
Citation: Eiras, J.N.; Duplan, F.;

Payan, C. Experimental Investigation

on the Compressive Stress-Sensing

Ability of Steel Fiber-Reinforced

Cement-Based Composites under

Varying Temperature Conditions.

Constr. Mater. 2022, 2, 258–275.

https://doi.org/10.3390/

constrmater2040017

Received: 28 August 2022

Accepted: 19 October 2022

Published: 27 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Experimental Investigation on the Compressive Stress-Sensing
Ability of Steel Fiber-Reinforced Cement-Based Composites
under Varying Temperature Conditions
Jesús N. Eiras 1,*, François Duplan 2 and Cédric Payan 1

1 Aix Marseille Univ, Centrale Marseille, CNRS, LMA, 13453 Marseille, France
2 Aix Marseille Univ, CNRS, IUSTI, 13453 Marseille, France
* Correspondence: jesus.eiras_fernandez@onera.fr

Abstract: This study investigates the piezoresistive (self-sensing) properties of short stainless-steel
fiber-reinforced mortar under varying temperature conditions. Different reinforced mortars were
produced by varying fiber and aggregate content. First, Electrical Impedance Spectroscopy (EIS)
measurements were used to characterize the electrical properties of the mortar specimens. EIS
measurements were performed at temperatures of 24 ◦C, 35 ◦C, and 50 ◦C. Second, to investigate
the self-sensing capacity of the different composites, the fractional changes of electrical impedance
at 1 kHz were monitored under two conditions: temperature variation alone (cooling down from
35 ◦C or 50 ◦C to room temperature), and temperature variation combined with cyclic compressive
loading (up to 5 MPa). The results of the former were used to compensate for the effect of temperature
variations in the latter. Both temperature and mechanical loading produced meaningful variations in
the electrical impedance and piezoresistivity of the investigated composites. Conclusions are drawn
with respect to the stress and temperature sensitivity of the composites. The real and imaginary parts
of the electrical impedance of the mortar produced with the highest fiber volume fraction (0.01%)
and higher aggregate content (volume fraction of 60%) were distinctly sensitive to temperature and
stress, which suggests the possibility of using the same composite as a stress and temperature sensor.

Keywords: self-sensing; cement-based composite; piezoresistive sensor; steel fibers; Electrical
Impedance Spectroscopy; temperature compensation

1. Introduction

The adequate incorporation of electrically conductive admixtures into cement-based
materials results in an enhancement of the electrical conducting properties and makes it
possible to use the resulting composite as a piezoresistive sensor [1–7]. The piezoresistive
properties of composites are enhanced at admixture volume fractions near the percolation
threshold, wherein small changes in mechanical strain produce large changes in the re-
sistivity of the material. The mechanisms enabling the piezoresistivity are attributed to
the varying electrical contact resistance between the single admixture units and the matrix
upon the application of mechanical stimuli [5]. The development of piezoresistive cementi-
tious composites has garnered much attention in the scientific communities working on
Structural Health Monitoring (SHM) of civil engineering structures. The main advantages
of cement-based sensors when compared to current off-the-shelf sensor technologies in-
clude their reduced cost, their double function as a sensor and load-bearing material, the
possibility of a large sensing coverage, and their durability, which is comparable to that of
the hosting structure [8]. Potential SHM applications span from damage detection and local-
ization [9–17], traffic monitoring [18,19], to structural system identification [11,16,20–24].

Today, a myriad of electrically conductive fillers has already been investigated includ-
ing carbon black, carbon nanotubes, carbon fibers, steel fibers, and nickel powders among
the most popular [13,25–32]. The combination of different admixtures may also display
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a synergetic behavior [3,33–37]. The selection of the cement-based sensor constituents
(including the form and nature of the electrically conductive admixture) must be moti-
vated by factors including the resulting self-sensing capability, the ease of manufacturing,
the durability performance, and the cost (among many others). In the particular case
of using short fibers, some well-known benefits are obtained, such as superior mechan-
ical properties (e.g., fracture toughness and bending strength) and improved long-term
durability [3,8,38–41]. Despite the wealth of research studies conducted over the last three
decades, today cement-based sensor technology has not achieved full market penetration.
One of the main hindrances that limit the practical implementation of cement-based sensors
is the understanding of their performance under varying environmental conditions [6].
Several studies have examined the variation of the electrical conduction of cement-based
sensors upon varying temperature conditions [42–47]. Overall, the resistivity of the compos-
ites decreases with increasing temperature and such dependence appears to be mitigated
as the volume fraction of filler increases. Since cement-based sensors are typically sensitive
to mechanical stress and temperature, it becomes necessary to characterize their piezoresis-
tive behavior at different temperatures as well as to provide a means for untangling both
contributions in the sensor response.

