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Abstract: Post-tensioned (PT) construction incorporating bonded tendons with cementitious grouts
has been used for highway bridges. The tendon duct and the encapsulating grout materials provide
barrier corrosion protection for the embedded high-strength steel strand. Although generally used
in good engineering practice, cases of PT tendon corrosion have been documented relating to
inadequate detailing for joints and development of grout bleed water. Recently, in the past several
years, unexpected severe localized strand corrosion has related to the segregation of thixotropic
grouts. In the latter case, thixotropic grouts (that have been developed to mitigate grout bleeding)
formed physical and chemical deficiencies that have been characterized to have high moisture content
and elevated sulfate ion concentrations. The early presence of elevated sulfate ion concentrations in
the deficient grout hinders stable steel passivation. The corrosion mechanism can be complicated
due to the compounding effects of physical grout deficiency, moisture content, pore water pH, and
the presence of sulfate ions. There remains interest to reliably assess corrosion of PT tendons with
deficient grout. A review of electrochemical techniques and test methods used in earlier research
by the authors to identify the role of sulfates on localized steel corrosion in alkaline solutions is
presented. It was evident that different testing methods can reveal various aspects of the corrosion of
strands in the deficient PT grout. The open-circuit potential and linear polarization method could
differentiate corrosion activity between hardened and deficient grout environments but did not reveal
the development of localized corrosion. Electrochemical impedance spectroscopy was useful to
identify grout deficiencies by the differentiation of its bulk electrical properties. Potentiodynamic
polarization and electrochemical noise technique were used to identify metastable and pitting in
alkaline sulfate solutions representative of the deficient grout pore water.

Keywords: post-tensioned (PT); grout; corrosion; electrochemical; testing

1. Introduction

Post-tensioning (PT) systems have been widely used for bridge construction since
the late twentieth century due to the opportunity for greater design choices available by
construction technology [1]. The prestressing afforded by the PT provides reinforcement to
the concrete structural element to minimize deflection and cracking, and PT systems can be
utilized to construct efficient bridge structures with longer clear spans. Bonded PT systems
incorporate tendons comprising prestressed high-strength steel strand/rod encapsulated
within a plastic or galvanized steel duct by a cementitious grout. Bonded tendons have
several advantages for the strength and service of the bridge. In addition to mechanical
benefits such as the development of forces along the length of the tendon, the encapsulating
grout provides corrosion protection of the steel by serving as an additional physical barrier
to the environment and external contaminants as well as allowing the development of
a protective passive oxide film on the steel due to the high grout pore water pH. Even
though the technology has ideally excellent durability traits, complexities of design details,
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construction, material specification and application, and sometimes non-conformity to
good practice have led to several cases of corrosion of the prestressing steel [2].

