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Abstract: Herein, we conducted an experimental test on basalt fiber-reinforced concrete with a high
content of construction and demolition waste and then established some mathematical models based
on Taylor’s formula. The concrete was prepared by using recycled clay brick powder in place of
cement and recycled coarse aggregates as a substitution for natural coarse aggregates. The basalt fiber
in weight dosages of 0, 0.1, 0.3, and 0.5% was used for reinforcement. The results showed that the
compressive strength of concrete declined as the content of recycled aggregates increased, while the
compressive strength first increased and then decreased as the basalt fiber dosage lifted. Regarding
the splitting tensile strength, the reinforcement effect of basalt fiber in concrete with a high content of
recycled aggregate is more significant when compared to its to its counterpart, which contains no or
fewer recycled aggregates. The concrete with 0.5% basalt fiber dosage and 100% recycled aggregate
content retains an equivalent compressive strength as to that of natural aggregate concrete and has
about a 90% splitting tensile strength. In addition, the cubic function in comparison to the quadratic
function has a higher fitting accuracy.
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1. Introduction

The global use of concrete has exceeded 4 billion m3/year, and the use of sand and
gravel materials has exceeded 6 billion to 8 billion tons/year [1,2]. Mining is used to
satisfy such a large demand for sand and aggregates. However, mining consumes many
natural resources and causes environmental pollution and ecological damage [3–5]. In
addition, the demolition of old houses, factories, and other buildings for various reasons
generates a large amount of waste concrete. The annual production of construction and
demolition waste in China reaches 1.8 billion tons and is increasing year by year [6–8].
The most common practice at present to treat waste concrete is to pile it up or place it in
landfills [9–12].

The mining method not only occupies a large land resource but also causes environ-
mental pollution. On the contrary, waste concrete can be crushed and ground to obtain
recycled aggregate, which can be partially or completely replaced by recycled aggregate
to prepare recycled concrete as per previous research [13,14]. To a certain extent, it alle-
viates the pressure of natural aggregate extraction and solves the land occupation and
environmental pollution problems caused by waste concrete, thus realizing the green and
sustainable development of waste concrete [15–17]. However, compared with natural
aggregates, waste concrete aggregates have the disadvantages of high water absorption,
high porosity, low apparent density, and a high crushing value, resulting in the low strength
and poor durability of the prepared recycled concrete. Therefore, it is crucial to improve
the performance of recycled concrete [18–20].
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Researchers have delved into two primary approaches for modifying recycled aggre-
gates, aiming to ameliorate their detrimental impact on new concrete. The first approach
involves employing biological, chemical, and mechanical techniques [21–24], among others,
to mitigate the adverse effects of the recycled aggregate’s subpar quality. This includes
strategies like eliminating the residual adhesive mortar from the aggregate’s surface and
enhancing the adhesive mortar’s performance. The second approach entails enhancing the
overall quality of synthesized recycled concrete directly by incorporating supplementary
materials, such as polymers and mineral admixtures [25–30]. Heat treatment stands out
as a favorable approach for dissolving weakly bonded mortar because of its straightfor-
ward application and cost efficiency. However, this method is contrary to the low-carbon
objective, as it triggers additional energy consumption. An alternative method, mechanical
treatment, is widely employed in detaching bonded mortar from the original natural aggre-
gate, yielding premium recycled aggregate [19]. This technique employs mechanical force
to crush and dislodge the bonding mortar. Yet, given the collision and grinding inherent
in the process, there is a propensity for detrimental impacts on the structural integrity of
recycled aggregate particles. This may lead to alterations in the geometric attributes of
these particles, thereby potentially introducing new microcracks [31–34]. Subsequently,
acid prepreg technology was developed; it has the ability to effectively improve the quality
of recycled aggregates by eliminating bonding mortar. However, usually after treatment
with hydrochloric or sulfuric acid, the chloride and sulfate content of the aggregate will
increase, which, in turn, affects the durability of the concrete. In recent years, there is
more and more research on carbonization to improve the properties of recycled aggregates
because carbonization can increase the density of cementified materials. Liang et al. [35]
studied the carbonization behavior of concrete containing carbonized recycled aggregate in
different environments, and the results showed that a CO2 curing treatment improved the
physical and chemical properties of recycled aggregate (such as significantly reducing the
water absorption of RA). The recycled concrete prepared by adding carbonized fine and
coarse recycled aggregate has higher compressive strength and lower carbonization depth,
and the carbonization depth decreases more obviously [36–38].

