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Abstract: Drought is amongst the most important stressors affecting maize production globally.
Existing strategies to offset drought impacts are centered around the rapid development of drought-
tolerant cultivars through plant breeding. However, under both current conditions and projected
climate changes, additional stressors such as insect pests will co-occur. To determine the impact of
combined insect and drought stress on drought tolerance in maize, we assessed the effects of Dalbulus
maidis, drought, and both stresses combined in drought-tolerant maize hybrids. We measured
several maize morphological growth traits (i.e., plant height, stem diameter, shoot weight, root
weight, root length, and root-to-shoot ratio) at the end of a 28-day period of pulse-stress and no-
stress control exposure. We found that seedling growth declined when both stressors co-occurred.
Nevertheless, drought-tolerant maize hybrids remained strongly tolerant to drought regardless of
D. maidis infestation. While our results showed that drought tolerance is maintained in drought-
tolerant maize seedlings, future studies should address any effects on maize yield. Our study
highlights the importance of testing the combined effects of drought and insect stressors to better
predict insect–plant interactions in the context of plant breeding for drought-tolerant traits in a
changing climate.
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1. Introduction

Abiotic stressors such as drought is a major threat to maize (Zea mays L. mays) pro-
duction [1–3]. By 2050 the global demand for maize is projected to double [4,5]. Currently,
an estimated 20% of annual yield loss in maize grain is attributed to drought stress [6].
Droughts harm maize market stability despite progress in breeding of drought-tolerant
cultivars [7,8]. Furthermore, the United Nations Intergovernmental Panel on Climate
Change (IPCC) report predicted that the Earth may reach the crucial threshold of 1.5 ◦C
above pre-industrial levels between 2030 and 2052. The climate changes predicted by
the IPCC hasten the risk of extreme droughts and likely consequences for global maize
production [9].

In maize production drought is primarily addressed by breeding for traits that can
improve tolerance to water deficit [6,10–12]. Morphological traits that are selected for under
drought stress include, but are not limited to, reduced leaf area, high leaf number and short
plants, thick stems, short internodes, small tassels, erect leaves, reduced root biomass, and
deep root systems with little lateral root branching [13–17]. As water becomes scarce maize
reduce transpiration and close stomata to reduce water loss, which may result in reduction
in leaf area and leaf rolling [18]. A well-documented physiological response that contributes
to drought tolerance in maize is redirection of growth and dry matter accumulation from
shoots to roots, which enhances water uptake [13,19,20]. Thus, root-to-shoot ratio is used
as a predictor of drought-tolerant response in maize [21–24]. Susceptibility to drought is
related to the extent to which drought phenotypes are expressed, such as increased leaf
rolling and wilting which negatively affect photosynthesis and grain yield [25,26]. Grain
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yield under drought stress has been shown to have strong correlation with traits such as
plant height and stem thickness [27–29]. Therefore, plant performance parameters centered
on size indices (e.g., height, stem diameter, biomass) are suitable proxies for assessing
potential effects of drought stress on crop growth and yield [30–33].

Similar to drought stress, insects are important biotic stressors that threaten the pro-
duction and market stability of maize [34–36]. Generally, insect species undergo latitudinal
and altitudinal range expansions under drought conditions [37,38]. Dalbulus maidis DeLong
and Wolcott (Hemiptera: Cicadellidae), the primary vector of several important maize
pathogens (Spiroplasma kunkelii, Maize bushy stunt phytoplasma, Maize rayado fino virus),
is an important pest to consider in the US under the projections of rising local temperatures.
Dalbulus maidis feeds by removing sap from phloem tissues of maize [39]. Phloem-feeding
disrupts water flow, which can lead to hydraulic stress, plant stunting, and wilting. More-
over, D. maidis excretes honeydew, which facilitates rapid growth of sooty mold fungi,
which further decrease yield [40]. Dalbulus maidis is indigenous to Mexico and is most
pernicious in South America, though its geographic range may likely expand to southern
USA, particularly Texas, as rising temperatures improve habitat suitability in the south
USA [41]. The climatic suitability of South America for maize production is expected to
decline, while improving in North America [42]. Because D. maidis is a specialist herbivore
on the genus Zea and has an extended co-evolutionary relationship with maize [43–45], it’s
distribution in North America will incorporate newly suitable areas for maize production.

