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Abstract: We propose an anomalous diffusion approach to analyze the electrical impedance response
of electrolytic cells using time-fractional derivatives. We establish, in general terms, the conservation
laws connected to a modified displacement current entering the fractional approach formulation of
the Poisson–Nernst–Planck (PNP) model. In this new formalism, we obtain analytical expressions
for the electrical impedance for the case of blocking electrodes and in the presence of general
integrodifferential boundary conditions including time-fractional derivatives of distributed order. A
conceptual scenario thus emerges aimed at exploring anomalous diffusion and surface effects on the
impedance response of the cell to an external stimulus.

Keywords: impedance spectroscopy; Poisson–Nernst–Planck Model; fractional diffusion

1. Introduction

The impedance spectroscopy technique is widely applied to the dielectric characteriza-
tion of insulating material. According to this technique, the electrical impedance is obtained
by the application of a small signal alternating potential of frequency f to the sample in
order to obtain its response, which is represented by a solenoidal total current flowing
through the system. In this way, the electrical impedance is analytically obtained as the
ratio of the applied potential and the total current. Once this expression is built, the real
and imaginary parts of the electrical impedance allow us to derive information on the
dissipative and reactive mechanisms underlying the electric response of the medium to an
external electric excitation [1–3]. In the high-frequency region ( f larger than a few GHz),
the response of the medium is related to atomic and molecular mechanisms responsible
for atomic or molecular polarization. From the analysis of the impedance spectra in this
region, it is possible to derive information on the dispersion of the real and imaginary parts
of the complex dielectric constant.

On the other hand, in the low-frequency region ( f smaller than of a few MHz), the
response of the medium strongly depends on the ions present in the medium. This ionic
contribution to the electric response of the electrolytic cell is known as electrode polarization.
From the analysis of the spectra in this frequency region, it is possible to derive information
about the physical characteristics of the ions in the considered medium, as the ionic
concentration, or the ionic mobility. In the dc limit, the response depends on the nature of
the electrodes. A continuum description of the medium containing the ions, characterized
by a real dielectric constant, was proposed long ago by Macdonald [4] and a few years later
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by Trukham [5], and it is known as the Poisson–Nernst–Planck (PNP) model. This model
employs the continuity equation for both positive and negative ions combined with the
Poisson equation. One of the most striking features of the electrical impedance response in
typical electrolytic cells is its behavior in the low-frequency limit, i.e., Z ∼ 1/(iω), when
perfect-blocking boundary conditions are considered. However, in many experimental
scenarios [6–9], it has been shown that the electrical impedance in the low-frequency limit
exhibits a different behavior, i.e., Z ∼ 1/(iω)γ, in which γ < 1. This kind of challenging
response has motivated the extensions of the PNP model in order to render it more suitable
to analyze complex experimental data.

One of these extensions considers the modification of the continuity equations by
incorporating to it time-derivatives of arbirary order, i.e., by formulating the drift-diffusion
problem in terms of the fractional calculus [6–9]. Another way of extending the PNP model
is to consider nonstandard boundary conditions involving more complex adsorption–
desorption processes at the interface of the bulk electrode. The first kind of extension
can be particularly relevant, because the diffusion of particles in structured media is well
described by anomalous diffusion, and the electrodes, in general, are structured, porous
media. The other strategy of extending the boundary conditions can be used to model
complex processes between surface and bulk. Both approaches are not only non-exclusive
but can complement each other. Thus, a suitable analysis of this aspect of the conceptual
framework is necessary to evidence the predictions of each approach as well as their
possible relevance and applicability to the experimental scenarios.

In this paper, we propose and analyze extensions of the PNP model in terms of
time-fractional derivative incorporated to the continuity equations in the situation of
blocking electrodes as boundary conditions. We also consider a general type of non-blocking
integrodifferential boundary conditions to implement the tools needed to face a variety
of experimental data. To establish the general equations, we show why and how the
displacement current needs to be modified to satisfy the conservation laws when we
modify the continuity equation, as pointed out in Refs. [10,11] for fractional derivatives of
distributed order. In addition, we discuss the effects of each strategy described above to
face impedance problems and how these strategies may be connected. These developments
are performed in Sections 2 and 3. Finally, our discussing and concluding remarks are
presented in Section 4.

