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Abstract: Kirkwood–Buff Integral (KBI) theory is an important method for the analysis of the
structural and thermodynamic properties of liquid solutions. For solids, the calculation of KBIs has
become possible only recently through the finite-volume generalisation of KBI theory, but it has so
far only been applied to monoatomic crystals. Here, we show that KBI theory can be applied to
solid mixtures and compute the KBIs of a ArxXe1−x solid solution, for 0 < x < 0.1 and temperature
T = 84− 86 K, from pair distribution functions obtained by Monte Carlo simulation. From the KBIs,
the isothermal compressibility, partial molar volumes, and thermodynamic factors are calculated and
found to be in good agreement with alternative theoretical methods. The analysis of the KBIs and the
partial molar volumes give insight into the structure of the mixture. The KBI of Ar pairs is much larger
than that of Xe pairs, which indicates the tendency of Ar impurities to accumulate. The evolution
of the partial molar volumes with increasing Ar molar fraction x shows a transition at x ≈ 0.06,
which reflects the formation of Ar clusters, precursors of the Ar-rich liquid phase. The calculated
thermodynamic factors show that the solid(Xe) phase becomes unstable at x ≈ 0.1, indicating the
start of the solid (Xe)–liquid (Ar) equilibrium. The chemical potentials of Ar and Xe are obtained from
the thermodynamic factor by integration over ln x, and by fitting the data to the Margules equations,
the activity coefficients can be estimated over the whole composition range. The present findings
extend the domain of applicability of the KBI solution theory from liquids to solids.

Keywords: solid solution; argon; xenon; Kirkwood–Buff integral; Monte Carlo simulation

1. Introduction

Kirkwood–Buff Integral (KBI) theory [1], is considered to be one of the most important
theories of solutions [2], because it relies only on general, exact relations of statistical
mechanics. A KBI is a simple volume integral over the Radial pair Distribution Function
(RDF). In a mixture with N species, there are N(N − 1)/2 independent RDFs and, thus, as
many independent KBIs. These KBIs are directly related to the particle number fluctua-
tions. From the latter, various thermodynamic quantities can be obtained, including the
compressibility, partial molar volumes, and the thermodynamic factor Γ, i.e., the derivative
of the chemical potential with molar fraction [2], which is a key quantity for computing
diffusion coefficients [3,4]. KBI theory is widely used in the study of liquid mixtures and
solutions, either for obtaining thermodynamic quantities from molecular simulation [5–8]
or, inversely, by extracting the KBIs, which contain structural information, from measured
thermodynamic quantities (so-called “inverse KBI” [2,9]). In the last decade, there have
been many methodological advances in KBI theory, which have substantially improved the
efficiency and accuracy of KBIs for thermodynamic modelling of liquids; see, e.g., [10] for a
review, where the reader may find a detailed introduction to finite-volume Kirkwood–Buff
theory, used here. KBI theory was originally formulated for liquid mixtures. However,
since KBI theory relies only on general statistical mechanics, it should also be useful for
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the study of solids. The only ingredient of KBI theory is the RDF, which is available from
simulation or diffraction experiments in all kinds of matter, including liquids, granular
matter, glasses, and crystalline solids [11,12]. However, to the best of our knowledge,
KBI theory has never been applied to solid mixtures. The standard KBI technique cannot
be used in solids, because the usual, “running” KBI diverges, reflecting the long-range
correlations between the atomic positions in a crystal. This problem has recently been
overcome by Miyaji et al. [13] and Krüger [14], who showed that in crystals, the KBIs do
converge, provided that the generalisation of KBI theory to finite volumes [15] is used.
Miyaji et al. [13] also introduced a convolution of the RDF, which dramatically accelerates
the convergence of the KBI with system size. By combining the finite-volume KBI and the
convolution of the RDF, the KBI of solid argon could be calculated accurately from MC
simulations on a few thousand atoms. For T = 0 K, the exact KBI value was obtained
within 0.05%, and for finite temperatures, the KBI values converged to 1% or better. The
isothermal compressibility obtained from the KBI underestimates the experimental values
by about 40% independently of temperature. The error was corrected based on a simple
mechanical calculation valid at T = 0 K, and the corrected values were in good agreement
with the experiment in the whole temperature range of the solid phase (0 < T < 80 K).
After having shown that KBI theory can be applied to solids [13,14], we now turn to the
main purpose of the KBI method, namely the study of solutions.