This study investigates the piezoresistive properties of cement-based sensors under
varying temperature conditions through AC measurements. Temperature variations were
balanced out of the mechanical measurements by characterizing beforehand the response
of the sensor to the sole action of temperature variations. The approach is demonstrated
on cement-based sensors produced with micron-sized diameter stainless-steel fibers, even
though it can reasonably be extensible to the more profusely investigated carbon-based
admixtures. Different fiber and aggregate contents were considered to obtain mortars with
very different electrical properties. First, Electrical Impedance Spectroscopy (EIS) measure-
ments were used to characterize the electrical properties of the mortar specimens. These
were performed at different (static) temperatures 24 ◦C, 35 ◦C, and 50 ◦C. Most of the previ-
ous studies have mainly focused on resistivity measurements conducted at a sole frequency
or using DC. Electrical Impedance Spectroscopy (EIS) provides a more complete picture of
the electrical makeup of the composite and is widely used to characterize cement-based
materials [48–51] and electrically conductive cement-based composites [52–57]. Second,
the variations of the electrical impedance were monitored under two conditions: tempera-
ture variation alone and temperature variation combined with cyclic compressive loading.
Finally, conclusions are drawn considering the electrical sensitivity of the cement-based
sensors to temperature variations and mechanical compressive stress.

2. Experimental Details
2.1. Materials

Different prismatic mortar samples (4 × 4 × 16 cm) were produced by varying ag-
gregate and stainless-steel fiber volume fractions; three samples per type of mortar were
produced. The cement type was CEM I 52.5R according to EN 197-1 [58]. The aggregate
was siliceous with a maximum sieve size of 2 mm. Two aggregate volume fractions were
used: 60% (denoted as “A”) and 40% (denoted as “B”). Stainless-steel fibers Beki-Shield®

GR90/C02/6 were used as the conductive phase. These fibers measure 6 mm in length
and 8 µm in diameter and were bundled in a water-soluble polymeric binder. Different
fiber volume fractions were investigated: 0% (plain mortar), 0.05%, and 0.10%, which were
designated to provide a variety of electrically conductive behavior thanks to allowing
various degrees of percolation of the conductive fibers within the mortar matrix.

Table 1 summarizes the mortar designations and mixture proportions. The water-
to-cement ratio (w/c) was set to 0.40 for all the mixes. In every mix, different amounts
of superplasticizer (Glenium ACE 550) were used to achieve a plastic consistency in the
fresh state. The necessary amounts of superplasticizer were ascertained beforehand on
trial batches.
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Table 1. Mortar designations and mixture proportions.

Mortar W/C Aggregate Volume
Fraction

Fiber Volume
Fraction

REF A

0.40

0.6

-

AS005 0.05%

AS01 0.10%

REF B

0.4

-

BS005 0.05%

BS01 0.10%

The mixes were prepared in a standard 5 L planetary mixer compliant with EN
196-1 [59]. First, cement, sand, and fibers were dry mixed for 1 min. Then, water and
superplasticizer were poured and mixed at low speed for 1 min. Subsequently, the mixer
was stopped for 90 s while the mix was stirred by hand and the bowl was scrapped. Then,
the mixing was continued for 1 min. The samples were removed from molds after 24 h,
and moist cured at 20 ◦C for 28 days. Then, the samples were oven-dried at 50 ◦C for three
days before testing. This initial heat treatment sought to minimize the effects of varying
moisture during the experimental campaign. Subsequent temperature preconditioning of
the samples before electrical impedance and piezoresistive measurements further helped to
reduce moisture content. The mass of the samples was recurrently verified with a centigram
precision scale to confirm that meaningful variations of mass were not produced during
the experimental campaign.