2. The Geometry of the Cell and Conservation Laws

Let us start by defining an electrolytic cell, i.e., the region where the charges are
diffusing and subjected to an external time-dependent difference of potential. It contains
an insulating fluid in which ions are dispersed and tend to accumulate close to the limiting
surfaces (actually, electrodes of area A), placed at the positions z = ±d/2, where z is the
normal coordinate of a Cartesian frame. The sample is thus a slab of thickness d filled
with an isotropic fluid inside which ions, positive, with volume density N+(z, t), and
negative, with density N−(z, t), forming a homogeneous medium of dielectric constant ε
(for simplicity, hereafter measured in units of ε0 = 8.85× 10−12 F/m). We will assume later
that the system of ions is diluted in such a way that their presence does not alter significantly
the value of ε and that generation–recombination effects can be neglected. In the approach
we propose here, in which the concentration of the ions is small in the equilibrium, the
geometrical dimensions of these ions do not play any role. The description of the system
can be done by means of a continuous function representing the ionic density. In the case of
concentrated solution, where the ionic density is comparable with the molecular density of
the liquid in which the ions are dispersed, the analysis has to be performed along the lines
discussed, for instance, in Refs. [12,13]. These ions are also assumed as monovalent, having
a charge |q| = 1.6× 10−19 C. Before the application of an external difference of potential,
the liquid is locally and globally neutral. However, when the external field is turned on,
the charges move and currents of positive, j+(z, t), and negative, j−(z, t), charges appear
in the sample, and the liquid becomes locally charged but remains globally neutral. From
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this assumption, it follows that in the limit of an infinite sample, in the absence of any
external voltage,

N+(z, t) = N−(z, t) = N, (1)

where N represents the equilibrium density of ions of either positive and negative signs. If
the ions have different valences ζ+ and ζ−, the ionic bulk density of positive and negative
ionic charge are ζ+N+(z, t)|q| and −ζ−N−(z, t)|q|, respectively. In this framework, the
condition of electro-neutrality in the state of thermodynamic equilibrium, where the bulk
density of ions are N+,eq and N−,eq, is ζ+N+,eq = ζ−N−,eq. The quantity N in this case has
to be changed in ζ+N+,eq. However, all the analysis remains the same, since in the linear
version of the PNP-model, just small deviations from the equilibrium state are considered.
Working with N is a consequence of another assumption implicit to the whole approach:
the neutral species are fully dissociated into positive and negative charges of arbitrary
mobilities and equal concentrations. When the external difference of potential is applied,
and if its amplitude, V0, is small enough (typically V0 � VT = kBT/q, where kBT is the
thermal energy at room temperature: VT ≈ 25 mV), then the variations of the bulk densities
of ions due to the external field, n±(z, t) is such that |n±(z, t)| � N. In this approximation,

N+(z, t) = N + n+(z, t) and N−(z, t) = N + n−(z, t), (2)

i.e., the actual densities of ions only slightly differ from N.
The problem of obtaining the total current flowing through the electrolytic cell may be

stated in the framework of the Poisson–Nernst–Planck (PNP) model, which is represented
by three fundamental equations. The first two are the continuity equations:

∂

∂t
N±(z, t) +

∂

∂z
j±(z, t) = 0, (3)

with the current densities given by

j±(z, t) = −D±
∂

∂z
N±(z, t)∓ D±

q
kBT

N±(z, t)
∂

∂z
V(z, t), (4)

where D± are the diffusion coefficients for the positive and negative ions. In Equation (4),
V(z, t) is the actual electric potential which can be determined by invoking the third of the
fundamental equation—the equation of Poisson—namely:

∂2

∂z2 V(z, t) = − q
ε
[N+(z, t)− N−(z, t)], (5)

which connects the profile of the electric potential across the sample with the actual bulk
density of ions of both signs.

From Equations (3) and (5), we have a condition related to the charge conservation
with relevant implications, which should be evidenced. By combining Equation (3) for
positive and negative ions in subtraction, we may write:

∂

∂t

[
N+(z, t)− N−(z, t)

]
+

∂

∂z

[
j+(z, t)− j−(z, t)

]
= 0. (6)

Now, by remembering that the profile of the electric field is given by E(z, t) =
−∂V(z, t)/∂z, we use Poisson’s equation in Equation (6) to obtain

∂

∂z

{
q
[

j+(z, t)− j−(z, t)
]
+ ε

∂

∂t
E(z, t)

}
= 0. (7)

This equation implies that

J(t) = q[j+(z, t)− j−(z, t)] + ε
∂

∂t
E(z, t). (8)
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The first term in Equation (8) is related to the conduction current and the second term
is the displacement current. Equation (7) is in agreement with the Maxwell equations,
which determines the dynamics of the electromagnetic field, and it requires (for the three-
dimensional case) that ∇ · J = 0, i.e., that the total current across the sample has to be
solenoidal. This implies that the current

I(t) = qS[j+(z, t)− j−(z, t)] + εS
∂

∂t
E(z, t) (9)

does not depend on z, where S is the area of the electrode.
Let us repeat the analysis but now incorporating the time-fractional derivative of

distributed order to the previous equations. We modify the continuity equations by express-
ing them in terms of the fractional time-derivative and analyze the changes produced in
Equation (9). The modification of the continuity equation implies modifying the description
of the diffusion in order to account for anomalous diffusion. In this case, the anomalous
diffusion is expected to be related to the bulk properties of the system [14–18].