In this paper, we present the first application of KBI theory to a solid mixture, namely
the ArxXe1−x solid solution at temperatures 84–86 K. For the Ar-Xe mixture in this tem-
perature range, accurate thermodynamic data are lacking. According to an approximate
Ar-Xe phase diagram [16], the system is a Xe-rich solid for an Ar concentration x below
about 5%, an Ar-rich liquid for x above about 80%, and in the solid–liquid equilibrium for x
between these two values. We focus on the range 0 < x < 0.1, i.e., the Xe-rich solid solution.
The KBIs are obtained from MC simulations by using the finite-volume KBI theory and
the convolution of the RDF [13]. We find, as in the case of monoatomic crystals [13], that
KBI theory considerably underestimates the isothermal compressibility. The Ar and Xe
partial molar volumes, however, agree very well with the values obtained by a standard
theoretical method. The partial molar volumes display a weak, linear variation with x for
x < 0.06. For higher Ar concentrations, the partial molar volume of Ar strongly decreases,
which indicates a transition from the solid solution phase to a solid–liquid equilibrium, in
agreement with the phase diagram [16]. The phase change is also indicated by the forma-
tion of Ar clusters and by the evolution of the affinity coefficients, which are computed
from the KBI and the Margules equations. The present results show that KBI theory can
be applied to solid mixtures, and partial molar volumes and activity coefficients can be
obtained from the KBIs. This is a key step in the effort to extend KBI theory to a general
technique for the thermodynamic analysis of multicomponent condensed matter systems.

2. Materials and Methods
2.1. Theory
2.1.1. Kirkwood–Buff Integrals in Crystals

In a mixture containing species α, β, . . . , the Pair Distribution Function (PDF) gαβ(r, r′)
is defined by

gαβ

(
r, r′
)
=
〈∑iα 6=jα δ(Riα − r)δ

(
Rjβ − r′

)
〉

ρα(r)ρβ(r′)
(1)

where Riα is the position of particle i of atomic species α, 〈. . . 〉 denotes the statistical average,
and ρα(r) = 〈∑iα δ(riα − r)〉 = Nα/V is the single-particle density. Nα is the number of
α-particles in the volume V. For the statistical averages, we assume, as in our previous
applications of KBI theory to solids [13,17], that the macroscopic system is isotropic and
homogeneous, i.e., it has the symmetry of a liquid. This may be justified by considering a
powder sample, which is an ensemble of crystals of arbitrary origin and orientation [17].
In this ensemble, the partial densities are constant, ρα(r) = ρα, and the PDF depends only
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on the particle distance r = |r− r′|, i.e., it becomes an RDF, denoted gαβ(r). The usual,
“running” KBI is given by

GR
αβ(L) =

∫ L

0
(gαβ(r)− 1)4πr2dr . (2)

where L is a cutoff radius. The finite-volume KBI is defined as [15]

GV
αβ =

1
V

∫
V

dr1

∫
V

dr2(gαβ(r)− 1) , (3)

where r = |r1 − r2|. It can be rewritten exactly as [15,18]

GF
αβ(L) ≡ GV

αβ =
∫ L

0
(gαβ(r)− 1)y(r/L)4πr2dr , (4)

where L is the maximum distance in V. y(x) is a geometrical function, which only depends
on the shape of V [19,20]. For a sphere of diameter L, we have

y(x) = 1− 3x/2 + x3/2 . (5)

To accelerate the convergence of the finite-volume KBI, several expressions have been
proposed [15,19,21]. In this study, we use the second-order extrapolation by Krüger and
Vlugt [19]. It is obtained from Equation (4) upon replacing y(x) with y2(x), given by

y2(x) = 1 + (−23x3 + 6x4 + 9x5)/8 ; (6)

thus,

Gαβ(L) =
∫ L

0
(gαβ(r)− 1)y2(r/L)4πr2dr . (7)

A two-component system with species A and B has three independent RDFs gAA,
gBB, and gAB and three corresponding infinite-volume KBIs, G∞

AA, G∞
BB, and G∞

AB. They
are related to the partial molar volume of atom A, V̄A, isothermal compressibility κT , and
thermodynamic correction factor Γ, the derivative of the chemical potential of a species
with its molar fraction, by [1]

V̄A =

(
∂V

∂NA

)
T,P,NB

=
1 + ρB

(
G∞

BB − G∞
AB
)

ρA + ρB + ρAρB
(
G∞

AA + G∞
BB − 2G∞

AB
) , (8)

κT = − 1
V

(
∂V
∂P

)
T
=

1 + ρAG∞
AA + ρBG∞

BB + ρAρB
(
G∞

AAG∞
BB − G∞2

AB
)

kT
(
ρA + ρB + ρAρB

(
G∞

AA + G∞
BB − 2G∞

AB
)) , (9)

Γ =
xA

kT

(
∂µA

∂xA

)
T,P

=
(ρA + ρB)

[ρA + ρB + ρAρB(GAA + GBB − 2GAB)]
, (10)

where T is the temperature, k is the Boltzmann constant, and P is the pressure.