2.2. Electrical Properties Characterization and Testing Configuration

All the electrical measurements were performed on a two-electrode testing configu-
ration. Two copper plates that matched the square sections of the sample were used as
electrodes. The squared surfaces of the samples (40 × 40 mm2) were slightly polished with
sandpaper and painted with a nickel powder-based coating. Once the applied coating
was touch-dry (after ~5 min), two copper foil tape sheets were affixed onto these surfaces.
The objective of such sample preparation is to enhance the electrical contact between the
electrodes and the specimens. Electrical Impedance Spectroscopy (EIS) measurements were
performed with an LCR-meter (Hioki, model IM 3570, and a four-terminal probe model
L2000). The apparatus measures the electrical impedance within the frequency range of
4 Hz to 5 MHz. The electrical probes were clamped to the sample as shown in the schematic
representation of the EIS testing configuration in Figure 1. The mortar samples were ini-
tially dried until reaching constant mass at 50 ◦C and then preconditioned and tested at
the following temperatures: 24 ◦C (room temperature); 35 ◦C and 50 ◦C. The samples were
briefly retired from the oven (one at a time) for performing the EIS measurements and then
reintroduced to the oven (for 24 h) for reconditioning them to a different temperature.
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Figure 2a shows a Nyquist representation of the electrical impedance spectrum sum-
marizing common features observed in cement-based materials incorporating electrically
conductive short fibers [52,53,56,60,61]. At the lowest frequency range (commonly within
the 10−2–10−3 Hz range) a first branch may eventually be generated because of the elec-
trodes. Then, with increasing AC frequency several arcs are developed. For the first arc, the
cementitious matrix controls the transfer of charge through the material and the generation
of a second arc is a characteristic feature of cement-based materials incorporating electrically
conductive fibers below the percolation threshold. The latter is often dubbed “dual-arc”
(or dual-cusp) behavior [52,53]. The cusp values formed between these arcs correspond to
the matrix and composite resistance (see Figure 2a). Therefore, the frequency range used
herein (4 Hz to 5 MHz) allowed for ascertaining the second cusp (or composite resistance),
whereas the eventual generation of the spurious electrode arc and the development of the
first cusp (matrix resistance) were not observed.
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Figure 2. (a) Conceptual Nyquist representation of typical EIS data of cement-based composites
incorporating electrically conductive short fibers and (b) equivalent circuit.

The EIS results were modeled by an equivalent circuit capable of describing the
variations of the electrical impedance within the investigated frequency range. In practice,
it is possible to find more than one equivalent circuit that fits a given EIS data. Very different
circuits were previously proposed to describe the EIS data of electrically conductive cement-
based composites [53]. Herein, the equivalent circuit model shown in Figure 2b was used
to fit the EIS data. A similar equivalent circuit was satisfactorily used to model EIS data
of cement paste and mortar [62] and steel fiber-reinforced cementitious composites [56].
It consists of an N series of circuits (herein N = 2) composed of a resistor in parallel to a
constant phase element (or Cole element). It reads as

Z(ω) =
n=N

∑
n=1

Rn

Rn·Tn·(i·ω)Pn + 1
(1)

wherein Rn, Tn, and Pn are the parameters of the resistance and the constant phase element
parameters of the nth RC circuit. The parameter Pn takes on a value of 1 for a perfect
capacitor; values lower than 1 enable the representation of depressed semicircles in the
Nyquist plot which are commonly observed in cement composites incorporating electrically
conductive fibers. The equivalent circuit model was fitted to all reinforced mortars and
then used to obtain a reliable estimation of the second cusp value (the composite resistance,
Rcomposite) at different temperatures.
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2.3. Stress-Sensing Capacity

To investigate the stress-sensing capacity of the composites, the variations of elec-
trical impedance at 1 kHz were monitored under varying compressive loading at room
temperature (24 ◦C). The compression load was applied to the concrete samples with a
servo-controlled compression testing machine (model 3R) while the changes of electrical
impedance at 1 kHz were monitored with the LCR-meter Hioki, model IM 3570, and a
four-terminal probe model L2000. Figure 3a,b show the compressive test configuration and
the loading procedure. Two thin square plates (40 × 40 × 3 mm3) made of polymethyl
methacrylate avoided any possible leakage of current within the compression testing rig.
The load was perpendicularly applied onto the square surfaces (4 × 4 cm2). The loading
procedure (shown in Figure 3b) consisted of a preload of 1kN and two loading/unloading
cycles, at a loading rate of 0.1 MPa·s−1 and an amplitude of 5 MPa. The load was main-
tained for 12 s in between the loading and unloading phases. Overall, the test lasted
230 s. The electrical impedance measurements started after the preload of 1 kN and were
monitored at a sampling rate of 1 Hz. Comparable loading and monitoring protocols can
be found elsewhere [6]. There is, however, no consensus in the existing literature on what
concerns the number of cycles, loading amplitude, or loading rate. Herein, two cycles (two
loading and two unloading phases) were considered adequate to evaluate the piezoresistive
behavior of the samples. The gentle loading rate and maximum amplitude of the loading
protocol (well below the expected ultimate compressive strength of mortars produced with
CEM I 52.R) are meant to not produce significant damage to the samples.
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Figure 3. (a) General overview of the testing configuration for evaluating the stress-sensing ability of
the composites, and (b) compression loading procedure.