For simplicity, consider first generalizing the time-derivative operator in Equation (3)
to a time-fractional derivative of order 0 < γ < 1, i.e., ∂/∂t → ∂γ/∂tγ. The continuity
equations become

τγ−1 ∂γN±(z, t)
∂tγ

+
∂j±(z, t)

∂z
= 0, (10)

in which τ is a characteristic time. Before proceeding, we notice that this extension of the
PNP model to the field of fractional calculus requires modifying the continuity equations,
which now involves a time-fractional derivative of arbitrary order γ. As we shall show
below, this implies modifying the displacement current with the introduction of a time-
fractional derivate of order γ of the electric field. Another way to extend the PNP model to
the field of fractional calculus is to keep the continuity equations unchanged. In this case,
the appropriate time-fractional derivative of the Riemann–Liouville type will be found
acting only on the conduction current part of the total current. In this case, the displacement
current remains unchanged, and the time derivative of the electric field is of first-order
in time [10]. Subsequently, the time-fractional operator may be generalized further by
considering time-fractional derivatives of distributed orders in general [19,20]:

τγ−1 ∂γN±(z, t)
∂tγ

→
∫ 1

0
dγτγ−1 p(γ)

∂γ

∂tγ
N±(z, t), (11)

where p(γ) is a distribution function of γ defined such that∫ 1

0
dγp(γ) = 1, (12)

and the operator considered is Caputo’s one, which is here implemented as follows:

∂γ

∂tγ
N±(z, t) =

1
Γ(m− γ)

∫ t

−∞
dt′

N(m)
± (z, t′)

(t− t′)γ+1−m , (13)

where m− 1 < γ < m, N(m)
± (z, t) is the time derivative of the mth order, i.e., of the integer

order m. Note that the case γ integer corresponds to the standard differential operator.
Thus, the new operator constitutes a superposition of time derivatives of arbitrary order,
and its action is expected to produce a more powerful description of the diffusive process
occurring in the cell. As a matter of fact, the fractional time derivatives incorporated to
the continuity equation lead us to obtain fractional diffusion equations, which, in turn,
can be associated with a random walk problem characterized by long-tailed distributions.
These distributions are connected with the complexity of the media [18], which directly
influences the motion of the particles and may be responsible for anomalous diffusion
behavior [21–23].
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Using this operator, Equation (3) is modified to the following equation:∫ 1

0
dγp(γ)τγ−1 ∂γ

∂tγ
N±(z, t) +

∂

∂z
j±(z, t) = 0. (14)

Thus, the first term of Equation (14) contains the so-called operator of time-fractional
derivative of distributed order; indeed, p(γ) is a distribution of the fractional coefficient γ.
The current densities of particles are still the ones given by Equation (4). The fundamental
equations of the PNP model extended to the time-fractional approach of distributed order—
which reduces to the standard one when γ = 1—are Equation (14) and the equation of
Poisson, Equation (5).

By operating with Equation (14), in a way similar to the one we have done for the
standard case, it is possible to show that∫ 1

0
dγp(γ)τγ−1 ∂γ

∂tγ

[
n+(z, t)− n−(z, t)

]
+

∂

∂z

[
j+(z, t)− j−(z, t)

]
= 0, (15)

and, consequently,

∂

∂z

{
q
[

j+(z, t)− j−(z, t)
]
+ ε

∫ 1

0
dγp(γ)τγ−1 ∂γ

∂tγ
E(z, t)

}
= 0. (16)

This result for the fractional case of distributed order implies that ∂J(z, t)/∂z = 0 as
before, where, now

J(z, t) = q[j+(z, t)− j−(z, t)] + ε
∫ 1

0
dγp(γ)τγ−1 ∂γ

∂tγ
E(z, t), (17)

with the total current given by

I(t) = qS[j+(z, t)− j+(z, t)] + εS
∫ 1

0
dγp(γ)τγ−1 ∂γ

∂tγ
E(z, t), (18)

and being again independent of the position, as required in order for the concept of electrical
impedance to be meaningful, as we discuss below. We underline that the change with
respect to Equation (9) is present in the term related to the displacement current, which now
contains a time-fractional derivative of distributed order. In this generalized perspective,
Equation (18) is the suitable result to be stated as the extension of the continuity equations
previously presented in the framework of the PNP model. In addition, it can be related
to the displacement current obtained from the extensions of the Maxwell equations to
the fractional approach [24,25]. We notice also that in the case of the Cattaneo equation
(hyperbolic diffusion equation) [26], a similar analysis should be carried out to explore the
implications of the term related to the displacement current.

