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Abstract: Lignocellulosic fibers are widely applied as reinforcement in polymer composites due to
their properties. The thermal degradation behavior governs the maximum temperature at which
the fiber can be applied without significant mass loss. It is possible to determine this temperature
using Thermogravimetric Analysis (TG). In particular, when curves are obtained at different heating
rates, kinetic parameters can be determined by using Arrhenius-based equations, and more detailed
characteristics of the material are obtained. However, every curve obtained at a distinct heating rate
demands material, cost and time. Methods to predict thermogravimetric curves can be very useful in
the materials science field, and in this sense, mathematical approaches are powerful tools, if well
employed. For this reason, in the present study, thermogravimetric curves from curaua fiber were
obtained at four different heating rates (5, 10, 20 and 40 ◦C·min−1) and Vyazovkin kinetic parameters
were obtained using free available software. After, the experimental curves were fitted using an
artificial neural network (ANN) approach followed by a Surface Response Methodology (SRM)
aiming to obtain curves at any heating rate between the minimum and maximum experimental
heating rates. Finally, Vyazovkin kinetic parameters were tested again, with the new predicted curves
at the heating rates of 7, 15, 30 and 50 ◦C·min−1. Similar values of the kinetic parameters were
obtained compared to the experimental ones. In conclusion, due to the capability to learn from the
own data, ANN combined with SRM seems to be an excellent alternative to predict TG curves that
do not test experimentally, opening the range of applications.

Keywords: lignocellulosic fiber; thermal degradation; kinetic analysis; artificial neural network

1. Introduction

Lignocellulosic fibers are versatile materials used in different applications. Their
use englobes the entire fiber for reinforcement in composite materials [1,2], or the use of
their derivatives (cellulose, hemicellulose or lignin) in particular applications as shape
memory of lignin-rubber composites [3], to obtain nanocellulose [4], to reinforce expanded
composites [5] or cellulose biomedical applications [6], for example. This wide potential
of application can be attributed to the great variety of chemical components (cellulose,
hemicellulose, lignin, waxes, low molecular weight components, oil and others) presented
in the lignocellulosic fibers [7,8]. In addition, the same fiber can have different properties
depending on the plant age, climate, soil, among others [9].

Yao et al. [10] studied the thermal degradation behavior of 10 different lignocellulosic
fibers, focusing on the Arrhenius kinetic parameters. The activation energy as a function of
conversion presented similar values, independently of the chemical content of the fiber
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studied. A linear dependency in the conversion range α = 0.2–0.8 was observed for all
fibers with an average apparent activation energy of 160–170 kJ·mol−1 for most of the fibers
studied. Sunphorka et al. [11] studied an artificial neural network (ANN) model using
150 data from different lignocellulosic fibers in relation to Arrhenius kinetic parameters.
The main results indicated that cellulose played a major role in the pre-exponential factor
while the hemicellulose on the reaction order. According to the authors, all components
affected the activation energy. Ornaghi Jr. et al. [7] studied the kinetic mechanisms involved
in the thermal degradation of lignocellulosic fibers based on the chemical composition. The
main results indicated that the activation energy of the fibers followed similar values to
the cellulose component and that the thermogravimetric curves followed a similar pattern,
independently of the chemical composition. Monticeli et al. [12] studied an ANN approach
for lignocellulosic fibers using thermogravimetric analysis. The results indicated 50–60 as
the optimal number of training datasets for all fibers. In addition, a reliable prediction of
TG curves was obtained at different heating rates did not obtain experimentally.

Most of the fibers found in the literature follow a similar curve format, independently
of the amount of the chemical components that indicate that the degradation process may
follow specific degradation rules. For example, a mass loss of 5–10% is obtained at 100 ◦C
due to moisture evaporation and, from 300 ◦C, the degradation of cellulose occurs. In
some cases, a shoulder is observed at DTG (derivative thermogravimetric analysis) due to
the higher amount of hemicellulose in a small range before cellulose degradation [13,14].
Hence, the thermogravimetric curves prediction of a particular lignocellulosic fiber can be
extended to most of the fibers due to these similarities.