The response of the cement-based sensors is commonly idealized as a linear function
of the stress (or strain). Herein, the real (Z′) and imaginary (Z′′) parts of the electrical
impedance at 1 kHz were used to obtain the figures of merit

f ′ =
(Z′ − Z′o)/Z′o

σ
(2)

f ′′ =
(
Z′′ − Z′′o

)
/Z′′o

σ
(3)

wherein the subscript “o” denotes the values obtained at a reference unloaded condition and
σ is the compressive strength (considered to be negative). Moreover, the cosine similarity
was used is used to quantify the linear resemblance between the impedance (Z) and load
(L) during the loading test as

R′ =
Z′·L

‖Z′‖·‖L‖ (4)
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R′′ =
Z′′ ·L

‖Z′′ ‖·‖L‖ (5)

The values of R are equal to 1 or −1 for a perfect resemblance and 0 otherwise.
To investigate the effect of varying sample temperature on the stress-sensing capacity,
the stress-sensing experiment was repeated during the natural cooling-down of the sam-
ples, which were beforehand preconditioned at 50 ◦C and 35 ◦C. The measured electrical
impedance (ZM) is expected to depend on load (∆L) and temperature (∆T) variations as

Z(∆L, ∆T) = Zo + kL·∆L + kT ·∆T + error (6)

wherein the Zo corresponds to the electrical impedance at the reference temperature and
unloaded condition, and the coefficients kL and kT express the change of impedance per
unit of load (subscript L) and temperature (subscript T)—higher-order dependencies were
not considered. Previous studies that investigated the piezoresistive behavior of cement-
based sensors under simultaneous loading and temperature variations [46,47] used a
compensation circuit to balance out the contribution of the temperature out of the electrical
measurements. Herein, to untangle load and temperature effects in the measured electrical
impedance, an additional set of measurements was conducted under the sole influence
of temperature variations. To do so, the samples were again preconditioned at the same
target temperatures (35 ◦C and 50 ◦C), mounted on the compression testing rig without
application of compressive loading, and left to cool down while monitoring the electrical
impedance variations. The test duration was evenly set to ~230 s (akin to the duration of
the loading procedure). The objective of this step is to obtain the variations of electrical
impedance (Z) produced during the cooling down of the samples, which were found to be
well described by a linear relationship as

ZT = Zi + b·t (7)

wherein Zi is the average electrical impedance at the beginning of the cool down (t = 0),
and b expresses the rate of change of electrical impedance because of varying sample
temperatures. Thereby, the effect of varying temperature on the electrical impedance
during the loading experiment can be compensated out of the measured impedance (ZM) as

ZL = ZM − ZT (8)

The same test procedure was conducted at room temperature and repeated for the
samples conditioned at 35 ◦C and 50 ◦C. The compensated impedance results (ZL) were
then used to evaluate the stress-sensing factors f ′, f ′′ and the similarity parameters R′ and
R′′. Temperature measurements were performed on selected samples using a temperature
data logger (Testo 176 T4) and type K thermocouples to check the sample temperature
during the cooling-down. It should be noted that a temperature gradient naturally develops
as the samples cool down, therefore different results would be expected for different sample
dimensions. In any event, the evaluation of the rate of change of electrical impedance
because of varying temperature (b) is instrumental to untangling coupled loading and
temperature effects from ZM.