Another useful extension of the continuity equations could be obtained by introducing
the operator ∫ t

−∞
dt′k(t− t′)

∫ 1

0
dγp(γ)τγ−1 ∂γ

∂t′γ
n±(z, t′) =

∂

∂z
j±(z, t) , (19)

where k(t) is some kernel related to memory effects. Equation (19) extends the previ-
ous results and makes it possible to consider different kernels, which can be connected
to non-singular integral-differential operators [27]. Again, by operating as before, from
Equation (19), we obtain the total current defined as

I(t) = qS[j+(z, t)− j+(z, t)] + εS
∫ t

−∞
dt′k(t− t′)

∫ 1

0
dγp(γ)τγ−1 ∂γ

∂t′γ
E(z, t′) (20)
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which has to be position independent. The summarized analysis carried out above shows
that extending the dynamic equations governing the motion of the ions in an electrolytic
sample has a direct influence on the terms present in the definition of the total current
flowing through the system. In particular, the displacement current has to be extended
accordingly.

3. Electrical Impedance

To capture the experimental behavior of the ions in contact with the surface of the
electrodes in order to investigate the electric response of the sample to the external applied
voltage, we have to solve the set of fundamental equations discussed in the preceding
section for different boundary conditions. In what follows, we shall consider two rep-
resentative cases: (1) the conditions relevant to perfect blocking electrodes and (2) more
general conditions stated in terms of an integro-differential operator to account for several
different mechanisms occurring at the electrodes. The electrochemical impedance tech-
nique operates by submitting the sample to an ac voltage of small amplitude to assure
that its response to the external field is linear. Thus, the impedance, Z(ω), is measured
as a function of the frequency f = ω/2π of the applied voltage, where ω is the circu-
lar frequency. Once the total current is obtained, the impedance may be obtained as
Z(t) = V(t)/I(t) = Z(ω), because the total current is solenoidal. For the applied potential
on the surface of the electrode, we consider V(±d/2, t) = ±(V0/2)eiωt. Then, the electrical
impedance is obtained from the previous equation by considering a linear approximation
for the steady state (ac small-signal limit).

3.1. Boundary Condition: Perfect Blocking Electrodes

Let us consider first the case of perfect blocking electrodes as the boundary conditions, i.e.,

j+(±d/2, t) = j−(±d/2, t) = 0. (21)

In the ac small-signal limit, N±(z, t) = N + η±(z)eiωt, with N >> |η±(z)|, and V(z, t) =
φ(z)eiωt is the actual profile of the electric potential to be obtained by solving the coupled
equations of the PNP model introduced before. In this approximation, the densities of
current may be rewritten as

j±(z, t) ≈ −D±
∂

∂z
η±(z, t)∓ D±

q
kBT

N
∂

∂z
V(z, t). (22)

The coupled equations of the problem are now Equations (5), (14) and (22). Using these
equations and the linear approximation for N±(z, t) and V(z, t) in the ac small–signal limit,
the continuity equation, Equation (14), becomes

D
d2

dz2 η+(z)− D
q2N
εkBT

[η+(z)− η−(z)] = Φ(iω)η+(z) , (23)

D
d2

dz2 η−(z) + D
q2N
εkBT

[η+(z)− η−(z)] = Φ(iω)η−(z), (24)

where

Φ(iω) =
1
τ

∫ 1

0
dγp(γ)(iωτ)γ, (25)

assuming D+ = D− = D. By performing the changes ψ−(z) = η+(z)− η−(z) and ψ+(z) =
η+(z) + η−(z), it is possible to rewrite the previous equations as follows:

D
d2

dz2 ψ−(z)− D
2q2N
εkBT

ψ−(z) = Φ(iω)ψ−(z) (26)
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and

D
d2

dz2 ψ+(z) = Φ(iω)ψ+(z). (27)

Along the same lines, Equation (5) becomes

d2

dz2 φ(z) = − q
ε

ψ−(z) , (28)

and the condition imposed by the potential on the electrode surface yields φ(z) = −φ(−z).
The solution for ψ−(z) can be found by using the standard procedures to solve ordinary
differential equations. In addition, it is also useful to observe that by means of Equation (28),
the symmetry present in the potential is also present in ψ−(z). Consequently, we have

ψ−(z) = A sinh(βz) with β = (1/λ)
√

1 + Φ(iω)λ2/D, (29)

where λ =
√

εkBT/(2q2N) is the Debye screening length. By using Equation (29) and after
the integration of Equation (28), the solution for the potential across the electrolytic cell is

φ(z) = − q
εβ2 ψ−(z) + Cz. (30)