Corrosion of PT tendons has been documented since the late 1960s and up to recent
times. From the late 1990s, corrosion of external tendons in Florida and Virginia bridges
was accounted by the accumulation of grout bleed water and subsequent formation of
grout voids [3–6]. The events in the 1990s spurred the development and specification of
high-performance cementitious grouts in the early 2000s to minimize bleed water formation.
After that time, pre-packaged thixotropic grout materials were specified to improve onsite
construction quality. In the past 10 years, there were a few PT bridges nationwide where
the high-performance grout exhibited physical deficiencies characterized by high moisture
content, high pH, and elevated concentrations of alkali and sulfate ions [7–9]. The deficient
grout (Figure 1) was directly associated with significant corrosion of strand or steel PT
components in 2 bridges in Florida [10–14] and coincided with strand and duct corrosion
in 2 bridges in Virginia. In 2011, corrosion failures of external tendons in a post-tensioned
segmental box bridge (built-in 2003) in Florida occurred [7]; and shortly after, severe corro-
sion of galvanized steel internal tendon ducts in another Florida bridge (built-in 2004) was
detected. The response included research to assess the corrosion risk of steel in grouts with
elevated chloride ion concentrations, elevated free sulfate concentrations, and provided
guidelines for sampling and testing [15–23]. Lee, 2021 reevaluated the influence of elevated
sulfate ion concentrations in deficient grout by anodic potentiodynamic polarization test
and suggested that sulfates can be aggressive at depressed pore water pH [17].
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midity, and excess water content tested to identify the propensity for segregation. Hamil-
ton et al., 2018 [34] further identified that adverse effect of prolonged exposure of the grout 
to humidity and recommended control of product shelf-life and packaging. Hamilton et 
al., 2020 [35] evaluated removal and repair of tendons containing segregated grout by hy-
dro-demolition and tendon drying and identified challenges associated with entrapped 
water and grout carbonation. Whitmore et al., 2020 [36] developed an inhibitor impreg-
nation system demonstrating that a protective film can be introduced through the strand 
interstitial spaces and can reduce corrosion. Rehmat et al., 2019 [37] discussed the use of 
the magnetic main flux method and ultrasonic testing to identify strand cross-section loss 
and grout anomalies in tendons containing segregated grout. A novel indirect impedance 
technique and magnetic imaging technique were developed by Alexander et al., 2017 [24] 
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Other recent research relating to corrosion of strand in deficient grout involved non-
destructive testing [24–26] and imaging techniques [27,28] to identify physical grout defi-
ciencies (using impedance spectroscopy, magnetic flux leakage, and main magnetic flux
method), numerical modeling to project service [29,30], and remediation with inhibitor
impregnation [31,32]. Hamilton et al., 2014 [33] addressed the development of deficient
grout in tendons by a modified version of the inclined tube test where temperature, humid-
ity, and excess water content tested to identify the propensity for segregation. Hamilton
et al., 2018 [34] further identified that adverse effect of prolonged exposure of the grout
to humidity and recommended control of product shelf-life and packaging. Hamilton
et al., 2020 [35] evaluated removal and repair of tendons containing segregated grout by
hydro-demolition and tendon drying and identified challenges associated with entrapped
water and grout carbonation. Whitmore et al., 2020 [36] developed an inhibitor impreg-
nation system demonstrating that a protective film can be introduced through the strand
interstitial spaces and can reduce corrosion. Rehmat et al., 2019 [37] discussed the use of the
magnetic main flux method and ultrasonic testing to identify strand cross-section loss and
grout anomalies in tendons containing segregated grout. A novel indirect impedance tech-
nique and magnetic imaging technique were developed by Alexander et al., 2017 [24] and
Dukeman et al., 2019 [28]; respectively. Conventional NDTs were reviewed by Azizinamini
et al., 2012 [27] and Hurlebaus et al., 2018 [38]. The reviews indicated that technologies to
detect segregated grout are available.
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The steel strand corrosion associated with segregated grout was observed to be local-
ized to regions where the grout developed physical and chemical deficiencies [13]. The
grout in well-hydrated condition typically had a moisture content of 20%. The localized
deficient grout had greater moisture content that exceeded 60% and sometimes as high
as 80%. As shown in Figure 2, that deficient grout also had elevated concentrations of
sulfates (>10,000 ppm) and alkalis (potassium and sodium). The grout pore water pH
of the deficient grout was generally found to be similar to that of non-carbonated grouts
and typically exceeded 12 with some exception for grouts adjoining anodic steel regions
where severe corrosion had already developed. Analysis of electrochemical testing was
challenging due to the discrepant understanding of the role of sulfate ions in alkaline
solutions. A more thorough review of the literature is found in references [8,39]. The litera-
ture generally concedes that elevated sulfate concentrations in less alkaline pore solutions
were found to have an adverse effect on the stability of the passive film but corrosion
behavior in test solutions differ in otherwise chemically similar cementitious materials.
Autocatalytic corrosion with local acidification can develop within corrosion pits similar to
that for chlorides as described by Equation (1) [40].

Fe2+ + 2H2O + SO4
2− → Fe(OH)2 + H2SO4 (1)
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Figure 2. Ionic constituents in grout leachate [8]. Black. Hardened grout. White. Segregated grout.

The corrosion mechanism can be complicated due to the compounding effects of the
physical grout deficiency, moisture content, pore water pH, and the presence of sulfate
ions. Indeed, discrepant research findings have been presented in the literature in part
due to complications and limitations in the electrochemical techniques. For example, the
onset of localized corrosion may not be well captured by conventional open-circuit and
linear polarization resistance measurements often used by practitioners. There remains
interest in the corrosion assessment of PT tendons with deficient grout to identify corrosion
activity, corrosion rates, and grout conditions in both field and laboratory testing. A review
of electrochemical techniques and test methods used in earlier research by the authors
to identify the role of sulfates on localized steel corrosion in deficient grout materials
and representative alkaline sulfate solutions is presented. Examples of the outcomes of
electrochemical testing on the role of sulfate ions are described next in the spirit to provide
the readers a general view of how the presented test methods can be applied to assess the
negative effects of chemically and physically deficient grout on PT corrosion.
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2. Open-Circuit Potential