2.1.2. Convolution of the RDF

In order to reduce the oscillations of the KBI and accelerate its convergence to the
infinite-volume limit G∞

αβ, we use a convolution of the RDF, which leaves G∞
αβ invariant [13].

It is based on a modified PDF where the 3D delta-functions in Equation (1) are replaced by

∆(r) =
{

6/(πσ3) if |r| < σ/2
0 otherwise

(11)

where σ is the peak width. The original PDF is recovered in the limit σ→ 0. Physically, the
modification δ(r)→ ∆(r) amounts to replacing point-like particles, corresponding to the
centre of mass of the atoms, by spherical particles of constant density. In a homogeneous,



Physchem 2022, 2 194

isotropic system, the modified PDF reduces to an RDF g̃(r), which can be written as a
convolution of the original RDF g(r), i.e.,

g̃(r) =
∫

g(r′)χ(r′, r)dr′ , (12)

where χ(r′, r) is given by [13]

χ(x′, x) = 6x′2[2ξ0(x′, x)− 3ξ1(x′, x) + ξ3(x′, x)] (13)

with

ξn(x, x′) =
[min(1, x + x′)]n+2 − |x− x′|n+2

(n + 2)xx′
. (14)

2.1.3. RDF Correction by Ganguly and van der Vegt

KBI theory was formulated for open systems in the grand canonical ensemble [1]. For
dense systems, molecular simulations are difficult in the grand canonical ensemble for
numerical reasons, related to the need for particle insertion. In practice, most simulations
are performed for closed systems in the canonical ensemble. In this case, the RDF must be
corrected for the ensemble error before it can be used in the KBI. Several correction schemes
have been proposed [6,15,22]. We use the method by Ganguly and van der Vegt [6], which
was found to perform very well in comparative studies [10,18]. The corrected RDF gvdV

αβ (r)
is given by

gvdV
αβ (r) = gαβ(r)

Nβ(1−V/Vbox)

Nβ(1−V/Vbox)−∆Nαβ(r)− δαβ
. (15)

where gαβ(r) is the original (canonical) RDF, Vbox is the volume of the simulation box,
V = 4πr3/3, Nβ is the number of β-particles in V, and ∆Nαβ(r) is the excess or depletion of
particles β in a sphere of radius r around a central particle α, given by

∆Nαβ(r) =
∫ r

0
[gαβ(r′)− 1]4πr′2ρβ dr′ . (16)

The correction (15) accounts for the fact that, in a closed system, the average density
in the “reservoir” region (r′ > r) is different from the bulk density.

2.2. Monte Carlo Simulations

We performed Monte Carlo (MC) simulations for Ar-Xe mixtures at 1 atm, temperature
84–86 K, and Ar concentration xAr = 0–10%. For the interatomic potential, we used the Mie
potential, which gave good results for various noble gas mixtures [23]. It is given by

UMie(r) = Cnεαβ

[(
σαβ

r

)nαβ

−
(

σαβ

r

)6
]

, (17)

where nαβ =
√nαnβ,

Cn =

(
nαβ

nαβ − 6

)(nαβ

6

)6/(nαβ−6)
, (18)

and σαβ and εαβ are calculated by the Lorentz–Berthelot combining rules [24,25]:

σαβ =
σασβ

2
, (19)

εαβ =
√

εαεβ . (20)

The potential parameters are summarised in the Table 1.
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Table 1. Mie potential parameters used for Ar and Xe, taken from Ref. [23].

Atom εα/k (K) σα (Å) ni

Ar 122.10 3.405 13
Xe 243.80 3.964 14

The cutoff radius of the potential was set to 10Å, and the tail correction [23] was
applied. The simulations were performed with the DL-Monte code [26,27]. A cubic box
with periodic boundary conditions was used, and the initial positions of the atoms were set
to the fcc lattice points. In addition to the normal MC steps, i.e., the incremental motion of
single atoms, we also included MC steps where an Ar atom and a Xe atom swap places.
This is necessary for reaching thermal equilibrium in a reasonable time, because diffusion
rates are extremely low in solids. The particle swaps did not lead to numerical artefacts, as
we checked.

