case, the conductivity of the composite is improved by forming
a double or triple permeation structure in the polymer matrix. The selective positioning of
the fillers at the interface of the co-continuous polymer structure can further reduce the filler
content, which is required to form the continuous conductive network. Zhou et al. used
the coaxial wet-spinning method and post-treatment process to prepare the thermoplastic
elastomer/single-walled carbon nanotube (TPE/SWCNT) ribbon coaxial fiber with good
stretchability and high sensitivity (Figure 3a) [38]. The strain sensor composed of this fiber
has a GF of 48 at 0–5% strain and a GF of 425 at 20–100% strain; a linear change cannot
occur in in the full strain range. Tang et al. designed a stretchable core sheath fiber using a
one-step coaxial wet-spinning assembly method, in which a high-stretch polymer elastomer
Ecoflex wrapped CNT/Ecoflex composite material [74]. Similar to traditional cables, the
outer insulating sheath effectively avoids short circuits and the falling off of conductive
fillers. At the same time, it can have good conductivity under a low permeability threshold
(0.74 vol%). Strain sensors made of this fiber achieve a high sensitivity of 1378 under 300%
strain and show high durability under 100% strain, but they exhibit low sensitivity in
a small strain range, non-linear resistance change and obvious overshoot behavior. Yue
et al. demonstrated a highly stretchable TPU-CB@TPU fiber strain sensor with a porous
core–sheath structure through the coaxial wet-spinning method (Figure 3b,c) [37]. Due to
the countercurrent diffusion and coagulation of the solvent, this fiber has a porous structure
with a wide strain range. The highest GF is 28,084 when the strain is 204%. However, its
sensitivity is not large enough in a small strain range, and the resistance change gradually
declines over multiple cycles of stretching. A coaxial fiber with an outer layer of MXene/PU
composite and an inner layer of PU was prepared by Seyedin et al. [75]. Compared with
the non-coaxial composite fiber, the coaxial fiber shows a larger strain range, a smaller data
drift, and an improvement in the cyclic stability of the sensor response. Gao et al. fabricated
a coaxial stretchable composite fiber with a double-layer hollow structure (Figure 3d), in
which the conductive outer layer has a CNT/TPU composite as the sensitive area, and
the insulating inner layer is made of pure TPU with a hollow core to serve as a flexible
support [76]. The prepared composite fiber (TPU-8CNT@TPU) has an ultralow percolation
threshold (0.17 wt%), good durability, and small compression deformation that can be
detected. With an increase in the stretching speed, the relative resistance differently changes
under the same strain. Additionally, there is an obvious shoulder phenomenon, which may
disturb signal identification in an accurate strain monitoring. However, the reason for this
shoulder phenomenon is still not clear. The mainstream is attributed to the competition
between the destruction and reconstruction of CNT conductive networks in the fiber, which
needs further verification.
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The characteristics of various fiber-based strain sensors prepared by spinning tech-
nology are summarized in Table 4. In general, the preparation of stretchable conductive
composite fibers as strain sensors by mixing conductive materials and spinning is a process
technology that can be produced on a large scale and is widely used in industry. However,
the addition of conductive filler will enhance the rigidity of the elastic matrix, and shrink the
tensile strain range of the fiber, which leads to the narrow working strain range of the fiber
sensor. On the contrary, if the amount of conductive material is too low, the conductivity of
the composite fiber will also limit its working strain range. Therefore, there is a paradox
between the conductivity and the working strain range of the stretchable conductive fiber,
which needs to be balanced. According to the percolation theory [60,77–81], the content
of conductive materials in stretchable conductive composites has a percolation threshold.
When the percolation threshold is exceeded, the polymer elastomer changes from an in-
sulator to a conductor, and the conductivity increases with the increase in the content of
conductive materials. When the content is near the percolation threshold, the sensitivity
of the material is at its greatest [82]. Therefore, it is still a huge challenge to achieve a
high strain range and high sensitivity at the same time for conductive composite fibers.
In addition, there is a limit on the production costs of practical commercial applications
with the increase in conductive fillers. To reduce the permeation threshold while achieving
high conductivity, different strategies have been studied [50,83,84], such as functionalizing
conductive fillers’ surfaces, increasing the aspect ratio of fillers, controlling the arrangement
of fillers, and using different mixture of fillers. However, such permeation-based composite
strain sensors rarely exhibit good linearity. When the composite fiber is stretched, its
resistance is mainly caused by changes in geometry and tunnel theory [37,39,85]. With an
increase in tunneling distance and the destruction of the conductive path, the resistance of
composites increases significantly during the tensile process. The maximum GF usually
occurs when the conductive material content is close to the permeation threshold. Other
shortcomings of strain sensors made of composite fibers include hysteresis, fatigue and so
on, which are mostly due to the viscoelasticity and elastic recovery rate of composite fibers.
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Table 4. Characteristics of conductive composite fiber-based strain sensors prepared by
spinning technology.

Structure Substrate Sensitive
Materials

Breaking Stress
and Strain Conductivity Strain

Range GF Repeatability Linearity Response
Time Ref.