In Equation (30), there are two constants of integration A and C, which can be deter-
mined by the boundary conditions. In the case of perfect blocking electrodes, and using the
condition imposed to the system on the surface of the electrode for the applied potential,
i.e., φ(±d/2) = ±V0/2, it is possible to show that

A =
εV0/(2q)

(1/β2) sinh(βd/2) + Φ(iω)d[λ2/(2β)] cosh(βd/2)
(31)

and

C = −λ2

2
V0[Φ(iω)/(βD)] cosh(βd/2)

(1/β2) sinh(βd/2) + Φ(iω)d[λ2/(2β)] cosh(βd/2)
. (32)

Once A and C are determined, the exact profiles for φ(z) and ψ−(z) are known and,
likewise, the densities of current and the total current flowing across the sample. These
calculations allow us to obtain the following analytical expression for the impedance:

Z =
2

Φ(iω)Sεβ2

{
1

λ2β
tanh(βd/2) +

d
2D

Φ(iω)

}
. (33)

Equation (33) has a different behavior from the one obtained in Ref. [28] due to the displace-
ment current considered here. It is more suitable and accomplishes the conservation laws
required by the set of equations used in the formulation of the PNP model with fractional
time derivatives of distributed order.

In Figure 1, the behavior of R = Re(Z) and X = Im(Z) is exhibited for some repre-
sentative values of the physical parameters entering the model. The case γ = 1 (normal
diffusion) is shown in black solid lines as a reference for the anomalous behavior exhibited
when γ < 1—corresponding to an underlying sub-diffusive process for the ions. The
Nyquist diagram, Figure 1a, exhibits the strong influence of the value of γ on the slope of
the curve, i.e., the crucial role played by the anomalous diffusion on the whole response of
the sample to the external stimulus. The behavior of the imaginary part of the impedance,
Figure 1b, is marked in the low-frequency region of the spectra by the anomalous diffusion
behavior and, in the high-frequency region, by the dominant role played by the displace-
ment current, which is now also governed by the fractional derivative of the electric field.
Figure 1c shows the influence of the fractional approach on the real part of the impedance
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in the low and high-frequency limits. In general, the behavior exhibited in Figure 1 for the
impedance evidences a connection with the constant phase elements (CPE) if we interpret
the data in terms of equivalent circuits.
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Figure 1. (a) Nyquist diagram for different values of γ, with Φ(iω) = (iω)γ, which implies
p(γ′) = δ(γ′ − γ). (b) Imaginary part of the impedance for different values of γ. (c) R vs. ω

in the same range of frequency. The black (solid), green (dotted), and blue (dashed) lines correspond
to the cases γ = 1.0, γ = 0.9, and γ = 0.7, respectively. We consider, for illustrative purposes,
D = 2.0× 10−9 m2/s, S = 3.1415× 10−4 m2, ε = 90ε0 (ε0 = 8.85× 10−12 F/m), d = 1.33× 10−3 m,
τ = 1 s, and λ = 1.19× 10−7 m.

Expanding the expression of the electric impedance, Equation (33), around to ω = 0,
and taking into account that iγ = cos(γπ/2) + i sin(γπ/2), we get

R(ω → 0) =
dλ2

DεS
+ 2λ

τ

εS(ωτ)γ
cos
(

γ
π

2

)
,

X(ω → 0) = −
{

2λ
τ

εS(ωτ)γ
+

dλ4

D2εSτ
(ωτ)γ

}
sin
(

γ
π

2

)
.
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The first contribution to R(ω → 0), Rb = λ2d/(DεS), coincides with the value of the
plateau of the spectrum of R = R(ω), and it is a bulk property of the cell, since it is
proportional to d. In the dc limit, the second addendum diverges. It follows that

lim
ω→0

X
R

= − tan
(

γ
π

2

)
,

which is typical of the constant phase element [1]. The modulus of the reactance has a
minimum for

ωm =
1
τ

(
τ

D
λ2

√
2

λ

d

)1/γ

.

For this circular frequency, the real and imaginary parts of the impedance of the cell are

R(ωm) =
dλ2

DεS

(
1 +

√
2

λ

d
cos
(

γ
π

2

))
, X(ωm) = −2

dλ2

εSD

√
2

λ

d
sin
(

γ
π

2

)
from which it follows that ωm depends on τ, whereas R(ωm) and X(ωm) are independent
of it. For usual electrolytic samples, the length of Debye is very small with respect to
the thickness of the sample, and hence, R(ωm) ∼ Rb, and X(ωm) is very small. In the
Nyquist diagram, the linear dependence of the reactance on the resistance begins for
ω = ωm from the point of coordinates (R(ωm), X(ωm)) ∼ (Rb, 0). It is visible on the
parametric representation of R versus −X decreasing the frequency, as a cusp. In the case
of normal diffusion

ωm =
D
λ2

√
2

λ

d
, R(ωm) =

λ2d
DεS

, and X(ωm) = −2
dλ2

εSD

√
2

λ

d
.