Interactions between drought stress and herbivory stress have not been widely ex-
plored in maize [46,47]. Under herbivory, plants either compensate between high tolerance
and low resistance, vice versa, or balance between these two [48–50]. In some studies
drought stress is hypothesized to increase susceptibility of plants to herbivory, which leads
to enhanced herbivore performance [51–54], though some studies have challenged this
view on the basis that insect responses vary among feeding guilds, e.g., piercing/sucking
versus chewing insects [55–58]. For example, Copolovici et al. [59] showed that under
combined drought/herbivory stress there was a defense priming effect due to induction of
volatile organic compounds (VOCs) in the deciduous tree Alnus glutinosa, which resulted
in stronger defense against green alder sawfly, Monsoma pulveratum, a chewing insect pest.
In contrast, drought stress in collards (Brassica oleracea var. acephala) resulted in reduced
defense against gloomy scale, Melanaspis tenebricosa, a piercing-sucking insect, evident as
enhanced reproduction in the scale [52]. Meanwhile, whiteflies, Bemisia tabaci trigger a
strong drought tolerance response while eliciting defense in maize [47]. The interaction
between drought and insect stress is complex, and more case-by-case studies are required
to elucidate the mechanisms that mediate defense expressions and trade-offs in maize as
well as in other crop species.

In this study, we assessed the impacts of D. maidis on the morpho-physiological
responses of drought in drought-tolerant maize hybrids by exposing maize seedlings to
drought and Dalbulus maidis stress, alone and combined. The primary goal was to assess
whether D. maidis may disrupt drought tolerance responses of drought-tolerant maize
hybrids and provide insight to any combined effects of drought and insect stress in maize
production under drought driven by climate change.

2. Results

Drought and D. maidis treatments caused significant reduction in plant height (Drought
F1,1 = 45.579 p, < 0.0001; D. maidis F1,1 = 17.910 p, < 0.0001), stem diameter (Drought
F1,1 = 128.838 p, < 0.0001; D. maidis F1,1 = 137.440 p, < 0.0001), shoot weight (Drought:
F1,1 = 67.837 p, < 0.0001; D. maidis F1,1 = 16.540 p, < 0.0001) and root weight (Drought
F1,1 = 16.260 p, < 0.0001; D. maidis F1,1 = 20.755 p, < 0.0001). Root-to-shoot ratio was
significantly increased by drought treatment (F1,1 = 16.708 p, < 0.0001) but not by D. maidis
treatment (F1,1 = 0.936 p, = 0.336). Neither drought nor D. maidis treatments affected root
length (Drought F1,1 = 0.018 p, = 0.895; D. maidis F1,1 = 3.747 p, = 0.056). Furthermore, the
interaction term Drought × D. maidis was not significant for plant height (F1,1 = 1.0660
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p, = 0.304), stem diameter (F1,1 = 0.456 p, = 0.50), shoot weight (F1,1 = 0.253 p, = 0.616),
root-to-shoot ratio (F1,1 = 1.234 p, = 0.269), root weight (F1,1 = 0.424 p, = 0.517) nor root
length (F1,1 = 5.283 p, = 0.024). The nested term Hybrid [Drought, D. maidis] was also not
significant for plant height (F8,8 = 0.537 p, = 0.825), stem diameter (F8,8 = 0.939 p, = 0.488),
shoot weight (F8,8 = 0.531 p, = 0.831), root-to-shoot ratio (F8,8 = 1.710 p, = 0.104), root weight
(F8,8 = 1.127 p, = 0.351), and root length (F8,8 = 0.873 p, = 0.542). The covariate (initial stem
diameter) was only significant for root weight (F1,1 = 7.788 p, = 0.006).

A 100% recovery rate was observed in the drought-tolerant maize hybrids when
seedlings treated with D. maidis and drought combined stress were re-irrigated after per-
sistent pulse-drought stress for up to 21 days (Figure 1). No seedling deaths occurred
throughout the experiments for all hybrids. Water content in shoot and root was only
significantly reduced in combined stress treatment (Supplemental Figure S1).
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tomatic seedlings. 