First, the density of the system was determined by simulations in the NpT ensemble
of the system with a total number of 500 particles. The total number of MC steps was
150 million, of which 20 million steps were discarded as steps to reach equilibrium. The
densities were sampled every 100 steps to obtain the statistical averages. In the same
simulation, we calculated the isothermal compressibility from the volume fluctuations. For
the Ar concentration range of 0–10%, simulations were carried out at exactly 2% intervals.
Using the densities obtained in the NpT ensemble, the RDFs were calculated by MC
simulations in the NVT ensemble with a total number of 4000 particles. The total number
of MC steps was 840 million, of which 40 million steps were discarded as steps to reach
equilibrium. The RDFs were convoluted with Equation (12), and the vdV correction (15)
was applied. Then, the partial molar volumes of Ar and Xe, the isothermal compressibility
and, the thermodynamic factor were obtained from the finite-volume KBI method, using
Equations (7)–(10). For one temperature, T = 85 K, the partial molar volumes were
also obtained using the following, standard method. The volume V of the mixture was
computed in two NpT simulations, one for particle numbers (NAr,NXe), corresponding to
xAr = 0.02, 0.04, . . . , and one for either (NAr + 1,NXe − 1) or (NAr − 1,NXe + 1). Assuming
V̄Ar, V̄Xe constant under this small concentration variation, their values can be obtained
from the relation

V = NArV̄Ar + NXeV̄Xe , (21)

evaluated at the two (NAr,NXe) points. This method is equivalent to a numerical differenti-
ation of the V(x) curve.

3. Results and Discussion
3.1. Monte Carlo Simulation

The determined average density, KBIs, isothermal compressibility, and thermodynamic
factor are listed in Table 2 as a function of temperature and Ar concentration. The partial
molar volumes are listed in Table 3.

From the RDFs, it is found that the Ar-Xe mixture is in the solid phase for the whole
temperature and concentrations range (0 < xAr < 0.1) considered in this study. In-
deed, all the RDFs display long-range oscillations, typical for a crystalline structure; see
Figure 1a, where T = 85 K, xAr = 0.02. However, as shown below, Ar clustering occurs for
xAr > 0.05, indicating the possibility of a Xe-Ar phase separation in the thermodynamic
limit. In Figure 1b, the first neighbour peaks of the RDFs are compared for two different Ar
concentrations xAr. When going from xAr = 0.02 (broken line) to xAr = 0.10 (solid line), the
Xe-Xe distance hardly changes (−0.27%), but the Ar-Ar distance decreases significantly by
2.1%, indicating a change of the local structure around the Ar atoms with increasing Ar
content. The variation of nearest neighbour distances (R1) and the average coordination
number (Nc) are plotted as a function of xAr, in Figure 1c,d, respectively. It can be seen
that the Ar-Ar and the Ar-Xe nearest neighbour distances decrease with xAr and that for
Ar-Ar, the decrease of R1 accelerates at xAr ≈ 0.05 (the slope changes from −0.15 to −0.31),
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where the average Ar-Ar coordination number is about 1. This means that the Ar atoms are
bound to the Xe lattice points for low Ar concentrations up to about 5%, but for higher Ar
concentrations, the Ar-Ar nearest neighbour distance decreases fast, indicating that neigh-
bouring Ar atoms are no longer at exact Xe lattice sites, but they relax and approach the
Ar-Ar equilibrium distance. This effect happens when the coordination number exceeds 1,
i.e., precisely when Ar clusters of three or more atoms start forming.

Table 2. Equilibrium density ρ and isothermal compressibility κ
NpT
T from NpT simulations as a

function of temperature T and Ar concentration xAr. KBI values Gαβ for {α, β} ={Ar,Xe} and derived
quantities (superscript “KBI”): isothermal compressibility κT , thermodynamic correction factor Γ.

T (K) xAr ρ (Å−3)
GArAr

(103Å3)
GArXe

(102Å3) GXeXe (Å3)
κKBI

T
(GPa−1)

κ
NpT
T

(GPa−1)
ΓKBI

84 0 0.01690 - - −58.96 0.1950 0.2804 1.00
85 0 0.01689 - - −58.99 0.1960 0.2824 1.00
86 0 0.01688 - - −59.02 0.1973 0.2849 1.00
84 0.02 0.01694 0.7936 −0.7045 −58.68 0.2042 0.2873 0.775
85 0.02 0.01693 0.8471 −0.7092 −58.72 0.2063 0.2896 0.764
86 0.02 0.01692 0.8507 −0.7157 −58.72 0.2058 0.2930 0.763
84 0.04 0.01698 1.047 −0.9630 −57.41 0.2132 0.2967 0.565
85 0.04 0.01697 1.082 −0.9769 −57.38 0.2166 0.2981 0.557
86 0.04 0.01696 1.120 −0.9913 −57.37 0.2167 0.3014 0.549
84 0.06 0.01702 1.768 −1.602 −52.85 0.2340 0.3057 0.339
85 0.06 0.01701 1.712 −1.567 −53.11 0.2328 0.3078 0.346
86 0.06 0.01700 1.524 −1.466 −53.69 0.2335 0.3112 0.372
84 0.08 0.01707 3.430 −3.258 −37.82 0.2631 0.3134 0.165
85 0.08 0.01706 3.175 −3.055 −39.48 0.2638 0.3167 0.175
86 0.08 0.01705 2.656 −2.667 −42.43 0.2588 0.3188 0.202
84 0.10 0.01712 18.12 −18.39 116.3 0.3367 0.3250 0.0288
85 0.10 0.01711 15.50 −15.81 90.86 0.3318 0.3270 0.0335
86 0.10 0.01710 7.101 −7.597 10.54 0.3131 0.3300 0.0700