3. Results and Discussion
3.1. Electrical Impedance Spectroscopy Characterization

Figure 4a–f show the resistance and reactance plots for different mortars at different
temperatures; one representative sample per type of mortar is shown. The values of
resistance in plain mortars were in the order of 105–106 Ω (Figure 4a,b). These values
are in good agreement with previous reported EIS data for plain mortars [63–66]. The
incorporation of steel fibers into the mortar matrix led to a remarkable enhancement of
electrical conduction. The resistance values found for mortars bearing steel fibers decreased
to 101–102 Ω (Figure 4c–f). Interestingly, contrariwise to the rest of the reinforced mortars,
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the electrical resistance of the mortar AS01 remained virtually constant between 4 Hz and
~1 MHz and exhibited a remarkable increase in the electrical resistance at higher frequencies
(>1 MHz). The extraordinary results obtained for the AS01 suggest the generation of a skin
effect for which the extent of current penetration into the material decreases with increasing
AC frequency, hence, leading to an apparent increase in resistance. This effect was also
reported in electrically conductive composites in other studies [67,68] for the highest filler
volume fractions investigated therein.
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Figure 5a–d show the corresponding Nyquist plots for the reinforced mortars. The
results confirmed that the single material arc typically observed for plain mortars coa-
lesced into the formation of several arcs, which is a common feature of electrically con-
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ductive reinforced cement-based composites [52,60]. The formation of an oxide layer at
the fiber–matrix interface of steel fibers is considered to be responsible for the dual-cusp
behavior [52,53,60,61,69]. This contention is also reasonable for stainless-steel fibers con-
sidering the high pH environment expected for Portland cement mortar (pH~13). The
high-impedance oxide layer acts as an insulator at low AC frequencies and as a conductor
at higher ones, leading to the formation of several arcs [61]. The AC frequencies below
which this transition occurs (indicated by the cusp value, Rcomposite) are commonly found
below ~1 kHz [61,70].
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Table 2 summarizes the equivalent circuit parameter results and the resulting AC
frequency and composite resistance (Rcomposite) pair obtained for every sample and at
different temperatures. The equivalent circuit results further substantiated that the electrical
response considerably varied among the different composites. For identical fiber volume
fractions, the resistance values of the mortar series A (with higher aggregate content)
were consistently lower than mortar series B. Moreover, the mortars series B considerably
exhibited larger material arcs than series A and the cusp value (Rcomposite) was consistently
formed at higher AC frequencies. This result juxtaposes previous studies, which concluded
that the incorporation of aggregate impairs electrical conduction [42,71]. When electrically
conductive phases are incorporated into the composite, the transfer of charge is primarily
governed by the conductive phases and the aggregate is rather acting as an insulating phase.
However, in other instances, the incorporation of aggregates resulted in an improvement in
the electrical conduction of cement-based sensors [72]. According to the results of previous
studies [42,71,72], possible factors leading to such discrepancies could be attributed to the
aggregate nature, sieve size distribution, or even the eventual use of adjuvants [65,66],
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which may ultimately affect the resulting pore texture and so either enhance or impair
the electrical conduction. Similar variations of electrical impedance spectra of carbon
and steel fiber-reinforced cement-based materials were also ascribed to fiber dispersion,
geometry (aspect ratio), fiber orientation, or volume fraction [55,61]. Herein, the precise
causes leading to such differing results on the EIS data among the different mortars are not
fully understood and deserve further study.

Table 2. Equivalent circuit fitting results and cusp values.

Sample T, ◦C

Equivalent Circuit Parameters Cusp Values

R1,
Ohm

T1,
SP1 Ohm−1

(×10−4)
P1 R2,

Ohm

T2,
SP2 Ohm−1

(×10−8)
P2 Rcomposite, Ohm Frequency, Hz

AS005

1

24

5.8 6.6 0.70 76.04 1.6 0.67 76.0 81.8

2 3.8 10.0 0.70 57.32 1.8 0.68 57.3 61.1

3 5.3 7.39 0.70 75.75 1.5 0.67 75.7 81.1

1

35

10.6 2.27 0.71 71.92 3.3 0.63 71.9 82.5

2 7.1 3.3 0.71 54.19 3.6 0.64 54.2 61.3

3 9.4 2.6 0.71 71.43 2.9 0.63 71.4 80.8

1

50

12.3 1.7 0.72 68.52 7.3 0.58 68.5 80.8

2 8.4 2.5 0.71 52.37 7.8 0.59 52.4 60.8

3 11.4 1.9 0.71 69.07 6.1 0.59 69.1 80.5

AS01
(*)