Monofilament SBS Gr 10.16 MPa; 910.83% N/A 100% 10,083.98
(73–100%) 2500 (20%) N/A N/A [70]

Monofilament TPU MWCNTs 28 MPa; 320% N/A 100% 2800
(5–100%) N/A N/A N/A [71]

Monofilament SIBS P3HT 11.4 MPa; 975% 0.38 S/cm 770% 20 (12.25%) N/A N/A N/A [86]

Monofilament TPU MWCNTs/
AgNWs 32.49 MPa 0.803 S/cm 250% 13

(50–150%) N/A N/A N/A [73]

Ribbon
and coaxial TPE SWCNTs N/A N/A 100% 425 (100%) 3250

(20–100%)
R2 = 0.98

(20–100%) N/A [38]

Core–
sheath Ecoflex CNTs N/A N/A 330% 1378

(330%)
>10,000
(100%) N/A >300 ms

(100%) [74]

Porous TPU CB 2.15 MPa N/A 380% 28,084
(204%)

11,000
(60%) N/A 200 ms [87]

Coaxial PU MXene 20.3 GPa N/A 152% 238 (50%) 1000 (50%) N/A N/A [75]

Hollow TPU CNTs 2.92 MPa; 476% N/A >350% 1344.1
(200%)

10,000
(100%) N/A 167 ms [76]

3.2. Conductive Coated Fibers
3.2.1. Microcrack Structure

Coating conductive materials on stretchable fibers or yarns is another way to prepare
one-dimensional strain sensors by dipping, spraying, and in situ chemical polymerization,
etc. The dip-coating method is one of the easiest and most widely used methods among
them, due to its simple, fast and cost-effective characteristics. For example, Lee et al.
reported a conductive PU multifilament coated uniformly AgNPs by an in situ reduction
method, with low initial resistance (0.16 Ω/cm) (Figure 4a,b) [45]. AgNPs are uniformly
distributed inside the multifilament and form a dense shell on the outer layer. The GF
of the strain sensor reaches about 9.3 × 105 (under 450% strain) when the strain sensor
is first stretched, while the GF decreases to 659 (under 450% strain) after subsequent
stretching. Although the strain sensor has high sensitivity and wide strain range, its
sensitivity is unstable and its linearity is poor. Generally speaking, the microcrack structure
constructed by the strain sensor in tension is an effective method to achieve a sensing
response and high sensitivity of sensors. However, the microcrack structure is usually
limited by strain range. Compared with monofilament, the increase in the number of
multifilament structures greatly widens its working strain range according to the theory
(Figure 4c,d) [45]. Eom et al. first polymerized conductive PEDOT on polyester (PS) fibers
by in situ polymerization to prepare conductive coated fibers, and then embedded this
conductive fiber into fabrics to manufacture textile-based strain/touch/pressure sensors
and user interface (UI) equipment [36]. Due to the multifilament structure of its PEDOT/PS
fiber, the resistance of the sensor tends to fall with the increase in strain, which is contrary
to the common trend. During stretching, the overall conductivity of the PEDOT/PS
multifilament increases, and the PEDOT/PS monofilament exhibits the opposite behavior.
Liu et al. designed a monofilament strain sensor with a beaded structure using the Plateau–
Rayleigh instability principle. The way to control the strain distribution along the fiber
axis is by adjusting the size of the microbeads and the distance between the microbeads
(Figure 5) [88]. This design effectively causes strain concentration and amplifies the local
strain. Compared with a single uniform monofilament, the sensitivity of the sensor with a
beaded structure is significantly improved. Overall, the sensitivity of the sensor with the
crack effect usually increases significantly and then decreases, which is a characteristic of
nonlinear sensing [45]. Due to the destruction and shedding of the conductive layer, the
sensor also exhibits a certain amount of hysteresis and poor cycle stability.
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Figure 4. (a) The electrical conductivity of the sensor under different strains; (b) SEM images of
the fiber strain sensor at ε = 20%; (c) the resistance model of the double-filament strain sensor and
the corresponding equivalent circuit; (d) the relationship between the electrical conductivity of the
single-filament/multifilament fiber strain sensor and the tensile strain; n is the number of multiple
filaments in the fiber strain sensor [45].
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Figure 5. (a) Finite element simulation to study the strain adjustment effect of microstructured fibers
compared with flat fibers; (b) the strain distribution of different structures along the fiber surface [88].

3.2.2. Wrinkle Structure

In order to improve the workable strain range, a conductive coating with a wrinkle
structure was added to the fiber surface to design a flexible strain sensor. Wang et al.
designed a highly stretchable NTSm@rubber@fiber strain sensor with a dual-sheath buck-
ling structure by the pre-stretching method, in which NTS is the carbon nanotube sheets
and m represents the number of NTS layers (Figure 6a) [89]. The elastic support fiber
coaxially coated a curved rubber intermediate layer and a curved NTS conductive layer.
At the same time, the GF of the sensor was controlled by changing the manufacturing
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parameters to adjust the buckling structure, but its overall sensitivity values were very low,
only 0.5 (0–200%) and 0.14 (200–600%). The design of a wrinkle structure makes the strain
sensor bear high tensile deformation without destroying the conductivity of the material,
thereby increasing its sensing range. However, it also causes a small resistance change
in the stretched state, showing lower sensitivity. As shown in Figure 6b, CNT ink/PU
yarns with a wrinkle-assisted crack microstructure were created by Sun et al. [90]. The yarn
sensors have an ultralow detection limit and excellent repeat stability. As mentioned above,
the complex and multistep manufacturing process poses challenges to realize a large-scale
production of strain sensors.
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3.2.3. Multilayer Structure