Table 3. Partial molar volumes V̄Ar and V̄Xe obtained either using KBI theory (V̄KBI) or from two
NpT simulations and Equation (21) with particle numbers (NAr,NXe) corresponding to xAr and
(NAr ± 1, NXe ∓ 1). Superscript “Ar-Xe” stands for (NAr − 1, NXe + 1) and “Xe-Ar” for
(NAr + 1, NXe − 1).

T (K) xAr V̄KBI
Ar (Å3) V̄Ar−Xe

Ar (Å3) V̄Xe−Ar
Ar (Å3) V̄KBI

Xe (Å3) V̄Ar−Xe
Xe (Å3) V̄Xe−Ar

Xe (Å3)

84 0 - - - 59.18 - -
85 0 - - - 59.22 - -
86 0 - - - 59.25 - -
84 0.02 54.68 - - 59.13 - -
85 0.02 54.29 51.88 53.37 59.18 59.22 59.20
86 0.02 54.74 - - 59.21 - -
84 0.04 54.36 - - 59.09 - -
85 0.04 54.40 51.65 52.84 59.13 59.24 59.19
86 0.04 54.41 - - 59.17 - -
84 0.06 54.05 - - 59.05 - -
85 0.06 54.00 51.06 51.03 59.09 59.28 59.28
86 0.06 54.32 - - 59.11 - -
84 0.08 53.22 - - 59.05 - -
85 0.08 53.19 52.18 50.55 59.10 59.19 59.33
86 0.08 53.55 - - 59.11 - -
84 0.10 52.29 - - 59.09 - -
85 0.10 52.32 50.88 50.38 59.13 59.29 59.35
86 0.10 52.64 - - 59.14 - -
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(a)

(d)(c)

(b)

Figure 1. RDFs and information obtained from RDFs. (a) RDFs at T = 85 K and xAr = 0.02. (b) RDFs
enlarged around nearest neighbour distances at T = 85 K and xAr = 0.02 (broken lines) or xAr = 0.10
(solid lines). (c) Nearest neighbour distances (R1) normalised by their values at xAr = 0.02. (d) The
mean number of Ar nearest neighbours around an Ar atom (Ar-Ar) or a Xe atom (Xe-Ar).

The cluster formation can also directly be seen in the snapshots of the MC simulation
(Figure 2).

Figure 2. Snapshots of (111) planes of Ar-Xe mixtures at T = 84 K and (a) xAr = 0.02 and
(b) xAr = 0.10.

3.2. KBI and Partial Molar Volumes

Before computing the KBIs, the RDFs obtained from the NVT simulations were convo-
luted using Equation (12), and the Ganguly and van der Vegt’s correction, Equation (15),
was applied. The result, for T = 85 K and xAr = 2%, is shown in Figure 3a.



Physchem 2022, 2 198

0 5 10 15 20 25
r [Å]

0

0.5

1

1.5

2

g~ (r
)

Ar-Ar
Ar-Xe
Xe-Xe

0 5 10 15 20 25
L [Å]

0

200

400

600

G~ αβvd
V

(L
) 

[Å
3 ]

Ar-Ar
Ar-Xe
Xe-Xe

(a) (b)

Figure 3. (a) RDFs convoluted by Equation (12) and corrected by Equation (15) at T = 85 K and
xAr = 0.02. (b) KBIs calculated by Equation (7) using (a).

The convolution of the RDF smears out the long-range oscillations and makes the
KBIs converge fast [13]. Although most structural information of the RDF seems to be
lost after convolution, two interesting features remain. First, all g̃αβ(r) graphs show a dip
at r = 0, which reflects the excluded volume effect. Second, the RDF g̃ArAr(r) (and only
this) has a pronounced peak at r ≈ 5 Å, which means that, around a given Ar atom, there
is an increased probability to find other Ar atoms in close vicinity. In other words, Ar
atoms tend to accumulate, which confirms the conclusion drawn above from the analysis
of Figures 1 and 2. From the convoluted and corrected RDFs, the KBIs G̃vdV

αβ are calculated
using the finite-volume KBI method Equation (7) and shown in Figure 3b. The Xe-Xe and
the Xe-Ar KBIs are negative, as in the case of a monoatomic crystal, where the KBI goes to
−1/ρ for L→ ∞ and T → 0 [13]. Interestingly, however, the Ar-Ar KBI has a large positive
value, which signals a tendency of the solute (Ar) to accumulate [28].