1

24

0.2 190.3 0.67 10.82 0.3 0.89 10.8 11.0

2 0.3 87.7 0.69 14.67 0.9 0.79 14.7 15.0

3 0.5 60.5 0.69 16.99 1.8 0.75 17.0 17.5

1

35

0.4 47.8 0.70 10.72 0.7 0.84 10.7 11.1

2 0.7 23.0 0.71 14.47 3.2 0.71 14.5 15.2

3 0.9 16.1 0.72 16.63 10 0.63 16.6 17.5

1

50

0.4 32.7 0.71 10.58 5.1 0.68 10.6 11.0

2 0.8 16.0 0.73 14.24 27 0.56 14.2 15.0

3 1.1 12.1 0.72 16.30 62 0.50 16.3 17.4

BS005

1

24

18114 0.1 0.61 2801 4.0 0.57 2801 20,915

2 8545 0.1 0.58 4052 0.7 0.65 4052 12,597

3 4100 0.1 0.56 2402 0.6 0.68 2402 6502

1

35

12503 0.1 0.59 1576 1.4 0.64 1576 14,079

2 10096 0.1 0.58 2577 0.6 0.69 2577 12,673

3 4509 0.1 0.53 1681 0.4 0.72 1681 6190

1

50

10168 0.1 0.58 1295 1.2 0.66 1295 11,463

2 6835 0.1 0.58 1868 0.6 0.68 1868 8703

3 4509 0.1 0.53 1681 0.3 0.72 1681 6190

BS01

1

24

90.1 1.2 0.62 168.2 3.9 0.67 168.2 258.3

2 357.1 0.6 0.60 324.4 2.2 0.69 324.4 681.5

3 174.9 0.8 0.62 250.6 2.5 0.68 250.6 425.5

1

35

135.6 0.7 0.62 135.5 5.3 0.65 135.5 271.1

2 449.1 0.5 0.60 235.5 2.3 0.69 235.5 684.6

3 265.0 0.4 0.61 206.2 3.0 0.68 206.2 471.2

1

50

123.5 0.7 0.62 114.8 5.9 0.65 114.8 238.3

2 397.7 0.4 0.60 195 2.6 0.69 195.0 592.7

3 221.0 0.5 0.61 167.2 3.4 0.67 167.2 388.2

* Equivalent circuit parameters of AS01 samples were obtained for frequencies below 1 MHz.

In any event, regardless of the mortar composition, the AC frequency at which the
cusp value was formed consistently decreased with the value of composite resistance. More-
over, the electrical conduction was enhanced and so the cusp values (composite resistance)
decreased and were consistently produced at higher AC frequencies. Figure 6 shows the
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relationship between composite resistance and AC frequency for mortars AS01, AS005, and
BS01. These results are in good agreement with existing literature which also reported the
formation of the composite cusp at frequencies below 1 kHz [52], [53]. The cusp values of
mortar BS005 were far more scattered (see Table 2), which was also a sign of their inferior
percolation. The electrical properties of the plain mortars exhibited a strong dependence on
the sample temperature over the entire frequency range [73,74]. In contrast, the reinforced
mortars exhibited moderated variations of the electrical properties with varying sample
temperatures and the extent of such variations decreased as the electrical conduction was
enhanced by the incorporation of metallic fibers. These results are also in good agree-
ment with previous studies, which reported an enhancement of the electrical conduction
with increasing sample temperature, and likewise, the composites with worse electrical
conduction exhibited more prominent dependences on sample temperature [43,44,70].
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3.2. Stress-Sensing Capacity and Influence of Varying Sample Temperature

Figure 7a,b show the variations of resistance (Z′) and reactance (Z′′) as a function
of load obtained at room temperature (one representative sample per type of composite).
The results show that plain mortars (REF-A and REF-B) were practically insensitive to the
compressive loading since the variations of either electrical property were poorly correlated
to the carrying load and, in general, the results were remarkably scattered. Interestingly,
the reactance values of the mortar REF-B (with less aggregate content) exhibited better
sensitivity to load than the REF-A. Indeed, this side result is the effect of the capacitance-
based sensitivity of cement paste [75] and the incorporation of aggregate appears to inhibit
such a sensing method. Still, inferring the carrying load from electrical measurements
seems not feasible for plain mortars. Moreover, later it is shown that the electrical properties
of plain mortars (REF-A and REF-B) exhibit a strong dependence on sample temperature.
In contrast, the mortars incorporating stainless-steel fibers exhibited less scattered data
and, in general, enhanced sensitivity to stress. Increasing compressive load resulted in
a linear decrease in electrical resistance and reactance. The mechanisms leading to the
piezoresistive behavior in electrically conductive cement-based composites are attributed
to the variation of the contact resistance and distance between the dispersed conductive
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phase [5,76]. A decrease in the distance between fibers upon longitudinal compressive
strain deformation is expected to improve the transmission of electrical current between
adjacent fibers and may thus result in a reduction of the magnitude of the impedance of
the mortar sample. Overall, the results show that higher correlations were obtained for the
samples that exhibited enhanced conductive properties. The best results were obtained
for the mortar AS01, whose variations of electrical resistance seemingly retraced the load
data. All three samples consistently exhibited similar behavior. This was less blatant for
the reactance, which was not sensitive to the load. The results also showed better linearity
for percolated mortars.
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Figure 7. (a) Relative variation of the resistance (real part, Z′) and (b) relative variation of the reactance
(imaginary part, Z′′) with compressive loading for representative mortars at room temperature.