Other enhancements involve using various fibers, such as steel fibers, polyvinyl
alcohol fibers, carbon fibers, and so forth, to improve the strength and toughness of
recycled concrete [39–41]. Steel fibers have a strengthening and toughening effect on
recycled aggregates, but they are heavy. Carbon fiber is expensive. Basalt fiber, as a kind
of green material, has a high tensile strength, a high modulus of elasticity, a low price,
and enhanced toughening [16,42–44]. Basalt fiber has thereby recently been considered a
potential reinforcement material to strengthen concrete prepared by recycled aggregates.
Li et al. [45] studied the influence of different fiber contents on the mechanical properties
of fiber-reinforced concrete (HFRC), especially the shear strength and toughness, and
obtained the optimal fiber content in HFRC. The results show that the compressive strength
of HFRC is higher than that of plain concrete when the content of basalt fiber is less than
0.15%. Algin and Ozen et al. [46] studied the application of basalt fiber in the production of
self-compacting concrete (SCC) to determine the influence of fiber addition on the working
and mechanical properties of concrete. The results show that, when the fiber length is
12 mm and the fiber content is 0.1%, the compressive strength can be improved. At present,
most studies consider only the length of fiber or the content of fiber and other single factors
for fiber-reinforced recycled concrete. It is necessary to use basalt fiber with different
contents (0.1~0.3%) and different lengths (6~18 mm) to determine the optimum content
and length of fiber. It is necessary to consider the influence of many factors on the slump,
compressive strength, splitting tensile strength, and bending strength of recycled concrete.
Zhang et al. [42] first proposed the composite effect based on the fiber reinforcement
theory. The effects of the mixture of the regenerated coarse aggregate replacement rate
and BF content on the failure mode, mechanical properties, and interfacial transition zone
properties of regenerated concrete were studied by conducting a macroscopic performance
analysis and microscopic test. The results show that the basic mechanical properties of
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recycled concrete with different BF contents are better than ordinary concrete when the
replacement rate of recycled aggregate is 50%.

We conducted an experimental study on the basalt fiber-reinforced recycled aggregate
concrete. The novelty lies in the use of a mathematical model established by the Taylor
formula and the associated surface trend map in analysis.

2. Experimental Details
2.1. Materials

The binding materials are ordinary Portland cement with grade P.O.42.5 and recycled
clay brick powder (RCBP) with an average particle size of 20 µm. Fine aggregate with a
size of less than 4.75 mm is common river sand. Coarse aggregates with a size between
4.75 and 19.5 mm contain both natural aggregates (NAs) and recycled aggregates (RAs).
Polycarboxylate superplasticizer was used as the water reducer to control the fluidity of
fresh concrete. The chemical composition and physical properties of the raw materials are
listed in Tables 1–3, respectively. Figure 1 shows the in-site photos of coarse aggregates
and fibers.

Table 1. Chemical composition of cement and recycled clay brick powder (RCBP) (%).

SiO2 Fe2O3 Al2O3 CaO MgO SO3 Na2O K2O LOI

Cement 21.58 3.36 5.62 61.31 2.32 2.41 0 0 3.40
RCBP 49.02 6.97 31.56 4.88 0.83 0 1.05 0.73 5.79

Table 2. Physical properties of aggregates.

Type Apparent Density
(kg/cm3)

Bulk Density
(kg/cm3)

Water Absorption
(%)

Fineness Modulus
(Mx)

Natural fine aggregate 2640 1490 0.98 2.83
Natural coarse aggregate 2840 1730 0.52 -

Recycled coarse aggregate 2630 1550 3.87 -

Table 3. Physical properties of basalt fiber.

