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Abstract: Gas hydrates (GHs) are known to pose serious flow assurance challenges for the oil and gas
industry. Neverthless, over the last few decades, gas hydrates-based technology has been explored
for various energy- and environmentally related applications. For both applications, a controlled
formation of GHs is desired. Management of hydrate formation by allowing them to form within the
pipelines in a controlled form over their complete mitigation is preferred. Moreover, environmental,
benign, non-chemical methods to accelerate the rate of hydrate formation are in demand. This
review focused on the progress made in the last decade on the use of various surface coatings and
treatments to control the hydrate formation at atmospheric pressure and in realistic conditions of
high pressure. It can be inferred that both surface chemistry (hydrophobicity/hydrophilicity) and
surface morphology play a significant role in deciding the hydrate adhesion on a given surface.

Keywords: gas hydrates; flow assurance; hydrate adhesion; hydrate-phobic surfaces; wettability;
coatings

1. Introduction

Gas hydrates (GHs) are ice-like crystalline solids made up of appropriate-size gas
(guest) molecules (e.g., CH4, C3H8, CO2, N2, H2) entrapped within the polyhedral cavities
formed by the hydrogen-bonded network of water (host) [1–3]. The van der Waals forces
allow the small gas molecules to stabilize the host cages at low temperature and high
pressures [4]. The size of the entrapped guest and the cavities influence the structure of a
given gas hydrate unit, viz., CH4 and CO2 form hydrates with cubic structure I (sI) and
C4H10 forms cubic structure II (sII) hydrates, whereas hexagonal structure H (sH)-type
hydrates are formed by a mixture of hydrocarbons such as CH4 and cyclopentane [5].

High-pressure and low-temperature conditions are often encountered during oil/gas
exploration in deeper sea [6]. Since, some water is always available within the transmission
pipelines, it provides suitable conditions for hydrates to form and plug the pipelines [7].
To avoid the formation of GHs during production, industries use costlier technologies
including dehydration, insulation, depressurization, or the most viable option, chemical
inhibitors’ injection [8–10]. Although the chemical method is considered the most viable
from an economic viewpoint, the injection of high doses of chemicals can affect the aquatic
systems. The strict regulations proposed opened the platform for the search of low-dosage
hydrate inhibitors that need to be injected in quantities as low as 1 wt.% compared to
the 25 wt.% for conventional inhibitors [11,12]. However, strategies using low-dosage
inhibitors are not yet economical, energy efficient, and environmentally friendly. Therefore,
another method that is becoming popular these days is the use of hydrate-phobic surface
treatment or coating that allows the hydrates to form but will not allow them to stick to the
walls and form deposits, thus transporting the slurry out from the hydrate stability zone
without hampering the production.
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The formation of GHs is a crystallization step, where, first, the gas is dissolved in the
aqueous phase at adequate temperature and pressure conditions. Once the aqueous phase is
supersaturated, the nucleation occurs depending on the driving force (mainly subcooling or
the initial pressure) followed by the hydrate crystals’ growth until the system attains a steady
state (when the maximum conversion of water to hydrates is reached) [13,14]. Homogeneous
nucleation of hydrates is rarely observed, whereas nucleation that occurs in the presence
of a foreign surface, known as heterogeneous nucleation, is more widespread since it is
energetically favored [1]. Generally, gas hydrates grow at the gas/liquid interface and the
importance of several aspects of the surface and interfacial phenomena involved in hydrate
formation are documented in detail. For instance, Zerpa et al. [15] identified that, in the case
of a hydrate-forming system in a closed vessel or a pipeline, many interfaces exist that are
prone to hydrate formation and agglomeration: vapor/liquid, vapor/solid, liquid/solid,
solid/solid, and liquid/liquid, where the vapor indicates the hydrate-forming gas, solid is
pipeline, reactor wall, or hydrate surface, and liquid can be either water, oil, or condensate.

On one hand, GHs are a nuisance for the oil/gas industry, while, on the other, they can
form/dissociate with ease and can accommodate a large quantity of gas, which opens many
avenues for their usage in processes such as gas capture and storage, gas transportation,
separation, refrigeration, and in desalination to name just a few [16–22]. Such applications
require a rapid formation of hydrates. To accelerate the kinetics of formation, chemical or
physical methods are generally used. Kumar et al. [23] reviewed the area of surfactants and
concluded that the presence of a surfactant in the system reduces the interfacial tension
between the vapor/liquid interface, which enhanced the mass transfer, resulting in more
hydrate production. Linga and Clarke [24] summarized the role of reactor designs and
physical methods such as sand packs, silica gels, dry water, foams, nano particles, and
hydrogels, which may help to enhance the surface area that ultimately leads to enhanced
rates of hydrate formation. Nanoparticles [25], Carbon-based materials [26] including
graphene [27] and activated carbon [28] that provide large surface area and ample nu-
cleation sites, which promote the kinetics of hydrate formation, have also been reported.
On the other hand, Numerous studies are available in the literature where distinct sur-
faces [29–34] are used for this purpose. Metal-induced hydrate nucleation has also been
reported recently [35,36]. However, the use of surface treatments or coatings to accelerate
the hydrate formation is in its infancy.