The open-circuit potential (OCP) or corrosion potential (Ecorr) is a common elec-
trochemical parameter used for corrosion assessment of reinforced concrete bridge el-
ements [41,42]. The OCP delineates the steady-state condition of the electrochemical
reactions where the sum of all anodic reactions, such as iron oxidation, is equal to the
sum of all cathodic reactions including oxygen reduction. Steel in alkaline pore water
solutions ideally would develop passivity where the rate of the anodic reaction would
be relatively constant at a low passive corrosion rate regardless of the amount of anodic
overvoltage from the equilibrium condition that develops by the coupling to the reduc-
tion reactions. More electronegative OCP such as that defined in ASTM C876 [43] would
develop if active corrosion develops causing the anodic branch of the polarization curve
to develop a smaller anodic Tafel slope. Thus, the measurement can give a quick assess-
ment of passive or active corrosion conditions assuming concentration polarization of the
reduction reactions is not dominant. The measurement requires an electrical connection
to the reinforcing/prestressing steel and ionic contact to the surface of the cementitious
material. In situ measurements of PT tendons would require a partial opening of the duct.
The surface of the steel element serves as the working electrode connected to a high input-
impedance voltmeter. An external reference electrode such as a copper/copper-sulfate
reference electrode (CSE) is rastered on the element surface along the length of the steel
and adjoining electrically continuous steel to provide a surface map of potentials that can
indicate corrosion activity. For reinforced concrete, ASTM C876 lists value criteria for
corrosion potential. OCP more electronegative than −0.35 VCSE is generally considered as
a marker for active corrosion [43].

Bridge tendon sections containing partial filling with deficient grout (in soft and chalky
form) and hardened grout, as shown in Figure 1, containing varying sulfate ion concentra-
tions (in the order of 10–100 ppm in hardened grout and 1000 to 10,000 in deficient grout)
resulted in a distribution of OCP such as shown in Figure 3. Steel strands embedded in
the well-hardened grout typically developed more electropositive potentials indicative
of passive conditions, whereas steel strands adjacent to the deficient grout developed
more electronegative potentials. Similarly, differentiation in corrosion potentials devel-
oped in steel corrosion probes installed in a modified incline-tube (MIT) test, where the
active corrosion potentials developed at higher elevations (where grout segregation was
induced), and passive corrosion potentials developed at lower elevations [8,39,44–46]. As
shown in Figure 4, electronegative potentials developed in alkaline solutions with elevated
sulfate concentrations.
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3. Linear Polarization Resistance

The linear polarization resistance (LPR) measurement allows for the assessment of
corrosion rates [40,47]. Like OCP measurements, electrical contact to the steel working
electrode and ionic contact of a reference electrode (such as a CSE) to the element surface
is required. A counter electrode with ionic contact to the element surface is also required
as part of the three-electrode configuration. A potentiostat is used to provide current via
the counter electrode to induce a small amount of polarization near the OCP measured
between the working and reference electrode. The ratio of the change in the potential to
the change in current density (compensated for solution resistance, Rs) is defined as the
polarization resistance, Rp [48].

Rp =
dE
di
− Rs (2)

The corrosion current density icorr can be estimated by the relationship icorr = B/Rp
where the Stern-Geary coefficient, B, associated with the anodic and cathodic Tafel slope is
often assumed to be 26 mV for active uniform corrosion conditions and 52 mV for passive
conditions [40]. Potentiodynamic polarization tests for steel in alkaline sulfate solutions
by Vigneshwaran et al., 2018 [49] showed B values for active and passive conditions in the
order of 16–21 and 24–55 mV, respectively

Field measurements can be complicated due to geometric constraints to setup the
test electrodes. Furthermore, complications with current attenuation exist and applica-
tion of guard-ring counter electrodes have been made for reinforced concrete elements.
Nevertheless, LPR measurements have been useful to identify corrosion activity related to
grout segregation.