Drought × D. maidis interaction effects are shown in Figure 2, while comparison be-
tween treatments and control is shown in Table 1. Results showed that plant height (Fig-
ure 2A) was reduced by 0.11- and 0.22-fold due to drought-only and combined stress treat-
ments, respectively, and relative to control. Stem diameter (Figure 2B) was also reduced 
by 0.25-, 0.25-, and 0.47-fold due to D. maidis-only, drought-only, and combined stress 
treatment, respectively. Shoot weight (Figure 2C) was reduced by 0.14-, 0.28-, 0.41-fold 
due to D. maidis-only, drought-only, and combined stress treatments, respectively. Root-
to-shoot ratio (Figure 2D) increased 0.13-fold by combined stress treatment compared to 
control. Root weight (Figure 2E) was reduced by 0.3-fold due to combined stress when 
compared to the control seedlings. D. maidis-only treatment caused a 0.06-fold reduction 
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Figure 1. Effect of Dalbulus maidis, drought, and combined stress on the above-ground performance
of maize. Images of seedlings exposed to D. maidis, drought, and combined stress treatments: im-
ages (i,v) are control, images (ii,vi) are D. maidis-only, images (iii,vii) are drought-only, images
(iv,viii) are combined stress (D. maidis and drought stress), images (i–iv) also show the observed
drought symptoms (±wilting, leaves rolling) on the 3rd day of absolutely no watering at the 21-day
point of progressive stress, while images (v–viii) show recovery 1 day after re-infiltrating the symp-
tomatic seedlings.

Drought × D. maidis interaction effects are shown in Figure 2, while comparison
between treatments and control is shown in Table 1. Results showed that plant height
(Figure 2A) was reduced by 0.11- and 0.22-fold due to drought-only and combined stress
treatments, respectively, and relative to control. Stem diameter (Figure 2B) was also reduced
by 0.25-, 0.25-, and 0.47-fold due to D. maidis-only, drought-only, and combined stress
treatment, respectively. Shoot weight (Figure 2C) was reduced by 0.14-, 0.28-, 0.41-fold due
to D. maidis-only, drought-only, and combined stress treatments, respectively. Root-to-shoot
ratio (Figure 2D) increased 0.13-fold by combined stress treatment compared to control.
Root weight (Figure 2E) was reduced by 0.3-fold due to combined stress when compared to
the control seedlings. D. maidis-only treatment caused a 0.06-fold reduction in root length
(Figure 2F) compared to control seedlings.
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Figure 2. Effects of drought, Dalbulus maidis, and combined stress on drought-tolerant maize hybrids.
(A) plant height [Drought F1,1 = 45.579 p, < 0.0001; D. maidis F1,1 = 17.910 p, < 0.0001; drought ×
D. maidis F1,1 = 1.0660 p, = 0.304], (B) stem diameter [Drought F1,1 = 128.838 p, < 0.0001; D. maidis
F1,1 = 137.440 p, < 0.0001; drought × D. maidis F1,1 = 0.456 p, = 0.50], (C) shoot dry weight [Drought:
F1,1 = 67.837 p, < 0.0001; D. maidis F1,1 = 16.540 p, < 0.000; drought × D. maidis F1,1 = 0.253 p, = 0.616],
(D) root-to-shoot ratio [Drought: F1,1 = 16.708 p, < 0.0001; D. maidis F1,1 = 0.936 p, = 0.336; drought
× D. maidis F1,1 = 1.234 p, = 0.269], (E) root dry weight [Drought F1,1 = 16.260 p <0.0001; D. maidis
F1,1 = 20.755 p, < 0.0001; drought × D. maidis F1,1 = 0.424 p, = 0.517], and (F) root length [Drought
F1,1 = 0.018 p, = 0.895; D. maidis F1,1 = 3.747 p, = 0.056; drought × D. maidis F1,1 = 5.283 p, = 0.024].
Treatment groups are ordered from left to right by control, D. maidis-only, drought-only, and combined
stress treatments. Asterisks indicate significant differences between control and treated seedlings
per Dunnett’s tests (statistics are shown in Table 1). Box plots represents mean values from all three
drought-tolerant hybrids (LH195 × TX772, LH195 × TX773, and TX790 × TX777).
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Table 1. Dunnett statistics within Analysis of covariance (ANCOVA) for the independent variables
(plant height, stem diameter, shoot weight, root-to-shoot ratio, root weight, and root length).