The main objective of this study is to perform the thermal degradation kinetic behavior
of curaua fiber using the Vyazovkin kinetic method and ANN approach. The experimental
curves were kinetically tested and curves that did not test experimentally were predicted,
and new kinetic tests were carried out. The results presented reliable and robust data
without the necessity of further experimental curves.

2. Materials and Methods

Curaua fiber received from CEAPAC (support center for community action projects)
was used in this study. More details about the fiber characteristics can be found on [15,16].

Thermogravimetric analysis was carried out in a TA instrument model TGA-50
Shimadzu (Caxias do Sul, Brazil), under nitrogen atmosphere (50 mL·min−1), from 25
to 900 ◦C, using ~10 mg of each sample at four distinct heating rates (5, 10, 20 and
40 ◦C·min−1). The theoretical and predicted curves were used to calculate the kinetic
parameters according to the Vyazovkin method. The calculation was carried out using the
software developed by Drozin et al. [17]. A previous study Monticeli et al. [12] was used as
a base for the obtaining of the new ANN curves at distinct heating rates. The predicted
curves were used to calculate the kinetic parameters again and compare the results.

2.1. Kinetic Approach

The thermal degradation kinetic of lignocellulosic fibers follows the kinetics of the
reaction of solids, in Equation (1):

dα

dt
= k(T) f (α) (1)

where dα/dt is the degradation rate, k(T) is the rate constant and f (α) is a conversion
function.

The degradation kinetic follows Arrhenius’ equation (Equation (2)) and the heating
rate changes linearly with temperature (Equation (3)):

k(T) = Ae−
Ea
RT (2)

β =
dT
dt

= constant (3)
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where A is the pre-exponential factor, Ea is the activation energy, R is the gas constant, T is
the temperature, β is the heating rate and dT/dt is the temperature in function of time.

The reaction model follows Equation (4) that expresses the function f (α) in the
Equation (1) in a more analytical form:

f (α) = αm(1 − α)n[−ln(1 − α)]p (4)

where m, n and p are constants that represent a number of different reaction models. The
characteristic conversion (α) vs. time plot is often reduced to three main types (accelerating,
decelerating and sigmoidal). The equation above is a convenient mathematical approxima-
tion of the majority of possible mechanisms. For example, if the data obtained present m
and n values higher than zero (0) and not presents a p value, the most probable mechanism
is the diffusion one. Different combinations are referred to different mechanisms. More
details can be found on [18–21].

In combining Equations (1)–(4) we obtain Equation (5):

dα

dT
=

A
β

e−
Ea
RT αm(1 − α)n[−ln(1 − α)]p (5)

The kinetic calculation was performed with the help of the Software developed by
Drozin et al. [17] with the experimental and predicted curves.

2.2. Artificial Neural Network (ANN)

The ANN is conventionally constructed with three layers, i.e., an input, an output
and a hidden layer. Each layer has different numbers of neuronal elements. In the present
case, we use as input vectors a set of iTG curves at different heating rates. In this sense,
the network will modify the weight of the interconnections between neurons in order to
reproduce the given parameters. Figure 1 shows the scheme of the calculation process.
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Figure 1. Flowchart of the calculation process.

The main issues necessary to be defined before using the networks are the quality
and number of the initial TG curves, the training algorithm and the number of neurons
in the hidden layer. The number of initial TG curves used for the training should not be
excessively large to avoid the over-training of the network, and it must be distributed
correctly, in the sense that it usually appropriate to avoid sets of input vectors with the
same output vectors. These kinds of orthogonal combinations produce better results than
using random sets of parameters [22]. The following conditions (Table 1) were used to
training the ANN network.
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Table 1. Parameters used to perform the ANN fit.

Technique Number
of Layers

Number of
Hidden Neurons

in Each Layer

Training
Repetitions

Neural Network
Algorithm Error Function Threshold of

Error Function
Activation
Function

TGA 1 12 3
Resilient

backpropagation
with back tracking

Sum of
squared errors 0.01 Tangent

hyperbolicus

With the network training, we can feed the network with different curves and pre-
dicted new curves. The main drawback is that the curves outside the lower and higher
heating rate cannot be created due to the accumulation of errors [22,23].