Figure 8a shows typical variations of resistance and reactance at 1 kHz obtained for
one mortar sample AS005 preconditioned at 50 ◦C as it cooled down at room temperature.
Figure 8b shows the corresponding temperature measurements for the same sample as per
measured by the thermocouples affixed to the sample surface. The results show that the
resistance and reactance values linearly increased as the temperature linearly decreased.
Similar trends were found for the rest of the mortars. For reference, we did not find
meaningful differences between the cooling rates measured through thermocouples in
different mortars (on average~−0.012 ◦C·s−1). Overall, the results shown in Figure 8a,b
underpin the use of Equations (7) and (8) to compensate for the influence of the temperature
on the electrical impedance temperature variations.

Table 3 summarizes the obtained values of b′ and b” (measured in Ohm/s) for every
mortar sample. The resistance and reactance varied at very different rates (b′ and b”) during
the cooling down. Again, the results suggest that higher variations of electrical resistance
and reactance upon varying sample temperatures were produced for plain mortars and,
in general, the mortars with better electrical conduction properties exhibited a reduced
dependence on temperature variations. Of special interest are the results obtained for the
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mortar AS01, for which only the reactance values exhibited meaningful variations during
the cool-down. Therefore, the estimation of the parameters b′ and b” are instrumental to
detrend the impedance measurements during coupled load and temperature variations
and obtaining a reliable estimation of the stress-sensing factors f ′ and f ”, as described in
Section 2.3.
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Figure 8. (a) Representative variations of resistance and reactance at 1 kHz during the cooling down
of one sample AS005 pre-conditioned at 50 ◦C and (b) temperature variations measured by two
thermocouples (affixed to the sample surfaces).

Table 3. Monitoring of the cooling down through AC impedance at 1 kHz without application of
compressive load: Coefficients b′ and b′′ results.

Sample Initial Temperature, ◦C b′, Ohm·s−1 (×10−4) b′′, Ohm·s−1 (×10−4)

AS005

1

35

3.82 3.61

2 4.81 5.10

3 5.40 5.19

1

50

12.4 16.1

2 12.7 9.84

3 16.8 14.1

AS01

1

35

– 0.20

2 – 0.31

3 – 0.47

1

50

– 0.81

2 – 0.90

3 1.50 1.27

BS005

1

35

3516.2 −0.02

2 9817.7 −0.13

3 7765.0 −0.19

1

50

5622.2 −588.4

2 7043.6 −475.3

3 5165.0 −537.4

BS01

1

35

83.1 16.6

2 228.2 10.4

3 141.8 25.7

1

50

177.2 34.1

2 473.4 21.5

3 333.5 38.5
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Figure 9 shows the monitoring of the electrical impedance at 1 kHz during coupled
compression cyclic loading and varying temperature for representative samples of mortars
BS005, BS01, AS005, and AS01 preheated at 50 ◦C. These results exemplify the compensation
of the temperature variations out of those produced by compressive loading. The results
show that the variations of the electrical properties are largely governed by the variations
of temperature for mortars AS005, BS005, and BS01. The variations of the impedance
of the mortar BS005 show a poor resemblance to the loading data. The need for such
compensation is, however, less apparent for the mortar AS01, as could be also deduced
from the comparatively lower values of the parameter b′, summarized in Table 3.
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Figure 9. Variations of Z′ (left) and Z′′ (right) during coupled loading and varying temperature
conditions (preheated at 50 ◦C and cooling during the loading cycling) for representative samples
of BS005, AS005, BS01, and AS01 mortars. Temperature-compensated results are also shown and
compared with the loading.