Variables Level -Level Difference ± SE p-Value Effect Size

Plant height
insect control −3.386 ± 1.504 0.069 0.592

drought control −5.999 ± 1.476 0.0003 1.049
combine control −11.555 ± 1.477 <0.0001 2.021

Stem diameter
insect control −1.256 ± 0.144 <0.0001 2.290

drought control −1.210 ± 0.142 <0.0001 2.207
combine control −2.330 ± 0.142 <0.0001 4.250

Shoot weight
insect control −0.115 ± 0.036 0.005 0.844

drought control −0.219 ± 0.035 <0.0001 1.604
combine control −0.309 ± 0.035 <0.0001 2.263

Root/shoot ratio
insect control −0.003 ± 0.027 0.999 0.026

drought control −0.100 ± 0.027 0.001 0.954
combine control 0.059 ± 0.027 0.075 0.572

Root weight
insect control −0.048 ± 0.017 0.019 0.722

drought control −0.041 ± 0.017 0.048 0.621
combine control −0.104 ± 0.017 <0.0001 1.581

Root length
insect control −1.800 ± 0.607 0.010 13.187

drought control −1.031 ± 0.596 0.207 7.553
combine control −0.881 ± 0.596 0.323 6.456

Further a priori contrast analyses showed that D. maidis caused a 0.17-fold reduction in
plant height (Figure 3A) within seedlings subjected to combined stress in Midwest × South
1 (F1,53 = 10.030 p, < 0.002) hybrid, whereas it did not significantly impact the drought
responses in Midwest × South 2 (F1,53 = 2.118 p, = 0.140) and South × South (F1,53 = 3.392
p, = 0.068) hybrids when compared to drought-only seedlings. Dalbulus maidis caused
a 0.31-, 0.38-, and 0.22-fold significant reduction in stem diameter (Figure 3B) within
seedlings subjected to combined stress in Midwest × South 1 (F1,53 = 22.837 p, < 0.0001),
Midwest × South 2 (F1,53 = 29.490 p, < 0.0001) and South × South (F1,53 = 11.391 p, = 0.001)
compared to drought-only seedlings. Dalbulus maidis also caused a 0.23- and 0.27-fold
decrease in root weight (Figure 3D) in drought effects in Midwest × South 1 (F1,53 = 6.197
p, = 0.015), and South × South (F1,53 = 5.865 p, = 0.017), respectively, but did not affect
Midwest × South 2 (F1,53 = 2.235 p, = 0.138) when compared to drought-only seedlings.
Dalbulus maidis did not cause any significant differences in drought responses in shoot
weight (Figure 3C) within seedlings subjected to simultaneous drought in Midwest× South
1 (F1,53 = 2.663 p, = 0.106), Midwest × South 2 (F1,53 = 3.921 p, = 0.050), or South × South
(F1,53 = 0.058 p, = 0.444). Dalbulus maidis did not affect drought response for root-to-
shoot ratio (Figure 3E) in Midwest × South 1 (F1,53 = 0.890 p, = 0.348), Midwest × South
2 (F1,53 = 0.367 p, = 0.546) and South × South (F1,53 = 4.949 p, = 0.028). Likewise, no
comparable differences between drought-only and combined stress treatments were found
in root length (Figure 3F) for Midwest × South 1 (F1,53 = 0.319 p, = 0.574), Midwest × South
2 (F1,53 = 1.295 p, = 0.258) and South × South (F1,53 = 0.020 p, = 0.887).
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Figure 3. Effects of Dalbulus maidis on drought responses of maize hybrids (Midwest × South 1,
Midwest × South 2 and South × South). (A) plant height (F8,8 = 0.537 p, = 0.825), (B) stem diameter
(F8,8 = 0.939 p, = 0.488), (C) shoot weight (F8,8 = 0.531 p, = 0.831), (D) root-to-shoot ratio (F8,8 = 1.710
p, = 0.104), (E) root weight (F8,8 = 1.127 p, = 0.351), and (F) root length (F8,8 = 0.873 p, = 0.542) for
the nested term Hybrid [Drought, D. maidis]. Asterisks indicate significant differences by a priori
contrast between drought-only and combined stress treatments with critical p,≤ 0.017, per Bonferroni
correction. On the x-axes, (−/+) indicates absence/presence of D. maidis during drought stress.