Building a multilayered structure at the fiber scale is another way to design flexible
strain sensors. Cao et al. introduced a AgNW/PU fiber with a composite multilayer struc-
ture by using an adhesive layer with adjustable adhesion to adjust the interface adhesion
and fiber microstructure (Figure 7a) [91]. The GF and stretchability of the strain sensor were
adjusted by changing the interface layer combination (Figure 7b). However, its sensitivity
was weak and the resistance response was nonlinear. After 100 and 1000 cycles of stretching
at 10% strain, the drift rate values of the relative resistance of the sensor were 29.4 and 53.1%,
respectively, showing poor repeatability. Liu et al. reported the silver plating polyurethane
filaments (SPPF) with good electrical resistivity (4.5 ± 0.1 Ω/cm) [92]. These AgNPs are
bound to the surface of the filament by polydopamine, which remarkably improves the
bonding between the conductive material and the fiber interface, but the nonlinear error
and hysteresis of the SPPF strain sensor are up to 29.3 and 34.3%, respectively.

The layer-by-layer (LBL) assembly method has been used to develop strain sensors
with multilayer structures. The LBL assembly method has been reported as an effective
method for manufacturing carbon-based films. Instead of simple deposition, this process
includes repeated immersion and evaporation, and various reactions such as electrostatic
interactions, hydrogen bonding, or covalent bonding to enhance the adhesion of the inter-
face [93]. Li et al. prepared a strain sensor using graphene/polyvinyl alcohol (Gr/PVA)
composite material as the outer layer conductive sheath and polyurethane as the elastic
core fiber [94]. When the Gr concentration is 1wt% and the number of coatings is nine,
the composite coated fiber has the maximum GF (86.9) and a wide strain range (50%)
and good linearity (R2 = 0.97). However, the GF of the strain sensor only reaches more
than 40 in the 50% strain extension–release cycles, and the repeatability is 1.81% and the
hysteresis error is 9.08% over 100 cycles. A CPC@PU yarn strain sensor was prepared by
Wu et al. (Figure 7c) [34], in which the ultrathin conductive CPC layer consists of positively
charged chitosan (CS) and negatively charged carbon black (CB)/cellulose nanocrystal
(CNC)/natural rubber (NR) nanohybrid. Although this fiber sensor based on CPC coat-
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ing detects strains as low as 0.1% and shows a GF of approximately 38.9 at 1% strain,
it is not reliable for detecting strains larger than 5%. Li et al. proposed a core–sheath
structure strain sensor, which is composed of PU core yarn, a highly conductive multi-
layer sheath material, namely graphene nanosheets/thin gold film/graphene nanosheets
(GNSs/Au/GNSs), and PDMS coating. This multilayer structure combination can si-
multaneously achieve high sensitivity, wide strain-sensing range and good waterproof
performance. In 10,000 stretch–release cycles at 50% strain, its stability is excellent [42].
Although the LBL method improves the adhesion of the coating, it takes multiple cycles of
treatment to achieve a high conductivity due to the introduction of the insulating polymer.
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The characteristics of fiber strain sensors prepared by coating technology are summa-
rized in Table 5. In general, the coating method is easy to implement and the 1D strain
sensors produce via this method show good sensing performance. As the mechanical
properties of conductive coatings and elastic substrates are inconsistent, conductive coat-
ings propagate small and dense microcracks, which destroys conductive networks and
causes the changes of resistance. However, the poor adhesion and the mechanical mismatch
between the elastic substrate and the conductive coating often leads to degradation of
the sensor response. Therefore, it is still a big challenge to achieve high linearity and
cycle stability by a simple coating. Due to the irreversible fracture and shedding of the
conductive layer, it is very necessary to explore the stress distribution and interface strength
between the conductive coating and the substrate. Although the added adhesive (like the
LBL method) has improved adhesion, the fatigue durability of the strain sensor is still a
challenge. Additionally, there is a lack of systematic studies on how to control the crack
propagation and stability, and on how it affects the sensing performance of strain sensors.
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Table 5. Characteristics of fiber strain sensors prepared by coating technology.

Method Structure Substrate Adhesive Sensitive
Materials

Breaking Stress
and Strain Conductivity Strain

Range GF Repeatability Linearity Response
Time Ref.