We next analyse the partial molar volumes. Figure 4a shows V̄Ar and V̄Xe as a function
of L, calculated from the KBIs using Equation (8). The values in the thermodynamic limit
(L → ∞) were estimated by fitting the slope of the graph L× V̄ at large L; see Figure 4b.
This fitting was performed for each temperature and concentration, and the obtained partial
molar volumes are listed in Table 3. For T = 85 K, the data are plotted in Figure 5a,c and
compared with the partial molar volumes obtained from NpT simulation and Equation (21).
From the latter, we obtained two values, depending on whether Ar was replaced by Xe or
vice versa. The two values differ by up to 3% for Ar and 0.3% for Xe, which gives an error
estimation for this method.
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Figure 4. (a) Partial molar volumes V̄Ar (black) and V̄Xe (red) from the KBI as a function of L, at
T = 85 K and xAr = 0.02. (b) Plot of L× V̄Ar and L× V̄Xe and linear fits (green and blue lines).
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Figure 5. Partial molar volumes, (a) V̄Ar and (c) V̄Xe, at T = 85K, from KBI (black), and NpT
simulations with particle numbers (NXe−1, NAr+1) (green) or (NXe+1, NAr−1) (red). (b,d) show the
relative errors of V̄Ar and V̄Xe from the KBI, with respect to the values obtained from NpT.

The difference between the partial molar volumes obtained with the KBI and NpT is
at a maximum of 6% for Ar and 0.4% for Xe, and so, the KBI error is comparable to the NpT
error; see Figure 5b,d. The fact that the error of the minority type (Ar) is much larger than
that of the majority type (Xe) is expected because of poorer statistics for the minority type.

The partial molar volumes of Ar and Xe obtained from the KBIs are plotted in Figure 6.
The dependence on Ar concentration xAr clearly changes at xAr ≈ 0.06. The slopes of the
V̄Ar plot (Figure 6a) are −7.1 Å3 for xAr < 6% and −42.2 Å3 for xAr > 6%, i.e., much larger
at a higher Ar concentration. The corresponding slopes of the V̄Xe plot (Figure 6b) are
−2.1 Å3 for xAr < 6% and 1.1 Å3 for xAr > 6%. The variation of the partial molar volume
of Xe is smaller than that of Ar and can be regarded as almost constant.

This rapid decrease in the partial molar volumes of Ar at higher concentrations may
reflect an increase in the occurrence of Ar clusters. From the analysis of the RDFs, we found
that the Ar atoms are bound to the Xe lattice sites for xAr < 5%, so their partial molar
volume is large and close to that of Xe. For xAr > 5%, Ar clusters of three or more atoms
start forming. In such clusters, the Ar-Ar distance can relax and approach the much smaller
value of pure Ar. As a consequence, the partial molar volume of Ar decreases fast, as seen
in Figure 6a. Note that the partial molar volume of Ar is smaller than that of Xe, even at the
lowest Ar concentration because the Xe atoms relax a little around the Ar impurity (see
Figure 1b).
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Figure 6. Partial molar volumes from KBIs as a function of Ar concentration xAr for different
temperatures. V̄Ar in (a) and V̄Xe in (b). Broken lines are linear fits in the xAr range 0.00–0.06 (orange)
and 0.06–0.10 (blue).

3.3. Thermodynamic Correction Factor and Chemical Potential

In the theory of liquids, the non-ideality of the solution mixture is often described
by the thermodynamic correction factor Γ. This quantity gives access to the evolution
of the chemical potential with the molar fraction. For example, when calculating Fick’s
diffusion coefficient from MD simulation, it accounts for the thermodynamic contribu-
tion to the transport property. For an ideal mixture (in the sense that ideal mixing rules
apply), Γ equals 1, but it has a different value otherwise. The Γ values calculated from
Equation (10) are plotted as a function of the Ar concentration in Figure 7 for the three
different temperatures.
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Figure 7. Thermodynamic correction factor as a function of Ar concentration.

As expected, Γ → 1 for xAr → 0. For xAr > 0, Γ decreases linearly until xAr = 0.05,
where the curve starts to bend, but it keeps decreasing and goes to zero for x ≈ 0.1. It
is well known that when Γ ≈ 0, the values of xAr change drastically for a small change
in chemical potential, which is a clear sign of a transition from one phase, here the solid
solution for xAr < 0.1, to another phase for xAr > 0.1. Despite the uncertainty of the data,
it is evident from the plot that this transition point (the xAr value where Γ = 0) decreases
with temperature.