3. Discussion

Drought stress is a threat to maize production and is being addressed through the
rapid development of drought tolerant cultivars through plant breeding [60]. Concurrent
to drought, increased insect stress such as D. maidis herbivory, and pathogen transmission
are potential causes of future concern. Research necessary to predict the impacts of such
colliding stressors is sparse. Therefore, this study assessed the effects of drought combined
with D. maidis and found that D. maidis impacted root length and stem diameter by huge
effect sizes (~13.2 and ~2.3 times more than controls), as well as shoot and root weight
to a lesser extent (by effect sizes of ~0.8 and ~0.7 times more than controls). Effect sizes
of approximately 0.2, ~0.8, ~1.2, and ~2.2 are considered small, large, very large and
huge, respectively [61,62]. Meanwhile, drought had a very large negative impact on stem
diameter, shoot and root weight, plant height, and root-to-shoot ratio (effect sizes ranges
from ~2.2, ~1.6, ~1.04, 0.95 and ~0.6, respectively, compared to control seedlings). Similar
to the results in this study, shoot and root reductions under drought stress have been
reported in maize [63–65]. When drought was combined with D. maidis, there were very
large impacts on stem diameter, plant height, shoot weight, and root weight compared
to the control seedlings (effect sizes of ~4.3, ~2.3, ~2.0, ~1.6, respectively). Prior research
showed strong positive correlations between plant height and stem thickness (diameter)
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during vegetative growth stages and grain yield [27–29,32,33]. Thus, considering that plant
height and stem thickness were significantly impacted by combined stresses, it is possible
that maize hybrids experiencing combined stressors over extended periods of stress may
lose productivity.

The impacts of drought in drought intolerant maize were not evaluated in this study.
However, in a study in which drought intolerant maize was infested with D. maidis under
drought and control conditions, Virla, Araoz and Albarracin [36] found that maize biomass
loss and mortality were less severe in control (non-drought) compared to drought when
exposed to both low (10 D. maidis adults/seedling) and high insect density (50 D. maidis
adults/seedling). Specifically, seedling mortality was 16% greater than control under
drought at high D. maidis density. This study by Virla, Araoz and Albarracin [36] provided
insight for understanding the effects of D. maidis on maize in the absence of drought-
tolerant traits, and its results suggested that D. maidis may worsen the effects of drought
on maize production. It is well-known that drought-intolerant plants perform poorly in
drought conditions compared to tolerant varieties [17,64,66]. Thus, our study focused on
drought-tolerant seedlings and the effects of insect and drought stresses.

Dalbulus maidis worsened the effects of drought on stem diameter in all three drought-
tolerant maize hybrids (Midwest × South 1, Midwest × South 2, and South × South).
Whereas D. maidis only worsened drought effects on root weight in Midwest × South
1 and South × South hybrids and plant height in Midwest × South 1, but not Midwest
× South 2 nor South × South. This suggested that the hybrid with southern parents
(South × South 1) was less sensitive to D. maidis during drought relative to the hybrids
with one mid-western parent (Midwest × South 1, Midwest × South 2). Interestingly,
when seedlings infested with D. maidis were also subjected to drought their shoot weight,
root-to-shoot ratio, and root length responses did not differ from those treated with only
drought for all three drought-tolerant hybrids tested. These results suggested that D. maidis
did not drastically implicate the expected responses to drought in the drought-tolerant
hybrids tested. Furthermore, a 100% recovery rate was observed in the drought-tolerant
maize hybrids after seedlings treated with D. maidis were re-irrigated after periods of
drought. This high recovery rate observed in combined stress treatment and similarly in
drought-only treated drought-tolerant seedlings suggests that D. maidis did not severely
affect the drought-tolerant maize hybrids that were tested. A plausible explanation for
the variations in morphological responses observed among the drought-tolerant hybrids
could be that they deploy divergent drought responses [67,68]. For example, drought
response mechanisms such as osmotic adjustment, stomata regulation, adjustment of their
life cycle, and re-growth speed determine the morphological traits expressed during stress
and can vary among hybrids [69]. Moreover, reduction in the growth traits recorded in
this study are consistent with the expected expression of drought-tolerance as reported by
several studies [13–17,19–24,70]. Though the effects of the combined stress treatment were
overall not detrimental to the drought-tolerant hybrids, there was a pattern that showed
larger effect sizes on maize morphological traits compared to drought-only seedlings.
Piercing-sucking insects, such as D. maidis, have been shown to trigger strong drought
responses. For example, Park, Bae and Ryu [47] used molecular methods to show that
whiteflies trigger strong drought-tolerance responses in maize through higher expression
of drought-associated genes ZmbZIP72, ZmSNAC1, and ZmABA1. Therefore, it may also
be that the larger effects of D. maidis and drought stress combined (i.e., combined stress
treatment) is potentially due to the triggering of a strong drought response.