Results by Permeh et al., 2018 [46], from LPR testing of steel corrosion probes installed
along the length of the 15-foot tendon mockup test specimens inclined at 30 degrees
in MIT testing showed strong differentiation in steel corrosion rates between the upper
elevations of the inclined tube from those at lower elevations. The MIT tests allowed
for some level of grout deficiencies to form at the top elevations resulting in corrosion
current densities approximately one order of magnitude greater than that estimated for
steel in the hardened grout at lower elevations (Figure 5). The OCP for the corrosion
probes embedded in the upper tendon elevation were generally more electronegative
than −300 mVCSE and ~−220 mVCSE in the hardened grout at lower elevations. Nominal
icorr values were in the order of 0.1 µA/cm2 to 0.01 µA/cm2 for steel in segregated and
hardened grout, respectively. Corrosion rates estimated by LPR for steel in alkaline sulfate
solutions are shown in Figure 4. The corrosion rates showed a good correlation to the
sulfate concentration; however, local corrosion pits developed in some of those steel test
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specimens that had modest calculated corrosion rates. Both OCP and LPR measurements
can provide differentiation between active and passive corrosion conditions of steel strand
embedded in grout but may not necessarily elucidate localized corrosion activity observed
in metastable and stable pitting associated with the elevated sulfate ion concentrations.
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4. Macrocell Corrosion

Macrocell corrosion develops due to the adverse galvanic coupling of steel electrodes
with differential corrosion conditions. The active corrosion rate of steel in regions where
passivity is lost can be elevated when that steel is coupled to extended cathodes elsewhere
that can support a greater level of reduction reactions, including oxygen reduction. The
PT tendons that had corrosion failures associated with segregated grout had localized
regions of deficient grout along the length of the tendon, as well as within the cross-section,
as shown in Figure 1. It was visually evident from the tendon failure that the corrosion
coincided with the deficient grout. The fast corrosion was thought to be exacerbated
by macrocell coupling of localized anodic regions embedded in the deficient grout and
extended cathodes on the steel strand along the length of the tendon throughout. As
described earlier, the OCP of the steel in the deficient grout was more electronegative than
that in the hardened grout. Coupling of these electrodes would cause some level of anodic
polarization of the anodic regions, supported by oxygen reduction reactions throughout
the tendon, and accelerate the corrosion rate of the steel in the deficient grout.

Macrocell corrosion testing consists of ionically and electrically coupling two cell com-
ponents. One of the cells has net anodic behavior and the other has net cathodic behavior.
Several test setups relating to grout materials have been described in the literature and
can include using salt bridges to ionically couple separate electrolytes [50–53]. Current
between the two electrically coupled electrodes can be made via shunt resistors and elec-
trical switches. Macrocell corrosion testing relating to the segregated grout was made by
coupling separate cut bridge tendon sections, one of which contained deficient grout and
the other with only hardened grout. As shown in Figure 6, coupling of the tendon sections
allowed for the development of an intermediate cell potential more electropositive than the
OCP of the strand in the section with segregated grout [8,12,54]. This provided an anodic
polarization that exceeded 50 mV and provided a net anodic macrocell current.

Recent research applied macrocell corrosion to develop practical test methods to
assess the robustness of grout materials to corrosion cast with non-ideal construction
practices [55–58].
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Figure 6. Macrocell coupling of tendon sections with segregated and hardened grout [12]. (a) Coupled
potential. (b) Macrocell current. Positive macrocell currents represent net anodic current.

5. Anodic Potentiodynamic Polarization

Anodic potentiodynamic polarization scans provide information on the anodic behav-
ior of metals in solution [40]. These measurements have been useful for the assessment
of corrosion-resistant alloys and the identification of localized corrosion. The elevated
sulfate ion concentrations in the deficient grout coincided with severe localized corrosion
and was thought to have an adverse effect on the stability of the passive film. Anodic
potentiodynamic polarization scans were made for grouted steel specimens as well as
in alkaline sulfate solutions in the laboratory to elucidate the anodic behavior of steel in
deficient grout with enhanced sulfate ion levels and determine if more adverse corrosion
conditions exist in deficient grout [17,59,60]. Details can be found in [49,61,62].

Anodic polarization scans made for steel probes in the MIT testing (Figure 7) generally
showed passive-like characteristics for all test cases, including in specimens with sodium
sulfate admixed in the grout [46] although more electronegative OCP developed in the
cases with admixed sodium sulfate. With the highest level of externally admixed sulfate, a
feature of the polarization graph showed an abrupt increase in anodic current for steel in
the upper portions of the tendon.
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Figure 7. Anodic potentiodynamic polarization scan of steel in PT grout [46].