In the high-frequency region, the reactance is well approximated by the expression

X(ω → ∞) = − dτ

εS(ωτ)γ
sin
(

γ
π

2

)
.

A numerical calculation shows that the expressions X(ω → 0) and X(ω → ∞) coincide for
ω = ωM given by

ωM =
1
τ

(√
1− 2

λ

d
D
λ2 τ

)1/γ

∼ 1
τ

(
D
λ2 τ

)1/γ

since usually λ� d, and

Z(ωM) =
λ2d

2εDS
[1 + cos

(
γ π

2
)
]− i sin

(
γ π

2
)

1 + cos
(
γ π

2
) .

Note that ωM depends on τ. Z(ωM) is independent of τ. In the case of normal diffusion
(γ = 1), these relations take the form

ωM =
D
λ2

that coincides with the circular frequency of Debye, and

Z(ωM) =
λ2d

2εDS
(1− i),

indicating that at this circular frequency, the resistance and reactance are equal, and half of
the resistance of the plateau [1].
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In Figure 2a, we show the frequency behavior of the electrical conductivity, i.e.,
σ = Rd/(S|Z|2), for different values of γ. It shows that the presence of the fractional
time derivatives modifies the behavior in both the low and high-frequency limits. An
anomalous behavior is exhibited for very low frequencies with respect to the normal case,
again indicating the crucial presence of a sub-diffusion process for the ions in their response
to the applied voltage. In the high-frequency region, the conductivity shows a behavior not
typical of liquid samples but, perhaps, more akin to solid or semiconductor systems.
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Figure 2. Electrical conductivity, σR vs. ω for different values of γ as in Figure 1, where σR = (S/d)σ.

It is worth mentioning that this connection with the anomalous diffusion is provided
by the relation between the electrical conductivity and the mean square displacement, as
discussed in Refs. [29,30]. Consequently, the influence of the fractional time derivative is
also observed in the low and high-frequency limits, as already shown in Figure 1c.

3.2. Boundary Condition: Integrodifferential Conditions

To proceed, we consider now the boundary conditions given by the following equation:

j±

(
±d

2
, t
)
= ±

∫ 1

0
dα p̄(α)

∫ t

−∞
dt′κ±(t− t′)

∂α

∂t′α
N±

(
±d

2
, t′
)

, (34)

where p̄(α) is a probability distribution and κ±(t) is a kernel related to the kinetic processes
occurring on the surface. Equation (34) is aimed at tackling general problems, and particular
expressions for the kernel have been considered to investigate different specific problems,
as discussed in Refs. [31–34]. One of the main features concerning Equation (34) is that the
low-frequency behavior changes according to the form of κ±(t). On the other hand, the
behavior in the high-frequency limit is governed by the bulk equation, in contrast to the
case of the previous section. A particular situation concerning Equation (34) is obtained by
considering κ±(t) = κ±e−t/τ with p(α) = δ(α− 1), which implies that

j±

(
±d

2
, t
)
= ±κ±

∫ t

−∞
dt′e−(t−t′)/τ ∂

∂t′
N±

(
±d

2
, t′
)

. (35)

In the ac small-signal limit, Equation (35) can be written as follows:

j±

(
±d

2
, t
)
= ±κ±

iωτ

1 + iωτ
η±

(
±d

2

)
eiωt , (36)
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which yields

(j+ − j−)|z=±d/2 = ±κ±
iωτ

1 + iωτ
ψ−(±d/2)eiωt . (37)

Equation (37) is the same result obtained for the boundary condition discussed in Ref. [35].
It relates the kinetic processes occurring on the surface with the bulk dynamics through
the equation:

j±

(
±d

2
, t
)
= ± d

dt
σ±(t), (38)

with

d
dt

σ±(t) = κ±N±

(
d
2

, t
)
− 1

τ
σ±(t) . (39)

In fact, in the ac small-signal limit, if we follow the developments presented in Ref. [35],
then Equations (38) and (39) allow us to obtain the relation:

(j+ − j−)|z=±d/2 = ±iω(s+ − s−)eiωt, (40)

where σ±(t) = σ0 + s±eiωt and

(s+ − s−)|z=±d/2 = κ±
τ

1 + iωτ
ψ−(±d/2), (41)

which is obtained from Equation (39). In the definition of σ±, σ0 is the density of adsorbed
particles in the absence of an external electric field. The substitution of Equation (41)
into Equation (40) yields Equation (37). The Chang–Jaffé electrode-reaction boundary
conditions [36] can also be obtained from Equation (34) by choosing p(α) = δ(α) and
κ±(t) = κ±δ(t). It is also possible to consider the mixing between these two boundary
conditions by a suitable choice of p(α) and κ±(t) and other features connected to the
CPE elements.