Drought and D. maidis responses displayed similar patterns in several morphological traits
measured (stem diameter, shoot weight, root weight, root-to-shoot ratio) when compared to
the control seedlings. Piercing-sucking insects affect water transport in their host plants as they
feed on plant sap and reduce water availability, which is a form of hydraulic stress. Likewise,
drought is due to limited water acquisition by plants. It follows that sap-sucking insects, such
as D. maidis, and drought stress could potentially trigger the activation of similar pathways
to those triggered by hydraulic stress in maize. Previous studies showed that responses to
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some abiotic stresses, such as drought, rely on deployment of plant hormones, including
abscisic acid (ABA), jasmonic acid (JA) and ethylene (ET) [71–74]. Notably, ABA, which is a
dominant drought response phytohormone, is also known to promote biotic stress tolerance by
suppressing salicylic acid (SA) signals [75–77]. Maize may also defend against the impacts of
D. maidis by utilizing mechanisms of tolerance [50]. Therefore, maize cultivars that are tolerant
to drought and can maintain D. maidis infestation under each single stress exposure could
potentially be triggering shared components for chemical compounds being deployed for plant
defense. Nevertheless, to determine the impacts of drought and D. maidis as combined stressors
more comprehensive studies should explore biochemical responses in drought-tolerant maize
cultivars with insects and water stress.

Currently, there is little information on the interaction between drought and insect
damage in maize [46,47]. Our study highlighted the importance of testing the combined
effects of a phloem feeding insect, D. maidis, and drought in the context of plant performance.
By the same token, our study showed that combined drought and D. maidis stress may
negatively impact the productivity of drought-tolerant maize. However, the overall results
of this study indicated that the expected drought response mechanisms (reduced growth
and optimized recovery) were maintained by the drought-tolerant hybrids regardless
of D. maidis infestations, as evident by the high recovery rate of the seedlings after re-
irrigation. Climate change will affect pest severity and incidence and severity of drought,
therefore further studies that assess the interactions between insect and drought in maize
are recommended.

4. Materials and Methods
4.1. Plant Material and Growth Conditions

Three drought-tolerant maize hybrids were obtained from the Texas A&M Univer-
sity Crop and Soil Science Breeding and Genetics Program: pedigrees LH195 × TX772,
LH195 × TX773, and TX790 × TX777. The parent line TX777 is derived from a cross
between two lines that were both derived from Agricomseeds populations (Santa Cruz de
la Sierra, Bolivia) and is adapted to relatively long growing seasons and multiple stress
conditions common in Southern United States (US) ecosystems [78]. TX772 is derived
from South American maize line with high-yielding capacity and is adapted to South-
ern US environments [79]. LH195 is a US elite inbred developed from the single cross
LH117× LH132 and is adapted to Midwestern US environments [80]. TX773 and TX790 are
both adapted to Texas/Southern growing seasons [78]. The Hybrids were selected to meet
a criterion of relatively wide representation in terms of genetic diversity and adaptation
by choosing varieties whose geographic distribution ranges from Southern to Midwestern
US. Subsequently, we verified the drought tolerance of these lines by halting the watering
regime of seedlings for 12 consecutive days and observing whether seedlings recovered
after watering at full saturation after the 12th day (unpublished). Throughout this study,
hybrids LH195 × TX772, LH195 × TX773, and TX790 × TX777 are referred to as Midwest
× South 1, Midwest × South 2, and South × South, respectively.