2.3. Surface Response Methodology (SRM)

The SRM is a statistical approach for modeling and analyzing a process in which the
response of interest is affected by various variables [12,24,25]. Equation (6) describes the
degradation curve interaction among the combination of temperature and heating rate. In
using this method, the statistical relevance is kept and the number of experiments can be
reduced.

Z = γ0 +
k

∑
i=1

γixi +
k

∑
i=1

γiix2
i +

k

∑
j=1

γjxj +
k

∑
j=1

γjjx2
j +

k−1

∑
i=1

k

∑
j=i

γjixixj (6)

where Z represents the predicted response (i.e., degradation curve—WANN (%)), xi and
xj are variations parameter, in which i represents the x-axis (temperature T (◦C)) and j
is the y-axis (heating rate HR (◦C·min−1)). γ0 is the constant coefficient; γi is the linear
coefficient; and γij is the interaction coefficient.

3. Results and Discussion

Figure 2a,b showed the experimental thermogravimetric curves and the respective
derivatives of curaua fiber at different heating rates. The curves maintained the same for-
mat, independently of the heating rate used; only shifting the curve to a higher temperature.
Three visible main loss stages are visualized: (i) at around 100 ◦C, a mass loss of 5% can
be mainly attributed to the evaporation of intrinsic moisture, (ii) at around 300 ◦C a more
abrupt mass loss attributed mainly to hemicellulose that extends up to 350 ◦C and, (iii) from
350 ◦C to 400 ◦C the degradation of cellulose (the main component) in a narrower range,
representing the main degradation stage. Lignin decomposes over different temperature
ranges [7,26,27].

All the curves above were used to calculate the kinetic parameters using the Vyazovkin
kinetic model in the temperature range from 100 to 435 ◦C (main degradation stage). The
corrected heating rates (provided by the Software) using the Vyazovkin method were 10.09,
20.1 and 39.79 ◦C·min−1. Figure 3a represents the activation energy in the conversion
function and while Figure 3b the degradation rate in the function of conversion degree. An
appropriate correlation between the theoretical and calculated degradation rate vs. alpha is
obtained. The results presented the following values: Ea = 192.02 KJ·mol−1, A = 10.6 × 1015,
m = 0.9, n = 1.71 and p = 0.
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ANN prediction model is detailed in Section 2.2, in which the procedures used to
calculate the predicted TGA fit are exhibited in Table 1. Using the same ANN parameters,
this analysis can be reproduced for similar TGA curves through several neural network
software (e.g., MatLab, OriginLab, CNTK, TFLearn, among others) [28].

Based on experimental degradation curves, the ANN fit was constructed with param-
eters variation, in which temperature and heating rate as the input parameters and the
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loss of mass (kinetic behavior) as output. The experimental dots were used to training the
ANN. The number of training data influences the predictive curve, which was thoroughly
investigated in previous work to optimize the ANN method [12]. Figure 4a presents the
trained curves with the experimental ones, and Figure 4b exhibits the enlargement of initial
degradation. An excellent fit was obtained for all heating rates tested. The coefficient of
determination was R2 > 0.99 for all curves.
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Figure 4. (a) Thermogravimetric curves of curaua fiber at different heating rates trained using ANN
approach according to Monticeli et al. [12], and (b) enlargement of initial degradation.

Only 1/10 of the experimental dataset has been used for training the ANN, resulting in
a perfect fitting, resulting in an appropriate predictive result. Regarding the ANN applica-
tion, new degradation behavior could be predicted with no need for long experiments [28].

From the ANN predicted curves, intermediate heating rates were predicted using
the surface response methodology (SRM), resulting in a 3D Surface response to predict
mass loss as a function of temperature and heating rate variation. Dot curves give the
experimental data. The coefficient of determination R2 = 0.96 indicates the high reliability
of predicted results. For the lowest heating rate (i.e., 5 ◦C/min), the degradation curve
initiates at the lowest temperature for onset and endset, resulting in the slowest degradation
of the remaining residue (15%), between 375–810 ◦C. At higher heating rates, more abrupt
degradation occurs, increasing the onset and endset temperatures.