In site reduction Multifilament PU N/A AgNPs N/A 0.16 Ω/cm 200% 659
(150–200%) 10,000 (10%) N/A N/A [45]

In situ
polymerization Multifilament PS N/A PEDOT 0.813 ± 0.057 GPa 600 Ω/cm 70% 0.244 (70%) 1000 (20%) N/A N/A [36]

deposition Beaded PDMS N/A Au/CNTs N/A N/A 125% low 5000 (30%) R2 = 0.96 N/A [88]

Spraying
Double
sheath
buckle

SBS SGE NTS N/A N/A 600% 0.14
(200–600%) 5000 (100%) N/A 80 ms [89]

Dip coating Wrinkle
assisted PU N/A CNTs N/A N/A 200% 1344.1

(200%) 10,000 (30%) R2 = 0.99
(0–50%)

<88 ms (1%) [90]

Roller transfer Core–sheath PU PU AgNWs 38.24 MPa; 980% 240.36 S/cm 60% 5~9557 10,000 (10%) N/A 120 ms
(0.5%) [91]

In situ
polymerization
and reduction

Core–sheath PF PDA AgNPs 300 cN; 405.9% 4.5 Ω/cm N/A N/A N/A
nonlinear

error <
29.3%

N/A [92]

LBL Core–sheath PU CS CB/CNC/NR N/A 4.1 MΩ/cm 1% 38.9 (1%) 10,000 (1%) Good
linearity N/A [34]

LBL and sputtering Core–sheath PU PVA GNSs/Au/GNSs N/A N/A 75% 661.59 (50%) 10,000 (50%) R2 = 0.983
(0–50%)

N/A [42]

3.3. Conductive Composite Yarns
3.3.1. Wrapped Structure

The working strain range of the one-dimensional sensor may be limited if the resistance
is changed only by the cracks on the surface of the fiber or yarn. To improve its working
strain range and stability, the structural adjustment of the yarns has also been explored.
Cai et al. prepared a cotton/CNT core-spun yarn sensor by coating CNTs and depositing
PPy on the surface (Figure 8a,b) [95]. The yarn has a broad strain range, up to 350%, but
its GF is small, only 5.11 and 3.41 at strains of 0–50% and 50–350%, respectively. Cheng
et al. developed a simple and mass-produced graphene-based composite yarn with a
compression spring structure by plasma treatment and dipping (Figure 8c,d) [96]. The
minimum and maximum detection limits of this double-wrapped composite yarn are
0.2 and 100% strain, respectively. Additionally, the signal response speed is fast (<100 ms).
After several stretching cycles under 30 and 50% strain, the performance is stable, but
its sensitivity is very low. Zhu et al. introduced curcumin-assisted chemical deposition
(ELD) to prepare a helical yarn with a metal coating, and established a model to analyze its
sensing mechanism [46]. The relative resistance change of the yarn ∆R can be expressed
as a function related to the tensile strain ε, including θ(ε), g(ε) and Rdetach(ε) (θ is the
winding angle, g is the average gap of the separated winding, Rdetach is the resistance of an
independent winding). As mentioned above, the yarn strain sensors based on geometric
change sensing have excellent linearity, low hysteresis, high stability and a large sensing
range, but their sensitivity is limited [15].

3.3.2. Braided Structure

Another design is to use braided yarns to fabricate yarn-based strain sensors. Shi et al.
reported a sensor (BWY-AgNWs) composed of stretchable yarns with a braided structure
and silver nanowires by dip coating (Figure 9) [97]. The fiber sensor can not only detect
various deformations such as stretching, torsion, and bending, but also has a high stable
sensitivity (GF = 65) in a larger sensing range (strain can reach 100%). However, due to
the insufficient recovery of the microstructure and the brittleness of the AgNWs film, the
microcracks cannot be completely merged after release, resulting in the poor repeatability
of the strain sensor during multiple cycles of stretching. Furthermore, the high hysteresis of
the strain sensor makes its strain response slow, which limits its wearable application. Yang
et al. proposed a PET/AgNW/PDMS yarn sensor with braid yarns as the substrate, AgNW
as the active material and PDMS as the protective layer by dip coating [98]. The yarn sensor
has high conductivity and a wide range of stretchable strain. However, the resistance
change does not increase monotonously with the increase in strain, instead of a downward
trend after 40% strain. In addition, the relative resistance changes in PET/AgNW/PDMS
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yarns with an upward trend show relatively instability during multiple stretching and
bending cycles. Pan et al. designed a yarn sensor with a core–sheath yarn structure, in
which a braided composite yarn coated with CNTs is used as the core (BYs-CNT) and
electrospun polyurethane nanofibers are used as the sheath [35]. This kind of combination
of the yarn has extremely high sensing sensitivity (maximum GF up to 980) and long-term
stability, but poor linearity. Additionally, the yarn preparation process is complicated and
cannot be easily produced en masse. Similarly, the relative resistance change shows a
downward trend after the strain exceeds 40%, due to the changes in the braid angle and
contact area of braided yarns PET during the stretching process.
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Figure 8. (a) Schematic diagram of rubber thread and different core-spun yarns (b) Cross-sectional
structure of the PCSCCY yarn [95] (c) SEM image of PDCY-RGO under 0% strain, 7◦ (d) SEM image
of PDCY-RGO under 50% strain, with the winding angle marked as 29◦ [96].