Nguyen et al. [37] critically reviewed the role of functionalized solid surfaces (mainly
particles) and a confined environment in controlling hydrate formation and the underlying
mechanism. The authors concluded that open hydrophobic solids can promote the hydrate
formation kinetics, whereas hydrophilic solids can reduce it. The mechanism proposed was
that hydrophobic solids can order the structure of water and enhance the density of hydrate
formers near the solid/liquid interface, whereas hydrophilic surfaces can distort the water
structure and deplete the density of hydrate formers near the solid/liquid interface. The
mechanism in the case of confined systems was found to be rather complex.

The area of smart coatings for controlled hydrate formation is relatively new and not
yet reviewed. Wang et al. [38] dedicated just a small section in their review on coating
technology for hydrate management. Manakov et al. [39] also presented briefly in their
review the state of the art on the surface effect on hydrate nucleation. A survey of the
literature until mid 2021 indicates that significant progress has been made at this front in
the last decade that resulted in 16 published articles [40–55], 3 patents [56–58], and a few
commercial products [59–62] already available in the market. Therefore, the aim of this
work was to review the recent efforts made in the development of functionalized solid
surfaces via coating or surface treatment and evaluating the role of the resulting solid/solid
interactions in controlling hydrate nucleation and growth using model compounds such
as tetrahydrofuran (THF) and cyclopentane (CP) at atmospheric pressure and gaseous
molecules (CH4, CO2, etc.) in realistic conditions of high pressure. A list of the types of
coatings, substrates used, hydrate-forming systems, and the P-T conditions in which the
studies were carried out are summarized chronologically in Table 1.
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Table 1. List of surface coatings or treatments, substrates, hydrate-forming substances, and conditions at which the tests
were carried out to ascertain reduction or promotion in hydrate adhesion along with the respective references.

Hydrate Formers Substrates Coatings Experimental Conditions References

Tetrahydrofuran
(19.1 wt.% in water)

-Clean glass
-Bare steel

-l-Butanethiol,
-1H, 1H, 2H, 2H-Perfluorodecane-thiol,
-Methyl 3-mercaptopropionate,
-4-Mercapto-l-butanol,
-50/50 Butanethiol/methyl
3-mercaptopropionate,
-50/50 Butanethiol/4-Mercapto-1-butanol,
-Trichloro (1H, 1H, 2H, 2H
perfluorooctyl) silane,
-Octadecyl trichlorosilane,
-80 wt.%/20 wt.% PEMA/fluorodecyl POSS

Atmospheric pressure,
<4.4 ◦C [40]

Cyclopentane
(in water)

-Stainless steel
(grade 309)

-Oleamide (CH3)(CH2)8(CH)2(CH2)7CONH2;
-Citric acid ester, based on
HOC(COOH)(CH2COOH)2,
-Nonanedithiol HSCH2(CH2)7CH2SH,
-Commercial Rain-Xs (anti-wetting agent),
-Graphite (based on planar sheets of carbon)

Atmospheric Pressure,
T–n.a. [41]

Tetrahydrofuran (19.0
wt.% in water)

-Steel
-Silicone

-poly-divinyl benzene/poly(perfl
uorodecylacrylate) (pDVB/pPFDA)
Bilayer (BL)
-linker free grafted coatings (LFG) with
pPFDA thickness of 10 and 40 nm

Atmospheric Pressure,
−15 ◦C [42]

Cyclopentane
(in water)

-Rough Steel
-Flat Silicone

-pDVB/pPFDA (BL-LFG) with pPFDA
thickness of 10 and 40 nm

Atmospheric Pressure,
−15 ◦C [43]

Methane
(in water and
water + LDHIs)

-Stainless steel
crystallizer

-perfluoroalkoxy alkane polymer from
DuPont Teflon coating, Cantech Precision
Coatings Inc. (PFA)

41 bar, 6 ◦C [44]

Tetrahydrofuran (1:15)
-Glass test tubes
(Heavy wall
borosilicate)

-(3-aminopropyl)triethoxysilane (APTES)
-N-[3-(trimethoxysilyl)propyl]-
ethylenediamine (AEAPTMS)
with succinic acid (SA) linker to a glycerol at 1-
or 2-position.

Atmoshperic Pressure,
0 ◦C [45]

Cyclopentane
(in water) -Silicon

-octadecyltricholorosilane (OTS)
-tridecafluoro-1,1,2,2 tetrahydrooctyl
trichlorosilane (FS)

Atmospheric Pressure,
−5 ◦C [46]

Cyclopentane (in water) &
Methane (74.7 mol%) +
Ethane (25.3 mol%)

-Carbon Steel
(Pristine & corroded)

-Omniphobic
-Superhydrophobic

Atmopsheric Pressure,
500 psig and 1 ◦C [47]

Tetrahydrofuran &
Methane -Carbon Steel

-A green fluorinated ethylene propylene (FEP)
-A blue polytetrafluoro ethylene (PTFE)
-B black polytetrafluoro ethylene (PTFE)
-B green fluorinated ethylene propylene (FEP)

Conditions n.a. [48]

Cyclopentane -Silicon
-Steel

-poly-divinylbenzene
(pDVB)/poly-perfluorodecylacrylate (pPFDA)
bilayer covalently bonded and grafted to
substrates using iCVD process.