Seeds were germinated between two sheets of moist paper towels incubated in Petri
dishes for approximately 3 days. Newly germinated seeds, with emerged radicle and
cotyledon, were transplanted into cone-trainers (SC10R, Greenhouse megastore, IL, USA)
filled with modified soil mixture consisting of sand, peat, and maize soil (organic soil taken
from a field located at Foggy Valley Rd. Moody, Texas) in a 1:1:2 proportion. Seedlings
were irrigated every 2 days with 30 mL of water. The soil was fertilized (N-P-K/20-20-20)
once every two weeks to remediate the reduced nutrient content of sandy soil. Maize
seedlings were maintained in a growth room with an average lighting condition of up
to 1030 µmoL/m2/s photosynthetic photon flux density (PPFD) over a 4′ × 4′ canopy
using SPYDRx PLUS led lights (Fluence Bioengineering, TX, USA) and a photoperiod of
12:12 (L:D). Growth condition was also maintained at an average humidity of 33%, and a
temperature of 24–26 ◦C.
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4.2. Dalbulus maidis Rearing

Insects used in this study came from a colony established in 2009 at the Biological
Control Facility, Texas A&M University, College Station Texas. Insects were kept in a
plastic-frame mesh cage (BugDorm-44545F) on seedlings of a Mexican maize landrace
(Elotes Occidentales) in their 4th–6th vegetative growth stage (V4–V6) in a growth room with
a photoperiod of 12:12 (L:D) and a temperature of 24–26 ◦C, as previously described by
Bellota, Dávila-Flores and Bernal [45]. Mature adult females assumed to be mated were
taken from the colony and used for oviposition in this study.

4.3. Drought Induction and Water Regime

Water stress status of maize hybrids was quantified by saturating each pot to 100%
soil water holding capacity and then weighing on a balance (Metler Toledo, Greifensee
Switzerland) daily for 1 week, to determine evapotranspiration rate (ET water loss). Cumu-
lative ET water loss was calculated by subtracting the weight of the maize pot each day
from the weight of the same pot at saturation (day 0) (Figure 4). In preliminary steps, soil
water status was verified by quantifying gravimetric and volumetric water content (GWC,
θ). Soil dry weight was determined by drying soil in a precision gravity convection oven
(Acme Revival, Memphis, TN, USA) at 70 ◦C for 3 days and used to determine gravimetric
water content (θG = [saturated soil-dry soil]/dry soil) where θG was calculated to be 0.273.
Additionally, soil core volume was calculated by volume of container, V = 1/3πr2h, and
used to determine the volumetric water content (θV = ([dry soil/soil core volume] × GWC),
where θV was calculated to be 0.613.
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Figure 4. Establishing water infiltration regime for inducing drought stress. Drought induction
water regime was determined by assessing the relationship between evapotranspiration rate against
day in maize hybrids using linear regression analysis. Days taken to reach 50% ET water loss was
determined by the equation of the line (Y = −9.149 + 15.88 × Day) and calculated to be ∼=4 days
(=3.7 days). Additionally, watering at 2-day intervals would keep ET water loss within the desired
ranges 0–30% (=23% ET water loss). The shaded region shows the 95% confidence of the fitted line,
which is the daily ET water loss for the mean of three hybrids (Midwest × South 1, Midwest × South
2, and South × South). There was no significant difference in the mean lines for each hybrid (not
shown, n = 21, F2,2 0.014, p = 0.986).

Drought stress was defined as 50% ET (i.e., equivalence of 50% θV) water loss, which
was found to have occurred at day 4 post saturation with no subsequent watering (pre-
liminary results, Figure 4). Pots with maize seedlings used as control water treatment
were maintained by a water regime of 30 mL (100% infiltration, non-drought conditions)
every 2 days to replenish an ET water loss such that soil water was maintained within a
range of 70–100% (i.e., 0–30% total ET). Simultaneously, maize pots in which drought stress
was induced were maintained by a water regime of watering with 15 mL (50% infiltration,
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drought conditions) every 2 days, such that the soil water was maintained at a range of
50–30%, thus maintaining a persistently pulsed-stressed scenario.