The knowledge of Γ for different values of xAr gives the possibility to compute the
variation of the chemical potential of Ar or Xe from a reference point. This is performed by
integrating Γ with ln x. For Xe, the reference point is the pure xenon solid phase, while for
Ar, we used the composition xAr = 0.02. The results are presented in Figure 8. It is seen that
the chemical potentials tend to constant values above xAr = 0.1, which is a clear sign of a
phase transition. This is in agreement with the analysis on the partial molar volumes.
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Figure 8. Evolution of the chemical potential of (a) Ar and (b) Xe as a function of the Ar concentration.
Note that the reference point is xAr=0 for Xe, but it is xAr = 0.02 for Ar.

The evolution of the chemical potential with composition can also be analysed with
thermodynamic models. From the chemical potential, the activities a = γx, and the
activity coefficients γ, of the two species are calculated and presented in Figures 9 and 10,
respectively. For Xe, the activities deviate slightly from 1, while for Ar, they vary linearly
with molar fraction for small values of xAr before showing a plateau. This linear evolution
is equivalent to Henry’s regime for the dissolution of a gas in a liquid.
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Figure 9. Activity of Ar and Xe as a function of the Ar concentration. Note that the reference point is
xAr = 0 for Xe, but it is xAr = 0.02 for Ar.

In Figure 10b, it is seen that ln γXe has a cubic behaviour with Ar concentration; this
trend is characteristic of a mixture that obeys the three-suffix Margules equations:

ln γXe = bx2
Ar + cx3

Ar , (22)

ln γAr =
2b + 3c

2
x2

Xe − cx3
Xe . (23)

The parameters b and c were obtained by fitting Equation (22) to the data in Figure 10a
and are given in Table 4. The values of ln γAr as obtained from the Margules Equation (23)
are plotted in Figure 10b and compared with the data derived from the thermodynamic
factor Γ. In the range of the presented molar fraction (xAr < 0.1), ln γAr decreases linearly
with xAr, and the slope is the same for all data sets. In the Margules data (stars), the
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reference state is xAr = 0, while it is xAr = 0.02 for the data from the thermodynamic
factor (circles); this explains the vertical offsets. In other words, by virtue of the Margules
equations, we can estimate γAr for xAr → 0 from the known (ideal) behaviour of the solvent
in the dilute limit, namely ln γXe → 0. As a result (see Figure 10b, stars), we find that γAr
has a temperature dependence.

Table 4. Margules parameter values.

Temperature 84 (K) 85 (K) 86 (K)

b 5.54457 5.63663 5.76786
c −0.58653 −1.35139 −4.17325
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Figure 10. Evolution of ln γ with xAr for (a) Xe and (b) Ar. Values obtained from simulation data via
Γ (circles) or from a fit to the Margules equations (stars).

Within the Margules model, the activity coefficients are fully determined by the
knowledge of the parameters b, c. This allows us to extrapolate the activity from the narrow
interval xAr, for which simulation data exist, to the whole composition range 0 < xAr < 1;
see Figure 11. All the curves show two extrema, one at xAr ≈ 0.1, close to the previously
discussed stability limit of the Xe-rich solid phase, and a second extremum at xAr between
0.7 and 0.9, depending on the temperature. For compositions between these two extrema,
the system is unstable and favours phase separation. Some authors reported this kind of
behaviour, using thermodynamic models and experiments [16,29,30]. It is important to
note that the quality of the extrapolation shown in Figure 11, depends both on the accuracy
of the simulation results and on the model used for the activity coefficients (Margules in
this case). Other models such as UNIQUAC or NRTL could predict a somewhat different
unstable zone.
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Figure 11. Activity of Ar and Xe as a function of the Ar concentration calculated with the Margules
equations.
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3.4. Isothermal Compressibility

The isothermal compressibility as a function of L is shown in Figure 12 for an Ar-Xe
mixture at T = 85 K and xAr = 2%, using the same KBIs (Figure 3b) from which the partial
molar volumes were obtained.
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Figure 12. Isothermal compressibility (black) from KBIs at T = 85 K and xAr = 0.02 as a function of
L and cubic fit (red).

The convergence value of this isothermal compressibility can be obtained by applying
cubic fitting to this function (Figure 12). The convergence values were calculated by the
same method at each temperature and Ar concentration. They are listed in Table 2.