Atmospheric Pressure,
−15 and 5 ◦C [49]

Methane (74.7 mol%) +
Ethane (25.3 mol%) -Stainless Steel -Omniphobic

-Superomniphobic 1000 psig and 2.5 ◦C [50]

Methane -Glass
-Steel 316 L

-ethyltriethoxysilane (ES)
-n-dodecyltriethoxysilane (DS)
-n-octyltriethoxysilane (OE)

4 ◦C, 100 bar (stationary
experiments) and 150 bar
(transient experiments)

[55]

Tetrahydrofuran
(19.1 wt.% in water) -Neodymium Magnet

-Ferrofluid (Iron oxide/magnetite 8% v/v,
oil-soluble dispersant 14% v/v, light
hydrocarbon oil 78% v/v)

Atmospheric Pressure,
−5 ◦C; Mechanical tests
for adhesion were
performed at −15 ◦C

[51]
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Table 1. Cont.

Hydrate Formers Substrates Coatings Experimental Conditions References

Tetrahydrofuran
(19.0 wt.% in water) &
Methane

-X70 pipeline steel
-X80 pipeline steel
-Zirconia (ZrO2)
-Tin plate

-Fluoro-coating (F-coating)
-Polydimethylsiloxane (PDMS)
-Hexagonal boron nitride (HBN)
-Hydrophobic fuming SiO2 (HB-630,
diameter ≤ 300 nm)

Atmospheric Pressure,
−3 ◦C;
−10 ◦C, 8.2 MPa

[52]

Cyclopentane -X90 pipeline steel -Copper oxide (CuO) layer modified with
Stearic acid

Atmospheric pressure,
1 ◦C [53]

Cyclopentane -X80 pipeline steel -Cerium oxide (CeO2)/polydopamine (pDA) Atmospheric pressure, n.a.
(0 ◦C > T > 7.7 ◦C) [54]

2. Hydrate Adhesion and Deposition

It was envisaged from several works that hydrate deposition occurs at the pipeline
wall. One study [63] suggested that if sufficient water is available, the hydrate particles will
start growing either in the liquid phase or on a suitable seed present in the liquid phase,
close to the gas/liquid interface, or at the pipeline wall. In another study [64] it was found
that hydrate agglomeration was less profound compared to the stickiness between hydrate
particles, hydrate particles to the wall, or a combination of the two effects. They suggested
that wettability of the pipeline wall plays an important role in determining the stickiness
of the hydrate particles, which are hydrophilic in nature. In the case of a hydrophobic
surface, the formation of a water bridge can be reduced, which may influence the hydrate
nucleation and deposition.

Later, Nicholas et al. [65] investigated the possibility of hydrate deposition on pipeline
walls since it is the coldest point in the system and contains nucleation sites. A microme-
chanical force (MMF) apparatus was used to measure the strength of adhesion force of
cyclopentane (CP) hydrate to a carbon steel substrate. The micromechanical force (MMF)
measurement is a central technique that has been used to measure the strength of adhesive
forces between the solid substrate samples and the hydrate particles in a majority of the
works presented in this review. The working principal of the MMF apparatus is presented
briefly in Figure 1, which can be consulted in detail elsewhere [65–68]. It was found that the
adhesion forces between the hydrate-hydrate particles were higher than the forces between
the hydrate and carbon steel in a water-free environment. It was proposed that capillary
forces between hydrate and steel were dominating but not enough for the hydrates to
deposit on the wall.

Aman and Koh [69] critically scrutinized the research revolving around various in-
terfacial phenomena involved in gas hydrates’ systems and pointed out that solid/solid
interfacial behavior, especially adhesion of hydrate to the pipeline wall, is a crucial factor
in flow assurance. This idea was later experimentally corroborated [70] and the need to
address this issue using chemical and physical methods has been emphasized.
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Figure 1. (Left) Schematic diagram of the top view of a cell of the micromechanical force (MMF) apparatus. (Right) Working
mechanism of the MMF: The cantilever placed at the left is hand operated and holds the hydrate particle, whereas the
right-hand one, where the solid substrate is placed, is highly precise. (a) Initial position of the cantilevers. (b) By moving
down the precise cantilever, a preload can be applied to the hydrate particle, (c) the precise cantilever can be moved back
until the particle is removed from the solid surface, and (d) the required distance (δ) to remove the particle from the solid
sample can be registered. Following Hook’s law, the distance is multiplied to the spring constant of the cantilever to obtain
the force of adhesion. Reprinted with permission from ref. [68]. © 2021 Elsevier (left) and reprinted with permission from
ref. [65]. © 2021 Elsevier (right).

3. Hydrate-Phobic Surface Treatments and Coatings

Various coatings and surface treatments were reported to alter the hydrate adhesion
to solid surfaces [40–55]. We collected those works and categorized them into the following
subsections for the ease of the reader.