3.3.3. Helical and Winding Structure

In addition to fancy yarn, unconventional yarn sensors have been formed by twisting
and winding conductive coated films, which remarkedly enhance the tensile strain range
of one-dimensional sensors. Compared with the conventional planar wave structure, the
coil structure has greater stretchability because the local stress is suppressed during the
stretching process and the local maximum strain is reduced due to the non-planar motion
of the coil [99]. Ultrahigh stretchable conductive helical yarn with CNT/PU nanocomposite
fiber helical yarn was prepared by simple electrospinning, spraying and twisting processes
(Figure 10a) [99]. With the help of the synergistic effect of the flexible polymer chain and
the nanofiber spiral coil structure, the CNT/PU helical yarn will break the limitation of
material stretchability due to its rigidity and excellent stretchability. Its recovery is within
900% strain, and the maximum of tensile elongation can reach 1700%, while its sensitivity
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is very low. Xie et al. designed a SWCNT-RGO/TPU spiral layered composite yarn by
spraying and winding technology (Figure 10b,c) [100]. Due to the special spiral layered
structure of the composite yarn, the conductive layer is wrapped and protected by the
elastic polymer layer, and there is no obvious interruption or crack on the surface of the
yarn. Compared with the SWCNT-RGO/TPU thin-film sensor, the yarn sensor has a wider
working strain range and has five linear regions. In the 50% tensile strain cycles, the relative
resistance of the sensor continued to increase during the initial 100 cycles and then began
to stabilize.
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The performance of yarn-based strain sensors with different structures are summarized
in Table 6. On the basis of the coating, improving the linearity and stability of the strain
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sensor by changing the yarn structure is an excellent method because the resistance change
mainly depends on the structure of the composite yarn. For example, in terms of wrapped
yarn-based sensors, the decrease in the contact of the spiral winding leads to an increase in
resistance, but this also reduces the sensitivity and working strain range to a certain extent.
Therefore, it is necessary to discuss the influence of structural changes on the sensing
performance so that the yarn strain sensor has balanced performance indicators.

Table 6. Characteristics of various yarn-based strain sensors.

Method Structure Substrate Sensitive
Materials

Breaking
Stress and

Strain
Conductivity Strain

Range GF Repeatability Linearity Response
Time Ref.

Dip coating and
in situ

polymerization

Core-spun
yarn PU/cotton CNT/PPy >7 N; >300% 310 Ω/cm 350 5.11 (0–50%); 3.41

(50–100%) N/A
Linearity at 0–50%

and 50–350% strain,
respectively

N/A [95]

Dip coating Wrapped
yarn PU/PE Gr 29.14 MPa;

676% 0.012 S/m 0.2–100% 3.7 (50%) 10,000 (30%
and 50%) N/A <100 ms [96]

ELD Wrapped
yarn PU Cu N/A 0.2 Ω/cm 50% N/A 5000 (50%) Good linearity N/A [46]

Dip coating Braided yarn PU/PET AgNWs N/A 0.5 Ω/cm 108.92% 767.50
(97.28–108.92%) 4000 (30%) R2 = 0.975

(97.28–108.92%)
<100 ms
(0.5%) [97]

Coating Braided yarn Rubber/PET AgNWs N/A 3 Ω/cm 100% 11.4 (100%) 1700 (30%) N/A N/A [98]

Dip coating Braided yarn Rubber/PET CNT 44N; 350% 0.12
kΩ/cm 44% 980 (29–44%) 1000 (20%) N/A 200 ms [35]

Spraying Helical coil PU CNT 50.2 MPa;
1700% N/A 900% N/A 100 (200%) N/A N/A [99]

Spraying Helical layer TPU SWCNT/RGO 40.0 MPa;
1237% 821.8 S/m 620% 2160.4 (550–620%) 1000 (50%) N/A N/A [100]

4. Interconnection and Packaging

For wearable electronic applications, strain-sensing fibers or yarns need to be intercon-
nected with other structural circuit elements or data acquisition circuits to fully integrate
electronic devices. In wearable electronic devices, it is required that the sensing element
must be firmly, elastically and electrically connected to the conductive wire or the data
connector, and the interconnection point can still maintain high conductivity under consid-
erable mechanical stress. In addition, the interconnection needs to robustly transmit the
signal to the transmission board or processing electronics with minimal loss. At present,
the common bonding methods in interconnection are mechanical bonding, physical bond-
ing and chemical bonding [101,102]. However, the chemical bonding is not suitable for
the interconnection of heterogeneous devices. Mechanical bonding refers to the use of
friction to clamp or connect electronic components to wires, which is suitable for electronic
connections of various conductive textiles. For fiber or yarn strain sensors, the mechanical
bonding can be thread-to-thread knotting, or embroidery [103,104], stitching [72], or inter-
lacing. Physical bonding includes soldering [105], adhesive bonding [96] and so on. The
advantages and disadvantages of different interconnection methods are summarized in
Table 7. Soldering is a process that the metal is melted with the high temperature to tightly
coat and wrap electronic components to form a connection. However, few common fibers
and yarns with conductive materials can withstand high temperature welding, and the
narrow interface between the components is too small and difficult to handle. It is a method
widely used in laboratories to connect strain-sensing yarns and functional components
with conductive adhesives such as conductive glue and copper tape. For example, He et al.
stitched MWCNT/TPU fibers onto an elastic bandage with cotton yarns to detect the wrist
bending (Figure 11a) [72]. Both ends of the fibers were connected with conductive wires
using silver paste and fixed by conductive tapes and medical tapes. Cheng et al. used con-
ductive copper tape and silver paste to interconnect the two ends of graphene-based fibers
as external electrodes with copper wires (diameter: 2 µm) (Figure 11b) [96]. Although this
method is simple to operate, the electrical connection quality of the conductive adhesive is
affected by humidity and temperature, and the copper tape is easily oxidized and has poor
mechanical fatigue resistance, which may cause safety problems. Therefore, this type of
interconnection often requires further suitable packaging protection.
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Table 7. Features of various interconnection methods.