Before obtaining the electrical impedance for this case, let us explicate how the bound-
ary conditions and the bulk are connected. In fact, the boundary condition given by
Equation (34) implies that the bulk and the surfaces are coupled, i.e., the kinetics occurring
on the surface and bulk dynamics change each other. This fact may be evidenced after the
integration of Equation (14) as follows:

∫ d/2

−d/2
dz
∫ 1

0
dγp(γ)τγ−1 ∂γ

∂tγ
N±(z, t) +

∫ d/2

−d/2
dz

∂

∂z
j±(z, t) = 0, (42)

yielding

∫ 1

0
dγp(γ)τγ−1 ∂γ

∂tγ

∫ d/2

−d/2
dzN±(z, t) + j±

(
d
2

, t
)
+ j±

(
−d

2
, t
)
= 0. (43)

The last part of Equation (43) shows the influence of the boundary conditions on the bulk
dynamic. The substitution of Equation (34) into Equation (43) yields

∫ 1

0
dγp(γ)τγ−1 ∂γ

∂tγ

∫ d/2

−d/2
dzN±(z, t) +

∫ 1

0
dα p̄(α)

∫ t

−∞
dt′κ±(t− t′)

× ∂α

∂t′α

[
N±

(
d
2

, t′
)
+ N±

(
−d

2
, t′
)]

= 0. (44)

Equation (44) shows that the dynamics associated to the presence of the ions in the bulk and
the processes occurring on the surface are coupled. It shows, in addition, in what manner
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the changes occurring in one (bulk) promotes changes in the other (surface). We underline
that Equation (42) can also be analyzed by taking into account other boundary conditions.

In a way similar to the case analyzed in the preceding section, it is possible to show
that the integration constants A and C present in Equation (29) and (30) are given by

A = − εV0/(2q)
[1/β2 + k(iω)/D] sinh(βd/2) + Φ(iω)d[λ2/(2β)] cosh(βd/2)

(45)

and

C =
λ2

2
V0

[Φ(iω)/(βD)] cosh(βd/2) + (k(iω)/D) sinh(βd/2)
[1/β2 + k(iω)/D] sinh(βd/2) + Φ(iω)d[λ2/(2β)] cosh(βd/2)

, (46)

where

k(iω) =
∫ 1

0
dηp(η)(iω)α

∫ ∞

0
dt′κ(t′)eiωt′ , (47)

with κ+(t) = κ−(t) = κ(t). These calculations yield the following analytical expression for
the impedance:

Z =
2

Sεβ2
tanh(βd/2)/

(
λ2β

)
+ (d/2D)E(iω)

Φ(iω) + k(iω)(1 + Φ(iω)λ2/D) tanh(βd/2)/(λ2β)
, (48)

where E(iω) = Φ(iω) + k(iω)β tanh(dβ/2). The asymptotic behavior of Equation (48) in
the low-frequency limit is given by

Z ≈ 2λ2

Sε

{
d

2D
+

1/λ

Φ(iω) + k(iω)/λ

}
, (49)

where the first term is related to the bulk resistivity (a resistive element) and the second
term is related to the surface and bulk effects. The surfaces effects are connected to the
kinetic processes between the electrode and electrolyte. The bulk effects may be connected
to the structure of the media. In both cases, the dispersion on the frequency due to the
surface or bulk effects can be related to constant phase elements [32,37]. Equation (48)
combines the previous case, i.e., the presence of the fractional time derivative, with the
non-blocking boundary conditions stated by Equation (34). For this reason, we may assume
that it can be used to model anomalous behavior promoted by the surface or bulk effects
that are not suitably described in the normal approach.