3.1. Functionalized Hydrate-Phobic Surfaces

Smith et al. [40] reported that by functionalizing the solid surfaces systematically
(varying hydrophobicity), the adhesion between the hydrates and the solid surfaces can
be reduced. This will not allow the hydrate to deposit on the pipeline wall, which may
lead to hydrate plug formation. This study was carried out using THF as hydrate former
at atmospheric pressure and was the first of its kind where the role of surface energy and
wettability on the adhesion force of hydrate particles in solid/solid contact were measured.
The authors used glass/steel substrates and several functionalized coatings (Table 1). They
demonstrated that treated surfaces compared to bare steel can reduce the adhesion strength
of THF hydrates by a factor of four (Figure 2A). Such reduction is possible on low Lewis
acid/base and van der Waals characterized surfaces.

Later, Aman et al. [41] studied, using a MMF apparatus, the adhesive forces be-
tween the cyclopentane hydrates and five distinctly modified steel surfaces in both dry
(solid/solid) and water-wet (solid/liquid) conditions. The graphite-functionalized surface
reduced the solid/solid adhesion force by 79% compared to the untreated steel surface
due to a reduction in surface wettability, proved by contact angle measurements. Citric
acid ester functionalization not only reduced the adhesive force by 98% but was also re-
sponsible for morphological changes in crystals that resulted in hydrate growth. However,
the effectiveness of both surfaces decreased in water-wet conditions due to 7% and 55%
reductions in adhesive forces, respectively. Nonanedithiol modification resulted in a 49%
increase in adhesive forces due to the formation of specific cylindrical morphology at the
hydrate (solid)/surface (solid) interface. Interfacial studies indicated qualitatively that
citric acid ester adsorbed at the hydrate/steel interface easily since hydratephilic molecules
may adsorb preferentially at the hydrogen bonding sites on the hydrate surface as observed
by the adsorption isotherms for water/oil and hydrate/oil interfaces.
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Figure 2. (A) Correlation between hydrate adhesion strength with the practical work of adhesion evaluated using the 19.1
wt.% THF in water solution on various functionalized surfaces. (B) A linker-grafted pPFDA/pDVB polymeric ice-phobic,
hydrate-phobic, and hydrophobic coating. (C) Representation of water contact angles on solid surfaces (s), indicating
two zones of spreading coefficient, Sos(w) of cyclopentane (o) in presence of water (w). (A) Reprinted with permission
from ref. [40]. ©2012 Royal Society of Chemistry. (B) Reprinted with permission from ref. [43]. ©2015 American Chemical
Society.and (C) Reprinted with permission from ref. [46]. ©2017 American Chemical Society.

Hall and Baures [45] functionalized the glass test tube with glycerol in different
configurations and tested their effects compared to polyvinylpyrrolidone (PVP) on THF
hydrate nucleation. The conjugation of glycerol on the glass surfaces was achieved in
different configurations: (1) through employment of two distinct silane spacers, (2) by
attaching to glycerol at the 1 or 2 position covalently, and (3) by attaching a succinic acid
spacer. Contact angle measurements were used to ascertain the desired functionalization
of the surface. Induction times were measured for 1:15 THF solutions at 0 ◦C, and at least
50 data points were gathered on each modified surface. Among all the functionalized
surfaces, the best hydrate inhibition results were shown by the surface modified by APTES
and glycerol coupled at the 1 position (leaving a free 1,2-diol). Other modifications using
AEAPTMS coupled with glycerol at the 1 or 2 position did not show any significant change
compared to unmodified glass tubes. However, the test tube modified with APTES and
succinic acid enhanced the THF hydrate formation.

Das et al. [46] treated the smooth and textured silicone surfaces with octadecyltri-
cholorosilane (OTS) or tridecafluoro-1,1,2,2 tetrahydrooctyl trichlorosilane (FS) in order to
design passive hydrate-phobic surfaces and measured the cyclopentane hydrate adhesion
and accumulation on them. Among the silane-modified surfaces, the one treated with
OTS exhibited almost null hydrate adhesive strength and lower accumulation. Although
the FS-modified surfaces exhibited low surface energies, one useful parameter that was
taken into account in this work was the measurement of contact angle hysteresis, i.e., the
difference between the advancing and receding angles that provides information on the
interaction between the liquid and solid surface under scrutiny. A large hysteresis indicates
a larger pinning and higher roll-off angles. For instance, the untreated silicon surfaces in
cyclopentane showed a ~24◦ hysteresis for water; this value was ~55◦ for FS-treated ones
and was much lower for OTS-treated surfaces compared to other two. This indicates that
the water droplet will stick to the untreated and FS-treated ones even at a tilt angle of 90◦,
whereas on OTS-treated surfaces, it will roll down just at an inclination of 2◦. Another
interesting aspect of this work was to study the spreading of the cyclopentane barrier film
between the hydrate and solid surfaces. The spreading coefficients were measured, which
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gave information about the relative spread of this interfacial film and its effect on hydrate
adhesion (Figure 2C). The role of surface chemistry and texture plays a significant role in
the spreading of such films. Although the surface energy criteria were found consistent in
predicting the poor performance of untreated silicon, the spreading coefficient captured a
complete picture of the performance for all the studied systems. In the case of a positive
spreading coefficient for cyclopentane, the solid/water contact area reduced drastically due
to the formation of a barrier film by cyclopentane that exhibited much lower hydrate accu-
mulation and adhesion. OTS-coated samples resulted in almost negligible accumulation
and a 2-fold reduction in adhesion compared to the FS-coated surfaces.