Method Merits Demerits

Soldering Tight connection and high
conductivity.

Brittle fracture, high welding
temperature and limited

welding interface.

Mechanical clamping Flexible connection and wide
range of application.

Easy to break under large
deformation.

Conductive adhesive Simple operation and less
limitation to materials.

Easily affected by temperature
and humidity.
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Considering the stability and reliability of electrical interconnection and the durability
of the strain sensor, the strain sensor is packaged for use. If strain sensors are integrated
into clothing by textile technology, insulating coatings are considered to protect the sensors.
For example, Li et al. used hydrophobic PDMS to pack the yarn-based strain sensor to
achieve a good waterproof performance [42]. The relative resistance change values of
the sensor without the hydrophobic packing increased significantly when the sensor was
sprayed with water during the tensile cycle test (Figure 11e,f). On the contrary, the relative
resistance change values changed slightly before and after water (Figure 11g,h). Xu et al.
reported the encapsulated TPU/SWCNT-RGO/PU core–sheath fiber [106]. The ∆R/R0 of
the encapsulated composite fiber firstly increased by 10 and then remained stable, showing
great washability compared with the SWCNT-RGO/PU sensor (Figure 11c). Kwon et al.
used self-healing polymers (T-SHPs) as self-adhesive and durable interconnection materials
to encapsulate conductive sensing fibers. This method easily achieved the patterned design
(Figure 11d), but also effectively improved the conductivity of the sensing fiber over the
1000 stretch cycles [107]. Additionally, it is easy and convenient to fabricate, but not safe
and reliable, only being suitable for laboratory tests. In addition, the strain sensor can
be directly integrated into fabrics by the hot-melting process. The hot-melting package is
made of elastic thermoplastic materials, such as TPU hot-melting adhesives. The materials
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are heated to the melting temperature and cooled after molding. For instance, Bahadir et al.
reported a waterproof textile transmission line with GoreTex® waterproof welding tape by
hot air sealing [108]. From the perspective of structural mechanics, electronic packaging can
be seen as a composite structure made of different materials (substrate-conductive coating-
encapsulation layer), and the physical parameters between the layers will affect the average
strain transfer rate and sensing performance. In addition, when the device is subjected to
thermo-mechanical loads, the interface between these materials is the most prone to failure.
This is due to the inherent stress concentration generated by the interface bonds between
different materials and the free surface of the two materials. Under repeated external
mechanical action, cracks are not limited to the interface, but also propagate and expand
parallelly to the interface [109]. Therefore, the system integration of interconnected wires
and strain sensors under high-level strain loads is still a huge challenge. Poor interfaces will
not only cause serious errors, but also lead to low reliability of the entire sensor system. The
mechanical and sensing properties of conductive yarns before and after encapsulation will
change to a certain degree. However, there is currently a lack of comprehensive research
on the effect of packaging process on the sensing performance of stretchable conductive
fibers or yarns.

5. Application

Fiber- and yarn-based strain sensors exhibiting outstanding sensing performances
have broad application prospects. In the healthcare industry, wearable strain sensors are
installed or worn on different parts of a patient’s body, such as hands, fingers, waist and
feet, to analyze posture and gait. The traditional sensor for human motion analysis is the
accelerometer, but its rigid structure is not easy to integrate into clothing, and would be
uncomfortable for wearers over long periods [110]. In addition, the performance of the
accelerometer is easily interfered by the environmental magnetic field and temperature.
Textile sensors are more comfortable and flexible in measuring human posture and move-
ment with low cost. In particular, fiber or yarn strain sensors can be woven into fabrics that
can be worn directly on various body parts, such as knees, elbows and fingers, without any
support structure or frame. By contrast, the nanofiber mats and fabric sensors are usually
integrated into clothing by adhesive binding and stitching. Fiber and yarn strain sensor
devices can be used for a variety of applications without platform constraints and accu-
rately monitor strain in a single direction. However, their electrical performances are still
unsatisfactory for practical applications of consumer-level sensor systems. Additionally, it
is essential to develop supporting circuit and algorithm to achieve wearable applications.
For instance, the problem of resistance drift with time and repeated use can be solved in
algorithms with periodic calibration. The performance of different strain sensors used to
monitor human movement and human–computer interaction is compared in Table 8.
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Table 8. Representative properties of different resistive strain sensors.

Type Fabrication Method Substrate Sensitive
Materials Strain Range GF Applications Ref.