Figure 13 shows the isothermal compressibility κKBI
T from the KBI and κ

NpT
T from the

volume fluctuations as a function of Ar concentration. In the temperature and concentration
range treated in this study, the isothermal compressibility varies more strongly with Ar
concentration than with temperature, which is consistent between the KBI and volume
fluctuation results. However, while the variation with xAr is linear for the volume fluctu-
ation values, a non-linear dependence is seen for the KBI-derived values. For x ≤ 0.04,
the compressibility values from the KBI are smaller, by about 30%, than those obtained
from volume fluctuations, which are known to be much more accurate (by comparison
with T → 0 and xAr = 0). A similar error of the KBI-derived compressibility was obtained
for solid Ar [13]. For xAr > 0.05, the KBI values rise quickly and approach those from the
volume fluctuations. However, this decrease of the error is fortuitous, because for x > 0.1,
the compressibility becomes much too large, i.e., the error increases with the opposite
sign, as we checked. This sharp rise of the KBI-derived compressibility for xAr > 0.05 is
likely due to the appearance of Ar clusters, which we believe are precursors of the Ar-rich
liquid phase; see Section 3.2. Clustering induces a strong structural inhomogeneity, and
so, KBI theory, which assumes the homogeneity of the system, might not be fully valid for
xAr > 0.05.

0 0.02 0.04 0.06 0.08 0.1
x

Ar

0

0.1

0.2

0.3

0.4

κ T
 [

G
P

a
-1

]

(KBI) T=84K
(KBI) T=85K
(KBI) T=86K
(V fluc.) T=84K
(V fluc.) T=85K
(V fluc.) T=86K

Figure 13. Isothermal compressibility from KBIs (circle) and from volume fluctuations (square).
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Finally, we discuss the relative contribution of density and concentration fluctuations
to the compressibility. In a two-component system with species α, β, the isothermal
compressibility can be expressed as κT = κ

ρ
T + κc

T , i.e., the sum of a density fluctuation term
κ

ρ
T and a composition fluctuation term κc

T , given by [31]

κ
ρ
T =

〈
(∆N)2〉
〈N〉ρkT

(24)

=
xαραGαα + xβρβGββ + 2xαxβρGαβ + 1

ρkT
, (25)

κc
T = −

(V̄α − V̄β)
2ρN

〈
(∆x)2〉

kT
(26)

= −
{ρα

(
Gαα − Gαβ

)
− ρβ

(
Gββ − Gαβ

)
}2xαxβ

kT{ρα + ρβ + ραρβ

(
G∞

αα + G∞
ββ − 2G∞

αβ

)
})

. (27)

Here, N is the number of all particles in the system, ∆N = N − 〈N〉, ρ = 〈N/V〉, and
∆x is defined by ∆x = [xβ∆Nα − xα∆Nβ]/N.

The two terms are plotted in Figure 14a,b as a function of L for T = 85 K. It is seen
that the concentration term κc

T(L) does not converge for L → ∞ when xAr > 0.06, and
thus, the KBI-derived isothermal compressibility values in Figure 13 are not accurate for
these Ar concentrations. However, from the comparison of the values at the endpoints of
these functions Lmax (Figure 14c), it is clear that the absolute values of both the density and
concentration fluctuation components increase rapidly when xAr is higher than 5%, which
is understood to be due to the onset of the separation of the solid and liquid phases by the
formation of Ar clusters.
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Figure 14. The two terms contributing to the isothermal compressibility κT = κ
ρ
T + κc

T , calculated for
T = 85K as a function of inverse system size 1/L. (a) Density fluctuation term κ

ρ
T(L) (Equation (25)).

(b) Concentration fluctuation term κc
T(L) (Equation (27)). (c) The absolute values of the endpoints

(i.e., at maximum L).

4. Conclusions

In this study, we demonstrated that KBI solution theory can be applied not only to
liquids, but also to solid solutions, and we discussed the structural and thermodynamic
information that can be obtained from the KBIs. We applied the theory to Xe-rich Ar-Xe
mixtures with radial distribution functions obtained from MC simulations and calculated
the KBIs using the finite-volume KBI method. The partial molar volumes obtained from the
KBI agree well with the values with a standard method. From the concentration dependence
of the KBI and the partial molar volume, it was found that for an Ar concentration xAr < 5 %,
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the Xe crystal structure relaxes around the mostly isolated Ar impurities, while for x > 5%,
a fast variation of the KBI and partial molar volumes is observed due to Ar cluster formation.
From the KBIs, the thermodynamic correction factor is obtained and the chemical potentials
of Ar and Xe are estimated by integration over the molar fraction. By fitting the data to
the Margules equations, the activity coefficients for the whole composition range were
obtained, which shows that the Xe-rich solid phase is unstable for x > 0.1, in agreement
with the literature. We conclude that the computation of KBIs in solid solutions provides
valuable insights into the structure of the mixture and its thermodynamic phase stability.
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