3.2. Polymeric Coatings

Sojoudi et al. [42] demonstrated using a chemical vapor deposition (CVD) method
that hydrate-phobic bilayer polymeric coatings pDVB/pPFDA of varied thickness on
steel and silicon surfaces can lead to a reduction in the ice and hydrate adhesion strength
(Figure 2B). Bilayer polymer coatings of a highly dense, crosslinked network on top of
a steel substrate covered with a 40-nm, fluorine-rich polymer film exhibited a 10-fold
reduction in the hydrate adhesion strength. A significant substrate effect was observed
through changes in the roughness values of the polymer films. The roughness in the case
of the steel substrate was higher compared to silicon. Similarly, a slight difference in the
contact angles was also observed due to increased fluorine concentration and different
crystallinity of the 40-nm-thick films compared to the 10-nm one. The authors scanned a
wide concentration (0–70 wt.%) of THF solutions and proposed that 19 wt.% should be
used as a probe liquid. No statistically significant effect of subcooling and time on the
adhesive behavior was observed since the adhesion strengths were comparable irrespective
of their formation conditions. After a freezing/hydrate deposition and de-adhesion cycle,
the coatings remained functional. However, their long-term durability in aqueous media
and humid conditions needs to be explored.

These polymeric coatings were also tested for reducing the adhesion strength of ice
and cyclopentane (CP) hydrates [43], another widely used model compound for studying
natural gas hydrates at atmospheric pressure. The results were similar to what had been
observed in the case of THF hydrates. The coated surfaces showed more than a 6-fold
reduction in ice and 10-fold reduction in hydrate adhesion strength compared to bare steel
and silicone surfaces. The durability of these coatings was assessed through sand erosion
tests and repeated adhesion/de-adhesion cycles. The cost associated with the fabrication
of these polymeric coatings is low due to the usage of low-cost polymer pDVB beneath a
thin layer of pPFDA. The authors claimed that these covalently grafted polymeric coatings
possessing the ice-phobic and hydrate-phobic as well as hydrophobic characters will be
potential candidates for several industrial applications.

Sojoudi et al. [49] once again reported a detailed study on some mechanically robust
hydrate and icephobic polymeric coatings that can be stable in harsh subsea or arctic
environments with high pressures and low temperatures. They used initiated chemical
vapor deposition (iCVD) method to apply rough polymeric films having a bilayer of poly-
divinylbenzene (pDVB)/poly-perfluorodecylacrylate (pPFDA) on commercial silicon and
steel substrates, showing a water contact angle above 150◦. Surface roughness of the films
was recorded as 178 and 313 nm on silicon and steel substrate, respectively, measured
using optical profilometer. After application of the coatings on a rough steel surface, a six-
fold reduction in the adhesion strength of the ice and a 10-fold reduction in cyclopentane
hydrates’ adhesion was observed. Sand erosion, nanoindentation, and nano-scratch tests
and multiple adhesion/de-adhesion cycles ensured the robustness and durability of the
developed coatings given the fact that they are covalently attached to the substrate surface.

The first report where hydrate-phobic coatings were tested in realistic conditions of
high pressure was published by Perfeldt et al. [44]. The authors not only assessed the effect
of hydrophobic coatings on the methane hydrate formation but also reported that the usage
of such coatings can also help to cut down the concentration of LDHIs significantly. They
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carried out the tests in separate stainless-steel crystallizers made up of non-coated and
coated with hydrophobic perfluoroalkoxy alkane polymer (PFA). The interiors of the crys-
tallizer including baffle, lid, impeller, and thermocouple were also coated with ~1000-mm
PFA film except the shaft. The tests were carried out under low driving force (subcooling)
and the induction time in the coated system was considerably higher compared to the
uncoated system for reference solution. In the presence of inhibitors in a coated system,
the nucleation rate was very low; thus, it was difficult to distinguish the temperature
and pressure changes due to nucleation. The coated system also performed very well in
reducing the hydrate growth. The coated system with just 0.02 wt.% LuvicapBio reduced
the hydrate growth, equivalent to an uncoated system with 0.20 wt.% LuvicapBio.