Length/mm Diameter/µm Density (g/cm3)
Modulus of

Elasticity/GPa
Tensile

Strength/MPa

18 15 2.64 110 4800
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Figure 1. In-site photos of raw materials: NAs, natural coarse aggregates (left); RAs, recycled coarse
aggregates (middle); BF, basalt fiber (right).
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2.2. Sample Preparation

The cement, aggregates, and fibers were first dry-mixed for about 3 min and then wet-
mixed with water for another 3 min. RAs were pre-wetted to reach the saturated surface dry
status to avoid the reduction of free water available for cement hydration. The initial slump
value was controlled at 160–180 mm by adding various dosages of water reducers, with the
specific mix. proportion exhibited in Table 4. Fresh samples were poured into 100 mm cubic
steel molds to generate the initial strength, whilst the hardened specimens were transferred to
the standard curing chamber (temp. c.a. 25 ◦C, RH > 95%) and cured for 28 days.

Table 4. Mix. proportion of samples.

Notation
RA Content BF Dosage Cement RCBP Water Sands NA RA Water Reducer BF

wt.% wt.% (kg/m3) (kg/m3) (kg/m3) (kg/m3) (kg/m3) (kg/m3) (kg/m3) (kg/m3)

1 (Control) 0 0 347.2 86.8 210 708 1061 0 1.77 0.0
2 20 0 347.2 86.8 210 708 849 212 1.77 0.0
3 30 0 347.2 86.8 210 708 743 318 1.79 0.0
4 40 0 347.2 86.8 210 708 637 424 1.81 0.0
5 50 0 347.2 86.8 210 708 531 531 1.82 0.0
6 60 0 347.2 86.8 210 708 424 637 1.83 0.0
7 80 0 347.2 86.8 210 708 212 849 1.86 0.0
8 100 0 347.2 86.8 210 708 0 1061 2.00 0.0
9 0 0.1 347.2 86.8 210 708 1061 0 1.79 0.4
10 20 0.1 347.2 86.8 210 708 849 212 1.88 0.4
11 30 0.1 347.2 86.8 210 708 743 318 1.91 0.4
12 40 0.1 347.2 86.8 210 708 637 424 1.92 0.4
13 50 0.1 347.2 86.8 210 708 531 531 1.94 0.4
14 60 0.1 347.2 86.8 210 708 424 637 2.02 0.4
15 80 0.1 347.2 86.8 210 708 212 849 2.03 0.4
16 100 0.1 347.2 86.8 210 708 0 1061 2.24 0.4
17 0 0.3 347.2 86.8 210 708 1061 0 2.02 1.3
18 20 0.3 347.2 86.8 210 708 849 212 2.02 1.3
19 30 0.3 347.2 86.8 210 708 743 318 2.15 1.3
20 40 0.3 347.2 86.8 210 708 637 424 2.15 1.3
21 50 0.3 347.2 86.8 210 708 531 531 2.16 1.3
22 60 0.3 347.2 86.8 210 708 424 637 2.21 1.3
23 80 0.3 347.2 86.8 210 708 212 849 2.27 1.3
24 100 0.3 347.2 86.8 210 708 0 1061 2.37 1.3
25 0 0.5 347.2 86.8 210 708 1061 0 2.05 2.2
26 20 0.5 347.2 86.8 210 708 849 212 2.21 2.2
27 30 0.5 347.2 86.8 210 708 743 318 2.24 2.2
28 40 0.5 347.2 86.8 210 708 637 424 2.25 2.2
29 50 0.5 347.2 86.8 210 708 531 531 2.29 2.2
30 60 0.5 347.2 86.8 210 708 424 637 2.31 2.2
31 80 0.5 347.2 86.8 210 708 212 849 2.41 2.2
32 100 0.5 347.2 86.8 210 708 0 1061 2.46 2.2

2.3. Testing and Modeling

The compressive strength and the splitting tensile strength of basalt fiber-reinforced
recycled aggregate concrete were determined by a universal machine (HYE-300), and the
load rates were set as 0.1 MP/s and 0.01 MP/s, respectively. The mathematical model
was established based on Taylor’s formula, which hypothesizes that all functions can be
approximated by polynomials with various orders.

3. Results and Discussion
3.1. Compressive Strength

Figure 2 illustrates the experimental and modeled results of the compressive strength
of concrete with various recycled aggregate contents and basalt fiber dosages. The circles in
Figure 2a indicate the experimental results, while the surface trend is modeled by a cubic
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polynomial incorporating two variables, namely the content of recycled aggregate and the
dosage of basalt fiber. The cubic polynomial is shown in the following equation.

fc = b21 + b22*X + b23*Y + b24*X.*Y + b25*X.ˆ2 + b26*Y.ˆ2 + b27*Y.*X.ˆ2 + b28*X.*Y.ˆ2 + b29*X.ˆ3 + b210*Y.ˆ3 (1)

where X indicates the matrix of recycled aggregate, and Y indicates the matrix of basalt fiber.
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Figure 2. Compressive strength of basalt fiber-reinforced recycled concrete.