Figure 3 shows the behavior for the real and imaginary parts of Equation (48) by
considering different possible scenarios. One of them focuses the surface effects (black
dotted line) accounted for by means of the boundary conditions given by Equation (48)
and the standard continuity equation. In this case, the behavior in the low-frequency limit
is entirely governed by the surface effects whereas the behavior in the other limit (high-
frequency) is essentially usual. The other curves (red dashed-dotted and green dashed lines)
show the effect of the fractional derivative of distributed order in the continuity equation for
two different values of γ. The behavior in the low-frequency limit for the set of parameters
considered here is essentially governed by the choice of the boundary conditions. The bulk
dynamics govern the high-frequency limit and modify the relaxation times present in this
limit. Figures 4 and 5 show the behavior of the impedance by considering the Nyquist
diagram, imaginary and real parts of the impedance, and the electrical conductivity for
different scenarios. In the low-frequency limit, they show that the behavior is not usual and
may be related to a constant phase element, i.e., CPE, since Z ∼ 1/(iω)γ with γ < 1 instead
of the usual capacitive behavior Z ∼ 1/(iω). The behavior of the electrical conductivity
shows that non-blocking boundary conditions (red dashed-dotted line) only promote
an anomalous behavior in the low-frequency limit, which can be directly related to the
processes present on the surface, as pointed out in Ref. [38]. On the other hand, changes in
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the continuity equation by incorporating fractional time derivatives of distributed order
promote an anomalous behavior in the low and high-frequency limit.
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Figure 3. (a) Real and (b) imaginary parts of the impedance obtained from Equation (48) for different
values of γ, with Φ(iω) = p(iω) + (1− p)(iω)γ (with p = const) and k(iω) = κα(iω)α + κα′ (iω)α′

(with κ = const, α = 0.8, and α′ = 0.1). The black (dotted), green (dashed), and red (dashed-dotted)
lines correspond to the cases γ = 1.0, γ = 0.9 (with p = 1/2), and γ = 0.7 (with p = 1/2), respectively.
We consider, for illustrative purposes, D = 2.0× 10−9 m2/s, S = 3.14× 10−4 m2, ε = 90ε0 (ε0 =

8.85× 10−12 F/m), d = 1.33× 10−3 m, τ = 1 s, κα = 1.11× 10−6 m/s1−α, κα′ = 3.00× 10−7 m/s1−α′ ,
and λ = 1.19× 10−7 m.
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Figure 4. (a) Nyquist diagram, (b) the imaginary, and (c) real parts of the impedance obtained from
Equation (48) for different values of γ and α, with Φ(iω) = p(iω) + (1− p)(iω)γ (with p = const)
and k(iω) = κ(iω)α (with κ = const). The black (dotted), red (dashed-dotted), and blue (dashed)
lines correspond to the cases γ = 1.0 with k(iω) = 0, γ = 1.0 with k(iω) 6= 0 (with α = 0.8),
and γ = 0.7 (with p = 1/2) and k(iω) = 0, respectively. We consider, for illustrative purposes,
D = 2.0× 10−9 m2/s, S = 3.14× 10−4 m2, ε = 90ε0 (ε0 = 8.85× 10−12 F/m), d = 1.33× 10−3 m,
τ = 1 s, κ = 1.11× 10−6 m/s1−α, and λ = 1.19× 10−7 m.
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Figure 5. Electrical conductivity obtained from the impedance given by Equation (48), for different
values of γ and η, with Φ(iω) = p(iω) + (1 − p)(iω)γ (with p = const) and k(iω) = κ(iω)α

(with κ = const). The black (dotted), red (dashed-dotted), and blue (dashed) lines correspond to
the cases γ = 1.0 with k(iω) = 0, γ = 1.0 with k(iω) 6= 0 (with α = 0.8), and γ = 0.7 (with
p = 1/2) and k(iω) = 0, respectively. We consider, for illustrative purposes, D = 2.0× 10−9 m2/s,
S = 3.14× 10−4 m2, ε = 90ε0 (ε0 = 8.85× 10−12 F/m), d = 1.33× 10−3 m, κ = 1.11× 10−6 m/s1−α,
τ = 1 s, and λ = 1.19× 10−7 m.

4. Discussion and Conclusions

We have analyzed the role of the displacement current in the PNP model for electrical
impedance when the bulk and surface dynamics incorporate the time-fractional approach.
We have started our discussion by presenting how the total electric current arises in this
extended model. The result shows that the displacement current has to be modified
according to the extension carried out on the PNP model. In particular, for the case of the
fractional time-derivative of distributed order in the continuity equation, the displacement
current coincides with the one used recently in some generalizations of the Maxwell
equations for material media involving fractional-order operators [24,25]. Other extensions,
such as the one represented by Equation (20), yield different forms of the displacement
current, which have a direct effect on the electrical response. One of the consequences
of the extensions analyzed in this work is the presence of a CPE-like behavior of the
electrical impedance in the low-frequency region of the spectra. This feature has shown to
be a powerful tool to face a wide variety of complex behavior found in electrolytic cells,
as discussed in Refs. [31,38]. This behavior has also been related to anomalous diffusion
processes by means of the electrical conductivity, with subdiffusive characteristics in several
scenarios [3,38]. On the other hand, it is also possible to obtain an anomalous behavior in
the high-frequency limit, which is not typical of liquid samples but, perhaps, more closely
related to solid or semiconductors systems [3]. To sum up, we remark that the results
obtained here may be useful in the discussion of modifications of the PNP model in order to
account for the role of the anomalous behavior in the electrical impedance measurements.
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