Di Lullo et al. [48] characterized several commercial surface coatings that can be used
to avoid hydrate adhesion to a pipeline wall for their roughness, contact angles (water and
diiodomethane), and THF hydrate adhesion force measurements. The authors pointed out
that the tests performed on model systems at atmospheric pressure may lead to erroneous
conclusions. Therefore, a novel experimental methodology was proposed to truly assess the
efficiency of this technology in realistic conditions of high pressure. The authors carried out
two distinct adhesion tests with a H2O: THF solution at atmospheric pressure and with a
natural gas system at high pressures. Two commercial polymeric coatings produced by two
different manufacturers, namely, polytetrafluoroethylene (PTFE) and fluorinated ethylene
propylene (FEP), were applied on a carbon steel substrate to assess their effectiveness in
hydrate inhibition. Hydrophobicity and oleophobicity of the surfaces under study were
assessed by measuring water and diiodomethane contact angles, respectively. The authors
made five repetitions of adhesion measurements in the case of the THF systems. They
faced partial hydrate detachment and out-of-range issues while measuring adhesion on
carbon steel and B samples; therefore, those results were not reported. Tests performed
on methane hydrates in autoclave were repeated thrice for each system. The results of
the performance of both the commercial coatings from both the methods were compared,
indicating that the THF method can underestimate their performance in comparison to
the test performed in realistic conditions of high pressure, which may lead to erroneous
rankings. However, the authors did not provide the temperature and pressure conditions
at which the experiments were carried out and paid attention to the fact that the hydrates
formed by THF (type sII) and methane (type sI) presented distinct structures.

3.3. Superhydrophobic and Omniphobic Coatings

Brown et al. [47] presented two low-adhesion protective coatings, a superhydrophobic
anti-icing coating and an omniphobic corrosion-resistant coating, and determined their
efficiency in reducing the hydrate adhesion on pristine and pre-corroded carbon steel
surfaces. Cyclopentane and the methane/ethane mixture both formed sII hydrate structure
and were used for testing the effect of both the coatings at atmospheric, high-pressure,
and dynamic conditions using a micromechanical adhesion force measurement apparatus
and a rocking cell assembly. The MMF experiments performed at atmospheric and high-
pressure conditions indicated that the application of the coating resulted in a reduction
of adhesive forces between hydrate and solid carbon steel surfaces, more so in the case
of the corroded steel. Rocking cell tests indicated that at low-water content the hydrate
deposition time reduced significantly. The omniphobic and superhydrophobic coatings
decreased the adhesion force by 53% and 29%, respectively, on a pristine surface, whereas
the decrease on pre-corroded surfaces was found to be 96% and 95%, respectively. Rocking
cell experiments conducted at high pressure indicated that hydrate deposition could be
delayed up to 24 h using coated surfaces in a low-water content system.

Later, Pickarts et al. [50], in order to develop a readily applicable robust strategy to
reduce the deposition behaviour of various solids (hydrates, wax, asphaltene) within the
pipeline, carried out extensive testing of polymeric omniphobic and superomniphobic
surface material formulations at atmospheric and high-pressure conditions. Different
experimental setups were used to unravel the interactions between the coatings with
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water, gas hydrate, asphaltene, and crude oil. At atmospheric pressure, on a corroded
surface, the omniphobic surface treatment enhanced the water contact angle from 0◦ to
91.5◦. The low surface energy and water-repellent properties of omniphobic material
made the authors test it for its anti-hydrate properties. Compatibility tests were carried
out by applying the omniphobic formulation on both sides of the piece of substrate and
submerging it into various chemicals representing the substances that might be present
in production lines such as kerosene, xylene, and jet propulsion fuel 8 (JP8) for 120 days.
The samples were regularly checked for any change in appearance, weight, and adhesion.
No detectable changes were noticed, even after 4 months of submersion in the case of
kerosene and JP8. However, slight changes in the surface colour were noticed in the case of
xylene. Adhesion and weight remained unaltered in all cases. High-pressure measurements
were performed using a rocking cell apparatus where the treated/untreated stainless-steel
substrates were placed at the bottom of the experimental chambers after filling the desired
liquid phase (model oil/water). An isochoric-isothermal method coupled with shear-
induced conditions was used to assess the hydrate inhibition ability of the formulation
and indicated that the surface treatments inhibit the hydrate deposition for up to 3 days
with good repeatability. Omniphobic treatments were also found effective compared to
untreated/superomniphobic treatments in reducing the deposition of asphaltene and crude
oil on its surface. The authors are looking to scale up the selected formulation and testing in
a high-pressure flowloop to produce a robust surface treatment that can be recommended
to industries as a strategy to manage solid deposition within the pipelines.

Dong et al. [53] created a superhydrophobic (water and hydrate repellent) coating of
CuO on the surface of X90 pipeline steel by electrodeposition and hydrothermal treatment of
Cu followed by surface modification using stearic acid. The microstructure of the modified
surface looks like the structure of a lotus leaf, indicating potential super hydrophobicity.
Later, the water contact angles on the modified surface in air and cyclopentane were found
to be 160◦ and 170.7◦ compared to 51◦ and 93◦ on bare X90 steel. The prepared surface
turned the water droplets spherical when dropped on it. Just by tilting the surface at 5.7◦

and 2.4◦ in air and cyclopentane, respectively, the droplets can be rolled off from this surface
immediately. Morphological analysis indicated that the hydrate particles formed spherical
morphology, resulting in the reduction of the interfacial contact area and hydrate adhesion
force to the solid surface. It was found during the hydrate detachment tests that a force of
0.0016 N was not enough to remove the hydrate particle from bare X90 steel, whereas from
the superhydrophobic surface it can be removed by just applying a force of 0.00013 N.