The matrix of parameters accommodating b2i (i = 1–10) is shown in Table 5.

Table 5. Parameter matrix of the fitted cubic polynomial of the compressive strength.

b21 b22 b23 b24 b25 b26 b27 b28 b29 b210

37.19 −0.21 33.94 −0.01 0.00 −36.46 0.00 0.30 0.00 1.60

Figure 2 map the absolute value of deviations between the experimental results and
fitted results. The depth of color is directly proportional to the absolute value of deviation.
It is observed that the majority of the deviation is less than 5%, indicating the good fitting
performance of the cubic model.

As shown in Figures 2 and 3, the compressive strength of ordinary concrete with 0.1%
basalt fiber is lower than that of concrete without fiber. However, with the increase in the
basalt fiber dosage, its compressive strength increases, and when the basalt fiber dosage
reaches 0.3%, the compressive strength exceeds that of the unadulterated fiber concrete by
5.8%. Thus, it can be seen that a larger amount of basalt fibers for an ordinary concrete
enhancement effect is more obvious. For concrete specimens with the same replacement
rate of recycled coarse aggregate, the compressive strength decreased with the increase in
basalt fibers at 0.1% and 0.3% of basalt fiber dosage but showed a stable increase with the
increase in the recycled coarse aggregate replacement rate at the same fiber dosage, and the
increasing trend was obvious at 0.1% of fiber dosage. However, for the 0.5% fiber dosage,
the compressive strength of specimens fluctuated greatly, first showing a decline, then a
rise, and then a decline, and in the recycled coarse aggregate substitution rate of 40%, the
compressive strength reached the maximum, and even more than 10% of the compressive
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strength of ordinary concrete. With the fiber doping at 0.3% and the 40% replacement rate
of recycled coarse aggregate, the concrete reached the maximum compressive strength.
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Figure 3. Compressive strength: (a) 3D trend surface of compressive strength, (b) contour map of com-
pressive strength, (c) 3D distribution of absolute deviation, and (d) contour map of absolute deviation.

First, basalt fiber has a larger specific surface area and a higher friction coefficient [15],
increasing the relative friction of the concrete mix and increasing the bond between the fiber
and the cement matrix. Second, the density of basalt fibers and the density of concrete are
very similar to that of the concrete, resulting in better compatibility with the concrete [47].
Thirdly, basalt fibers can increase the water retention of concrete, and it was pointed out
that basalt fibers can effectively prevent the segregation of concrete so that the cohesion
and water retention of concrete is improved. However, since basalt concrete specimens
are mainly stressed by coarse aggregates, and basalt fibers absorb a large amount of
water during mixing, the recycled concrete at a larger replacement rate cannot be fully
hydrated, resulting in a reduction in strength [48]. Therefore, 0.3% basalt fibers had the
most significant effect on the compressive strength of concrete specimens with a 40%
replacement of recycled coarse aggregate.

3.2. Splitting Tensile Strength

Figures 4 and 5 illustrate the profile of the splitting tensile strength, and they are
depicted by the quadratic and the cubic mathematical model, respectively. It is noted that
the cubic model has a higher fitting accuracy in comparison to the quadratic model, with
visual differences being present between Figures 3d and 4d.
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Figure 5. Splitting tensile strength with cubic function: (a) 3D trend surface of splitting tensile
strength, (b) contour map of splitting tensile strength, (c) 3D distribution of absolute deviation, and
(d) contour map of absolute deviation.

The quadratic polynomial is shown in the following equation:

ft = b11 + b12*X + b13*Y + b14*X.*Y + b15*X.ˆ2 + b16*Y.ˆ2 (2)
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where X indicates the matrix of recycled aggregate, and Y indicates the matrix of basalt fiber.
The matrix of parameters accommodating b1i (i = 1–6) is shown in Table 6.