Finally, Figure 10 summarizes the stress-sensing factors f ′ and f ′′ and cosine similarity
metrics (cos(θ)′ and cos(θ)′′) obtained after compensating for the effect of the temperature
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variation on the electrical impedance measurements of every sample. No clear relationship
between stress-sensing factors and temperature was found. The mortar BS01 presented the
highest sensitivity to stress. Reactance and resistance were similarly sensitive to varying
stress. The mortar AS01 exhibited the best performance regarding sample-to-sample varia-
tion and test repeatability. The stress-sensing factor was ~1 GPa−1 on average (standard
deviation of 0.28 GPa−1). For reference, the compressive elastic modulus measured on
spare samples of the same mortar mixes were 29.6 GPa and 44.4 GPa for mortars with
40% and 60% volume fractions. Therefore, the estimated gauge factor (that is, the figure of
merit relating the relative variations of resistance to compressive strain) was comparable
to previously reported values for other piezoresistive cement-based sensors [28,45]. A
compendium of gauge factors reported in the literature can be found in [6]. The reactance
values of the AS01 mortar were not sensitive to the variations of load, yet they did exhibit
meaningful variations with decreasing temperature (see Table 3). Inversely, the resistance
values were sensitive to stress and insensitive to temperature variations. This divergent
sensitivity to either stress or temperature suggests the possibility of using the same com-
posite as temperature and stress sensor by reading reactance and resistance variations
(AC measurements).
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Figure 10. Comparison of stress-sensing factors f ′ and f ′′ and cosine similarity (R′ and R′′) after
compensating for the variations of impedance during the cooling down of the samples. Different
patterns and colors are used for every preconditioning temperature.

4. Conclusions

This study investigates the electrical properties and stress-sensing capacity of different
mortars reinforced with short stainless-steel fibers under varying temperature conditions.
Different mortars were produced by varying aggregate and fiber volume fractions. The
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obtained results demonstrate that the incorporation of steel fibers into the mortar composi-
tion led to an extraordinary enhancement of the electrical conduction and a considerable
alteration of the electrical impedance spectrum. For equal steel fiber volume fractions, an
increase in aggregate content resulted in higher electrical conductivity. Contrariwise to
the rest of the mortars, the electric resistance of the mortar AS01 exhibited an increase in
resistance at AC frequencies above 1 MHz.

All reinforced mortars exhibited the dual-arc behavior on a Nyquist representation of
the EIS data. The cusp value attributed to the composite resistance consistently decreased
with increasing temperature and, in general, the frequency at which the cusp value was
formed also increased. In general, the temperature dependence of the electrical features
derived from the analysis of EIS data was more prominent for the mortars with worse
electrical conduction properties. The same can be concluded from the monitoring of the
preheated samples (at 35 ◦C and 50 ◦C) during the cool-down to room temperature, through
the measurement of the impedance at a fixed AC frequency (herein at 1 kHz). Again,
the mortars with superior electrical conduction properties manifested lower variations
of impedance with varying sample temperatures. As the degree of fiber percolation
increases, the transfer of charge is mainly produced by electronic mechanisms, whilst ionic
conduction is the dominating mechanism in plain mortars. Accordingly, the temperature
dependence of the electrical properties is the reflection of the dominating mechanisms of
electrical conduction in the material. These results are in good agreement with previous
studies, which reported an enhancement of the electrical conduction with increasing sample
temperature and likewise, the composites with better electrical performances inhibited the
dependence on sample temperature.

The stress-sensing properties were evaluated on all mortars through impedance mea-
surements at 1 kHz. Moreover, the stress-sensing testing protocol was repeated under
varying temperature conditions. For this latter purpose, the samples were preheated and
left to cool down to room temperature while simultaneously subjected to compressive
loading/unloading cycles. The temperature variations were successfully compensated out
of impedance measurements to assess the stress-sensing ability of the composites. The
mortar with the highest fiber volume fraction (0.1%) and lower aggregate content exhibited
the highest sensitivity to stress. Reactance and resistance were similarly sensitive to varying
stress. The mortar with the highest fiber volume fraction (0.1%) and higher aggregate con-
tent (volume fraction of 60%) exhibited the best performance regarding sample-to-sample
variation and test repeatability. In contrast, the reactance values were not sensitive to the
variations of load, yet they did exhibit meaningful variations with decreasing temperature.
Inversely, the resistance values were sensitive to stress and insensitive to temperature
variations. This different sensitivity to either stress or temperature suggests the possibility
of using the same composite for temperature and stress. One may also think of temperature
self-compensation of the piezoresistive sensor by using AC measurements.
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