A well-trained ANN could develop a degradation mechanistic understanding of
the natural fiber considered, considering that the ANN method is a purely phenomeno-
logical approach that can give accurate predictions [29]. For a better approximation of
the theoretical and experimental results, the equation of the three-dimensional curve in
Figure 5 was divided into three, presented in Equation (7)—for the temperature range of
25–250 ◦C, Equation (8)—for the temperature range of 250–410 ◦C and Equation (9)—for
the temperature range of 410–810 ◦C.
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Figure 5. Surface Response Methodology for the thermogravimetric curves.

The SRM curves (Equations (7)–(9)) were generated through a mathematical calcu-
lation of a three-dimensional regression plot of the second-order Equation (8). For error
reduction and better compatibility with the complex curve presented in this work, the
degradation curve was divided into three: room temperature up to Tonset; Tonset to Tendset;
and Tendset to the final temperature, according to the procedure presented in reference [12].

WANN = 97.5 + 0.17HR − 0.007T − 0.004HR2 − 2.4·10−5T2 + 3.1·10−4T·HR (7)

WANN = −272.7 − 1.2HR + 2.83T − 0.01HR2 − 0.005T2 + 0.006T·HR (8)

WANN = 44.4 − 0.5HR − 0.09T + 0.0054HR2 + 4.9·10−5T2 + 3.14·10−4T·HR (9)

Following SRM results, Figure 6 exhibits the predicted values of the thermogravimetric
curves of curaua fiber using the heating rates of 7, 15, 30 and 50 ◦C·min−1. Through the
ANN and SRM combination, it is possible to predict other degradation curves with different
analysis parameters not accessed experimentally, decreasing costs and time related to tests
repetitions with high reliability.
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The new kinetic parameters were caried out using the curves predicted (a) 7, 15 and
30 ◦C·min−1 and (b) 7, 15, 30 and 50 ◦C·min−1. The results presented the following values
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for condition (a): Ea = 228.74 KJ·mol−1, A = 3.59 × 1019, m = 0.1, n = 1.00 and p = 0 and for
condition (b): Ea = 226.92 KJ·mol−1, A = 6.92 × 1018, m = 0.1, n = 1.53 and p = 0.

The values obtained, mainly the activation energy, are close to the experimental curves.
The extrapolated curve (at 50 ◦C·min−1) used in condition b was also obtained. Of course,
that the extrapolation of data using ANN is not well recommended due to the accumulation
of errors. However, it can be used carefully and seems to work if the behavior did not
change drastically from the previous behavior.

To confirm the ANN and SRM predicted methodology through the experimental data,
the analysis of variance method was applied to evaluate the statistical influence of the
heating rate variation on the Ea and A values, as shown in Table 2. The results confirmed
that the Ea and A are directly proportional to the heating rate fluctuation since in both
cases F > Fcritical and p-value < 0.05, confirming that there is a significant difference between
experimental and predicted values. In addition, the percentage of contribution (PC) shows
that error presented less influence on degradation kinetics parameters. This means that
even with a slight variation on activation energy and pre-exponential factor, the use of
different heating rate values has a high level of contribution in the determination of kinetic
degradation parameters.

Table 2. Analysis of variance results.

F p-Value Fcritical PC (%)

Ea 255.88 8.93 × 10−5 7.71 99.80
error 0.20

A 16.64 0.015 5.14 94.15
error - - - 5.85

As a matter of fact, the t-test exhibits a p-value = 0.10, which is higher than 0.05.
This result indicated that the experimental value presents no significative divergency than
predicted values (true null hypothesis).

4. Conclusions

The present study proposed obtaining new thermogravimetric curves for curaua fiber
at any heating rate between the minimum and maximum heating rates experimentally
tested. For this, an Artificial Neural Network (ANN) followed by the Surface Response
Methodology (SRM) was used to obtain new TG curves. Vyazovkin kinetic method was
used in the experimental curves and in the newly obtained curves. The kinetic results
presented similar values for the experimental and predicted curves, confirmed by statistical
analysis. This approach can be extended to any material to obtain properties, parameters
or to optimize processes.
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