Table 6. Parameter matrix of the fitted quadratic polynomial of the splitting tensile strength.

b11 b12 b13 b14 b15 b16

2.84 −0.01 0.15 0.01 0.00 −0.03

The cubic polynomial is shown in the following equation:

Ft = b21 + b22*X + b23*Y + b24*X.*Y + b25*X.ˆ2 + b26*Y.ˆ2 + b27*Y.*X.ˆ2 + b28*X.*Y.ˆ2 + b29*X.ˆ3 + b210*Y.ˆ3 (3)

where X indicates the matrix of recycled aggregate, and Y indicates the matrix of basalt fiber.
The matrix of parameters accommodating b2i (i = 1–10) is shown in Table 7.

Table 7. Parameter matrix of the fitted cubic polynomial of the splitting tensile strength.

b21 b22 b23 b24 b25 b26 b27 b28 b29 b210

2.71 −0.01 1.16 −0.01 0.00 −3.91 0.00 −0.01 0.00 5.75

As shown in Figures 5 and 6, for ordinary concrete, the splitting tensile strength shows
an increasing trend with the increase in the basalt fiber dosage. For recycled concrete, when
the replacement rate of recycled aggregate is less than 70%, the splitting tensile strength
shows a trend of increasing, then decreasing, and then increasing with the increase in
the basalt fiber dosage. Firstly, at small dosages, this trend is mainly due to the basalt
fibers increasing the adhesion of the concrete, thus causing the tensile strength increase;
secondly, at large dosages, this trend is mainly due to the tensile capacity of the basalt
fibers themselves [48]. When the replacement rate of recycled aggregate is greater than
70%, with the increase in the number of basalt fibers, the strength first increases and then
decreases, but it still is greater than the strength of the unadulterated fiber. This is due
to the hydrophilic nature of basalt fibers, as it reduces the amount of water required for
cement hydration. It can be seen that the fluctuation in the split tensile strength of recycled
concrete with 0.1% fiber dosage tends to flatten out compared to that of recycled concrete
without fiber dosage, and it can also be seen that basalt fibers have a very obvious effect on
the enhancement of the split tensile strength of concrete with a large replacement rate of
recycled aggregates.

Figure 7 shows the reinforcement mechanism of basalt fiber upon the recycled aggre-
gate concrete. The bridging and inhibiting effect of basalt fibers on recycled concrete is
divided into three stages [49]. In the first stage, basalt fiber-reinforced recycled concrete
formed several tiny cracks and micropores in the curing stage. In the second stage, basalt
fibers were randomly distributed in the recycled concrete matrix, showing cross-alignment.
The basalt-fiber–cementitious matrix formed a fiber–substrate interface, which limited the
development and expansion of the internal microcracks. When the recycled concrete was
stressed to the first crack, the basalt fibers bore part of the transverse tensile force, slowing
down the stress concentration inside the specimen and effectively preventing the expansion
and occurrence of cracks. In this scenario, basalt fiber-reinforced recycled concrete showed
good toughness. In the third stage, the specimen was completely crushed, and penetration
cracks were formed.
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4. Conclusions

This work provides a feasible approach to strengthening recycled aggregate concrete.
The basalt fiber as an environmentally friendly fiber in a small dosage effectively lifts
the strength of concrete prepared with recycled aggregates. Through the study of basalt
fiber-reinforced recycled concrete, the following conclusions can be drawn.

Basalt fibers reduce the fluidity of recycled concrete, increase the friction between
the cement matrix, and have a certain enhancement and toughening effect on the cubic
compressive strength of recycled concrete and the splitting tensile strength.

Regarding the same fiber admixture, the increase in the replacement rate of recycled
coarse aggregate shows a more stable upward trend. Under the same fiber dosage, the
increase in the replacement rate of recycled coarse aggregate results in a stable upward
trend. The fiber in a dosage of 0.5% makes the compressive strength of concrete prepared
with 100% recycled aggregates comparable to that of natural aggregate concrete, whilst
achieving a c.a. 90% splitting tensile strength.
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For the splitting tensile strength, the fluctuation of the splitting tensile strength of recycled
concrete at a 0.1% fiber dosage tends to flatten out, and basalt fibers enhance the splitting
tensile strength of concrete with a larger recycled aggregate substitution rate obviously.
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