Nanofibrous
membrane Dipping TPU RGO 79% 11 Human motions [13]

Nanofibrous
membrane

Dipping and in situ
reduction TPU ACNTs/AgNPs 20 to 70% 1.04 × 105 Human motions [14]

Fabric Dipping and screen
printing PET/SP SWCNT/Ag pastes 20% 71.5 Glove and speaking [111]

Fabric
Screen printing and

chemical vapor
deposition

Nylon/Lycra PPy 50% N/A Trunk motion [112]

Fabric Dipping PET/SP SWCNT 0–50% 2.1–4.8 Human Motion
Recognition [113]

Fiber Melting extrusion TPE CB 80% N/A Upper body postures
recognition [114]

Fiber Spinning TPE SWCNT 100% 425 Wrist motion [38]

Fiber Deposition PDMS Au or CNT 125% N/A Knee joint motin [88]

Thread Coating 64% Polyester, 36%
Polyurethane Carbon Resistive Ink 10% N/A Head motion [115]

Fiber Spinning TPU AgNWs/MWCNT 50–150% 13
Monitor the weight

and shape of an
object

[73]

Fiber Coating and
imprinting technique PU AgNPs/AgNWs/CB 200% 1041 Data glove [116]

Thread Dripping
Nanofibers cladded

core-spun
thread

AgNWs/ 10–50% 0.688 Data glove [117]
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5.1. Human Motion Monitoring

Generally, human motion detection can be classified into exercises with large strain
(for example, limb bending or stretching) [118,119] and subtle movements with small
strain (such as swallowing or emotional expression) [120]. According to clinical data, the
flexion ranges of fingers or wrists, elbows and knees of people with every age group are
different, ranging from 0 to 90◦, 0 to 160◦, and 0 to 130◦, respectively [121,122]. Therefore,
the large deformation experienced by the human skin ranges from 0 to 100% strain, and
thus the corresponding flexible strain sensors require a wider workable strain range. For
example, Li et al. used epoxy adhesive to connect two coaxial fibers to the wristband in a
perpendicular manner [38]. The sensor monitors the bending and relaxation of the wrist to
show a repeatable switching signal (Figure 12a,b). By stitching fibers into the sleeves of the
jacket, the stretching, pressing, folding and twisting motions of the sleeves create different
signals. Liu et al. reported an elastic garment with a stretchable fiber-based strain sensor
can sensitively detect the bending motion of the knee (Figure 12c,d) [88]. Fiber sensors
can be snugly integrated into textiles, so the wearer can move comfortably and freely with
accurate sensor monitoring. Jiang et al. used two thread-based sensors to monitor the head
motion, and characterized the electrical signals by using a machine learning algorithm to
realize head motion classification [115]. The accuracy of a set of nine head directions is
about 92%.
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For small motion detection, the strain sensors necessarily have extremely high sensi-
tivity. Otherwise, the electrical signals are not easily characterized to distinguish between
the strains. For instance, a strain sensor is attached to the neck to detect the movement
of the throat muscles. When people swallow something or say different words, different
signals are recorded [95,106,123]. Strain sensors can detect complex epidermal/muscle
movements by recording relative resistance changes, which have broad prospects in cor-
recting standard pronunciation and expressing sounds of damaged vocal cords [124]. It is
also possible to monitor facial expressions, such as crying, laughing, blinking and cheek
bulging by installing flexible strain sensors on the cheeks, forehead or corners of the eyes
(Figure 12e,f) [74]. Additionally, a high-performance strain sensor worn on the chest was
used to track the breathing rate [96]. Flexible strain sensors were also implanted in the
human bladder to monitor the size of the bladder to determine excretion [45,125].

In short, flexible fiber- and yarn-based strain sensors with excellent sensitivity have
made significant progress in detecting human movement and activity information. They
can be directly woven into clothes based on advanced textile machinery, which will facilitate
low-cost and large-scale production. In addition, they can also be integrated with other
one-dimensional flexible electronic devices, such as fiber-based batteries/supercapacitors,
so as to realize miniaturized, portable wearable electronic products in the near future for
potential medical care, rehabilitation and sports monitoring, etc.

5.2. Human–Computer Interaction

A data glove is a multimode virtual reality hardware that perform actions such as grab-
bing, moving and rotating objects in a virtual scene through software programming [125].
The emergence of the data glove provides a new interactive means for virtual reality sys-
tems. The product has been able to detect the bending of the finger and use the strain sensor
to accurately locate the movement state of the hand. This kind of data glove combined
with finger curvature test is called “real glove”, which can provide users with a very real
and natural three-dimensional interactive means. In addition, the data glove can also be
used as an auxiliary device for human or robot movement recognition and deaf–mute
people. Fiber- or yarn-based strain sensors can not only detect various finger movements,
but are also softs, light and knittable, and can be concealed in the glove without affecting
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its appearance. Choi et al. designed a conductive fiber sensor with a layered microsized
hair-like structure, which exhibits excellent ductility (<200%) and sensitivity to various
stimuli (pressure, stretching, and bending) [116]. They knit this kind of conductive fiber
sensor into the glove and made a smart glove to detect the movement of the finger joints, so
that the virtual interface was controlled by detecting the movement of the hand (Figure 13a).
Lee et al. implanted AgNP-loaded spandex multifilament as a strain sensor on the nodes
of the five fingers of the glove, which was used as a true wearable sensor platform in the
human–machine interface (Figure 13b,c) [45]. Due to the high sensitivity of the fiber strain
sensor, smart gloves easily monitor the real-time movement of each finger. Through the
signal processing of the drive circuit and the microcontroller, the response of the strain
sensor integrated into the finger of the smart glove is used to control the bending motion
of the corresponding finger of the hand-shaped robot. Chen et al. prepared a high-stretch
conductive yarn composed of Poly(vinylidenefluoride-co-trifluoroethylene) (P(VDF-TrFE))
polymer nanofibers mat and AgNW coated on the surface of elastic woven yarn, and then
integrated ten conductive yarns into a wearable data glove [117]. Human gestures were
recognized by detecting the movement of human fingers (Figure 14).
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6. Conclusions and Outlook