4.4. Treatments

Three maize hybrids (Midwest × South 1, Midwest × South 2 and South × South)
were evaluated under two drought levels (+, −), and two D. maidis levels (+, −) in this
study. Thus, the hybrids were subjected to one of four treatments: (i) drought (−)/D. maidis
(−) (hereafter “control”); (ii) drought (−)/D. maidis (+) (“D. maidis-only”); (iii) drought
(+)/D. maidis (−) (“drought-only”); and (iv) drought (+)/D. maidis (+) (“combined stress”).
A total of 10 experimental replicates were established. Each replicate consisted of seedlings
of the three maize hybrids subjected to one of the four 4 treatments, i.e., 12 seedlings per
replicate, and a total of 120 seedlings for the entire experiment.

4.5. Effects of Dalbulus maidis and Drought on Drought-Tolerant Maize Hybrids

Dalbulus maidis and drought treatments were initiated two weeks after planting.
Twelve 2-week-old maize seedlings (4 from each of 3 plant types) of approximately the same
size were used as a single experimental replicate. Each of the 4 seedlings from each hybrid
were subjected to one of the 4 treatments. Dalbulus maidis stress was applied by confining
two D. maidis females on the midpoint area of the 2nd true leaf of maize seedlings for
24 h. Cages holding D. maidis females were made of two foam sheets (external dimension
5.5 × 5.5 × 1 cm each) enclosed with anti-insect netting mesh on the outer-sides, which
sandwiched the leaf (internal cage dimensions 3.5 × 3.5 × 2 cm) to allow oviposition to
occur over a 24 h period, after which females were removed from each seedling. After
this, each seedling (infested and non-infested) was covered with a crystal clear micro-
perforated plastic bag (dimension 11” × 20”/60 holes per square inch) (ClearBags, CA,
USA). Drought treatment was induced on the onset of hatching (~10 days after infestation),
by separating seedlings (i.e., both newly infested by oviposition and non-infested) in two
groups and halting watering of the set designated as drought (containing both infested and
non-infested seedlings) for four consecutive days, then re-infiltrating with half the volume
of the non-drought labeled seedlings, i.e., 15 mL and 30 mL of water, respectively, following
a scheduled, 2 days routine. The water treatment regime was maintained consistently until
seedlings were harvested 28 days after oviposition took place (sufficient for the onset of
D. maidis maturing into adults).

Several maize seedling traits were measured, including plant height (taken from crown
root base of the seedlings to the tip of the longest leaf), stem diameter (average of two
measurements taken at shorter and longer axes at a position between 2nd and 3rd true
leaf), dry shoot weight (stem and leaves), dry root weight, root length (measurement taken
from crown base of crown root to the tip of the longest root), and root-to-shoot ratio (root
weight/shoot weight). The dry weights of shoots and roots were taken after oven drying
in a precision gravity convection oven (Acme Revival, United States) for ≥3 days at 80 ◦C.

4.6. Statistical Analyses

Statistical analyses relied on a nested analysis of covariance (ANCOVA) with the
independent variables drought and D. maidis, the interaction term drought × D. maidis,
the nested term hybrid [drought × D. maidis], and the response variables plant height, stem
diameter, shoot weight, root-to-shoot ratio, root weight and root length. Additionally, the model
included the independent covariate initial stem diameter, which was measured immediately
prior to applying treatments to seedlings. The covariate was included to account for
variability in seedling sizes at the time that treatments were initiated. Hybrids were
nested in the model to allow for comparisons among hybrids under drought × D. maidis
interactions, if warranted. Dunnett’s tests were used to compare LS means between
the control and the remaining three treatments. Additionally, a priori contrasts within
the nested term hybrid [drought × D. maidis] were used to compare between the drought-
only and combined stress treatments within each of the hybrids. Effect sizes (Cohen’s d)
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for comparisons were determined to compare the magnitude of the differences between
treatments. The critical P value for three contrast comparisons was adjusted to 0.017 per
Bonferroni correction [81]. All statistical analyses were conducted using JMP PRO 15.0.0
(SAS Institute Inc., Cary, NC, USA).
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