More recently, in a similar work, Zhang et al. [54] reported the preparation of a bio-
inspired superhydrophobic coating using a static self-assembly method. Inorganic material
of high hardness, flushing resistance, and controllable morphology, i.e., cerium oxide
(CeO2) was used for polishing along with polydopamine (pDA) as a binder on X80 pipeline
steel. Water contact angles of 154.7◦ and 155.5◦ were obtained on the CeO2/pDA@X80
coating in air and cyclopentane, respectively, compared to 82.6◦ and 84.7◦ on bare X80
substrate. The water droplet sticks to the metal substrate higher than a 90◦ tilt angle, while
on the prepared surface just at an angle of 3◦ and 2◦ in air and CP, respectively, the drop
can be rolled off. Mechanical stability of the coating was successfully ascertained through a
2-h-long sand abrasion test. Hydrate adhesion measurements on the coating were done
with the help of a micromechanical force apparatus using cyclopentane hydrates before
and after the sand abrasion tests. It was reported that the adhesion forces were reduced
98.9% on the superhydrophobic coatings compared to bare steel surface; this ultralow
adhesion was maintained even after the sand abrasion tests. The adhesion force between
the X80 steel surface and hydrate in the presence of a water droplet was too large to be
measured using the micromechanical apparatus. However, the superhydrophobic coating
did not allow this situation due to easy detachment of water droplets from it (Figure 3).
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Figure 3. The images obtained at 20-s intervals from the touch moment during the adhesion
measurement for different treated substrates: (a) X80; (b) Coating without surface modification;
(c) CeO2/pDA@X80 coating; (d) X80 after sand abrasion; (e) CeO2/pDA@X80 coating after sand
abrasion; (f) X80 with a water drop deposited on the surface. Reprinted with permission from ref. [54].
© 2021 Elsevier.

3.4. Other Surface Treatments

Recently, Ragunathan et al. [51] demonstrated, as a proof of concept, that a ferrofluid
can be used as a coating to create a liquid/liquid interface to reduce the hydrate adhesion
on the pipeline walls. This strategy can be applied by pumping the fluid in high-risk areas,
namely, a low spot of the tubing and pipeline. The magnets placed on the designated spots
of the outer walls, therefore, will assist in the formation of a liquid/liquid interface on the
inner wall. The magnetic, slippery surface in this work was prepared by dispersing mag-
netic particles within a hydrocarbon-based magnetic fluid. The particles were dispersed
uniformly in the fluid irrespective of the introduction of a magnetic/force field. The fluid
was applied on a metal surface and the adhesion strength of tetrahydrofuran hydrates at
atmospheric pressure was measured under static and dynamic conditions. The results indi-
cated that the ferrofluid coating gel did not prevent the ice/hydrate formation but reduced
the adhesion strength of both ice/hydrates and reduced the torque values after hydrate
formation. As a control, the neodymium magnet coated with diesel oil was used to ensure
that the hydrocarbon in the ferrofluid was not responsible for antiadhesion characteristic
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of hydrates. The diesel-coated magnet allowed the formation of ice/hydrate. On tilting the
magnet at 90◦, the ice/hydrate remained stuck to the magnet surface, indicating that the
iron particles dispersed in the fluid were mainly responsible for the antiadhesion properties
of this formulation. Other mechanical tests were performed on the THF hydrates where
the neodymium magnets need to be detached from the hydrate mold by applying some
force. In the absence of coating, a significant force was needed, whereas in presence of
ferrofluid, a minimum force was needed to overcome the adhesion between magnet and
mold. Hydrocarbon-based ferrofluids can be crucial in lowering the production costs be-
cause of their low evaporation rate and, therefore, long life. In order to prevent/overcome
the depletion of the coating issue over time, a ferrofluid gel was also used. Further tests in
realistic, high-pressure conditions are required to fully assess the potential of this strategy.
The presence of produced hydrocarbons might dilute the gel/liquid.