In summary, this review summarized the recent developments in fiber- and yarn-based
strain sensors, from commonly used conductive materials to common preparation methods
(spinning and coating). The structural designs of strain sensors are introduced in detail,
including internal structures (uniform, coaxial, porous, and hollow structures), surface
microstructures (microcrack and wrinkled structures) and macrostructures (wrapped,
braided, and winding structures). The internal structure design lowers the percolation
threshold of materials, and the surface microstructure design improves the performance
of the sensor. Each macrostructure has its own characteristics. In addition, the packaging
and interconnection of strain sensors with other components are discussed. Finally, various
potential practical applications of fiber- and yarn-based strain sensors are listed, such as
health detection, biomedicine, data gloves, etc.

Although great progress has been made in the fabrication of strain sensors based on
one-dimensional textile materials in recent years, there are still some problems that hinder
their practical application. For example, strain sensors cannot have a high sensitivity, high
stretchability, and high linearity at the same time. The crack mechanism or method of
controlling conductive fillers near the percolation threshold can markedly improve the
sensitivity of the materials, while they limit the working strain range of the sensor. The
working strain range is not only related to the breaking strain of the elastic substrate, but
also to the conductivity of the composite. The addition of conductive active materials by
spinning or coating gives the textiles sufficient conductivity, but these treatments often
reduce the breaking strain and elastic recovery rate of the composite. Furthermore, the
hysteresis, repeatability, stability and durability of the sensor should be considered. At
present, most of the current flexible strain sensors tend to use elastic polymers as the
supporting substrate. However, the sensors inevitably present hysteresis, stress relaxation
and creep phenomena due to the viscoelasticity of substrates. The interface between the
conductive material and the supporting substrate will also affect the hysteresis and cycle
stability of sensors. From a practical point of view, it is vital to study the interface between
conductive materials and fiber ensembles.

The conductive sensing mechanisms of flexible fiber or yarn strain sensors are quite
different from traditional semiconductor and metal sensors. For conductive compos-
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ite fibers, the sensing mechanisms are mainly based on percolation theory [80,126] and
tunnel theory [126,127]. Crack propagation is the main reason for the resistance varia-
tion of coating fiber sensors [118,128,129]. Geometric effects caused by changes in the
structure or size of fibers or yarns will also affect the working effect of the sensor. The
sensing mechanism is based on the contact resistances on different scales such as fibers
and yarns [130]. These mechanisms allow us to understand the working mechanism of
some flexible tensile strain sensors. However, for the “shoulder phenomenon” of existing
strain sensors [64,81,131–133], there is still a lack of specific theoretical analyses to find
the improvement methods for large hysteresis and unstable sensitivity. Therefore, it is
meaningful to perfect the research on the controlling factors of the sensing performance of
the fiber or yarn strain sensors. To fabricate the suitable working strain range and gauge
factor of sensors, it is crucial to establish the relationship between yarn structure parameters
and sensing performance.

At present, there are few reports of large-scale applications of flexible strain in the
market, and the majority of reported fiber and yarn strain sensors are still in the labora-
tory study and development stage. It is also necessary to consider whether the sensor’s
performance and life will be interfered with by the external environment. For example, the
washability of the wearable electronic textiles needs to be considered because they may
be dirty during use. However, due to the lack of an insulating layer or protective layer,
most current fiber or yarn strain sensors are not washable. The conductive coating on the
yarn may crack or peel off during washing [134,135]. Moreover, there are few studies on
the washability and instability mechanism of strain sensors at present. Another unsolved
problem is the ability to reliably integrate these sensors with different components. The
connection of strain sensors to other devices through soldering, mechanical clamping, or
functional adhesives may cause safety issues. Therefore, it is worth studying the effect
of packaging technology on the performance while meeting the security and stability
requirements of the interconnection.

Finally, to achieve truly comfortable portable wearable applications, comprehensive
advances in electronics, software, and textile manufacturing are required. For instance,
these wearable power supplies and circuits should ideally be flexible and stretchable so
as to withstand the large strains applied to the fabrics during their normal use. It is
worth considering a method to highly integrate electronics with clothing comfortably and
aesthetically. Artificial intelligence is a key step in realizing sensor applications. As well
as applications in human movement monitoring and human–machine interactions, other
applications are yet to be developed. In summary, although great progress has been made
in fiber- and yarn-based strain sensors have achieved in terms of materials, preparation
methods, and structural design, there are still many problems and challenges to be solved
before their commercial use.
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