Fan et al. [52] pointed out that the surface coatings can significantly reduce the hydrate
adhesion strength, which can further be reduced by the application of microscale/nanoscale
textures on the surfaces. They chose four different substrates, namely, X70 steel, X80 steel,
Zirconia (ZrO2), and tinplate, which were treated following a rigorous procedure with
three different coatings, namely, a fluoro-coating reagent (F-coating), polydimethylsilox-
ane (PDMS), and hexagonal boron nitride (HBN). Hydrophobic fuming SiO2 in different
proportions was also added in each system to prepare various types of coatings. The
sample with 96% PDMS + 4% SiO2 applied on a bare X70 substrate showed the maximum
water contact angle of 158◦. A micromechanical force apparatus was used to measure the
adhesion forces between the coated surfaces and model hydrate former THF. The results
indicated that the combination of coating materials with a specific surface structure applied
on an appropriate substrate can lead to reduced adhesion and growth of hydrates. In
order to access the efficiency of the coatings to reduce hydrate growth at atmospheric
pressure, bare/coated substrates were placed in a cold platform containing THF solutions
and the hydrate growth was recorded, and the area calculated using a software (Figure 4).
High-pressure experiments with methane as a hydrate former were also carried out in
an autoclave to understand the performance and durability of these coatings under field
conditions. A steel substrate with one side coated (96% PDMS + 4% SiO2) and the other
uncoated was placed in the autoclave at a 65◦ angle and partly immersed in the liquid
phase. Later, the induction time of the hydrate formation was measured, and it was found
that the coated surface delayed the hydrate formation considerably. Moreover, there was
no hydrate growth on the coated side, whereas the uncoated side of the substrate was
fully covered with hydrate. However, after the high-pressure experiments, the coating
immersed inside the liquid phase remained intact, whereas outside the liquid phase got
detached, probably due to direct contact with the high-pressure gas phase. Scanning
Electron Microscopy was used to obtain the morphologies of bare and coated surfaces and
suggested that addition of SiO2 can alter the surface structure of the coatings. SiO2 formed
a micro-nanostructure that isolated the contacts between hydrate and the coated surfaces,
resulting in reduced adhesion and growth of hydrates. The authors concluded that, despite
good inhibition performance by PDMS coating, there was still an issue of its stability under
a high-pressure environment.
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Figure 4. (Left) Images depicting THF hydrate growth on coated surfaces over a period of time. (Right) The red areas
depict the zones where hydrates formed. Changes observed in a coated substrate (a) before and (b) after the high-pressure
methane hydrate formation experiments in an autoclave. Reprinted with permission from ref. [52]. © 2021 American
Chemical Society.

4. Surface Active/Hydrate-Philic Coatings

Filasky et al. [55] showed that surface-active coatings produced by silanization can
promote the methane hydrate formation. The authors chose glass substrate and silanes of
different chain lengths, namely, ethyltriethoxysilane (ES), n-dodecyltriethoxysilane (DS),
and n-octyltriethoxysilane (OE), to create surfaces with varying hydrophobicities that may
reduce the surface tension and gas-enriched layer on reactor walls to promote hydrate
formation. Later, these silanized surface-active coatings were tested for their influence
on the hydrate formation in stationary and dynamic conditions using a high-pressure,
stirred autoclave with sight glasses for visual observations. The experiments performed
in transient conditions showed almost similar trends on all silanized glasses. However,
the results obtained from stationary tests clearly showed a promotion effect. The authors
claimed that the distinct experimental setup was the reason for this contrasting behaviour.
In stationary tests, methane was injected directly into the hydrate plug using an ascending
pipe, which diffused into the methane-saturated layer at the coated-glass surface, resulting
in more hydrate formation. This effect was absent during transient experiments because of
the presence of a “sealing cork”-like hydrate plug. However, the durability of the coatings
under mechanical stress needs to be assessed for their long-term usage.

5. Intellectual Property Generation/Commercialization

A quick search revealed that a few patents have already been granted on this topic, e.g.,
on the methods to reduce hydrate adhesion [56], hydrophobic surfaces for easy hydrate
transportation [57], and a combined surface-chemical approach to inhibit the hydrate
deposition [58]. Some commercial products based on polymeric, superhydrophobic, and
nanocomposite materials are also available in the market [59–62]. The rapid intellectual
property generation and commercialization indicates the potential of coating technology
for hydrate management (Figure 5).
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Figure 5. From concept to commercialization: Development stages of an anti-hydrate/hydrate-
phobic coating.

6. Conclusions and Future Perspectives

A systematic review of the area of functionalized surface coatings and treatments
for controlled hydrate nucleation and growth was presented. The progress made at this
front in the last decade was collected and discussed. At this stage, the research focus is
shifting towards managing hydrate formation instead of completely avoiding it within
the production pipelines. The recent works reported on this topic are more detailed and
improve our understanding of the importance of functionalized surfaces as a hydrate
management tool (Figure 5). Some important points can be summarized and highlighted
from this review:

• Surface chemistry (hydrophobicity/hydrophilicity) and physical state (morphology)
are both vital in defining a surface as hydrate-phobic or hydratephilic.

• Hydrate formation is a stochastic process, which depends on various parameters
(several repetitions are required to obtain statistically significant results), which also
make it impossible to compare the results across laboratories.

• Standard protocols indicating clearly the subcooling temperature, composition of
THF/CP hydrate forming solutions, and parameters to assess the performance of a
coating should be established for round robin measurements so that the results from
different laboratories can be compared.

• The results obtained for THF/CP (type sII) model hydrates at atmospheric pressure
should only be made with gaseous hydrates that form a similar hydrate structure at
high pressure.

• In the future, screening of more robust and environmentally benign surface treat-
ments/coatings, which are economic, can be prepared rapidly at large scale, and be
multi-functional in nature, needs to be assessed.

• Systematic molecular modelling studies need to be pursued to unravel the mechanism
by which a given surface alters the hydrate adhesion.

The area of hydrate-promoting functionalized surfaces that can accelerate the rate
of hydrate formation and growth is relatively unexplored. Progress at this front will
immensely improve various applications based on hydrate technology for energy- and
environment-related purposes. We believe that the coming decade will see a surge in
research activities in this area.
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