Testing in alkaline sulfate solutions yielded better differentiation in corrosion behavior.
Results by Krishna Vigneshwaran et al., 2018 [59] indicated that the early presence of pre-
mixed sulfate ions in saturated calcium hydroxide solution (pH ~ 12.6) could be aggressive
by impairing the initial passive film development. As shown in Figure 8, higher passive-
like corrosion current densities developed in the presence of sulfate ions indicating an
increase in the anodic current exchange density. Active corrosion characteristics developed
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above 16,000 ppm Na2SO4. Permeh et al., 2021 [39], used cyclic anodic potentiodynamic
polarization scans made from the OCP to values as high as 400 mVAg/AgCl with a forward
scan rate of 0.01 mV/s and a reverse scan rate of 0.1 mV/s. Large anodic Tafel slopes
were generally observed. The anodic current densities increased and the OCP dropped to
more electronegative values with higher sulfate concentrations. The more electronegative
OCP at higher sulfate concentrations may be related to the increase in the anodic current
exchange density and complicates the conventional interpretation of corrosion potentials
by practitioners such as in ASTM C876 relating to passive to active corrosion transitions.
Below 20,000 ppm Na2SO4, the reverse scan showed a negative hysteresis indicating
passive corrosion conditions, but the onset of metastable pitting (>2000 ppm Na2SO4) was
observed by the transient current excursions that developed during the polarization. Above
20,000 ppm Na2SO4, the polarization scans showed a positive hysteresis curve as well as
pitting events characterized by the sharp increase in corrosion current.
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6. Electrochemical Impedance Spectroscopy

Electrochemical impedance spectroscopy (EIS) encompasses several techniques, among
which the potentiostatic method at the OCP (i.e., no applied DC voltage bias) allows for
corrosion assessment of metals in an electrolyte. The technique not only characterizes
interfacial characteristics, such as polarization resistance, but also provides information on
bulk solution characteristics, surface characteristics, transport characteristics, and current
distribution [63,64]. These benefits can parse system components that can cause an error in
testing (such as LPR) but can also convolute practical assessment of complicated systems.
Like LPR and other polarization methods, EIS also utilizes the three-electrode system. Un-
like the DC methods, EIS applies an AC potential polarization at various frequencies from
which the current is measured, and the impedance time constants associated with various
system parameters can be gaged. EIS is often analyzed utilizing equivalent circuit analogs
to which the impedance of the bulk, interfacial, and transport parameters can be mathe-
matically characterized to corollary electrical components. Similar practical constraints for
LPR testing in bridge systems apply for EIS. Pertinent system parameters relevant to the
corrosion of strands in segregated grout include the charge-transfer resistance (Rct) relating
to the corrosion rate and the solution resistance (Rs) which can gage the quality of the bulk
grout material. The Randles circuit has been widely considered to assess the interfacial
parameters (double-layer capacitance, Cdl, and charge-transfer resistance, Rct) of corrosion
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systems (Equation (3)), but advanced treatments to account for intermediate layers, surface
heterogeneities, and other system parameters have been developed.

Z = Rs +
1

jωCdl + 1
Rct

(3)

Lau et al., 2012 [65] provided preliminary results on the application of EIS to character-
ize grout properties and corrosion conditions of the strand. Recovered tendon sections from
the failed PT tendon were used to fabricate test specimens. Potentiostatic EIS measurements
at OCP were made with a frequency range 100 kHz > f > 1 mHz with an A.C. rms amplitude
of 10 mV. The analysis generally assumed that the high-frequency limit of the impedance
spectra corresponded to the solution resistance of the grout material and the low-frequency
limit corresponded to the metal-solution interface properties. The technique was sensitive
to the degree of moisture and hydration of cementitious material as well as the general
corrosion condition of the embedded steel. The presence of a high-frequency loop in the
impedance spectra in Nyquist form (Figure 9) was suggested to be related to the dielec-
tric response of the different cementitious materials present in the system with possible
application to characterize tendons with dissimilar grouts. Consistent with the observed
grout segregation, that component of the impedance response was significantly lower than
that of the tendon samples from locations without major grout segregation. As shown in
Figure 10, solution resistance of grout in MIT testing [46] shows differentiation between the
grout in the upper elevation segregated grout and lower elevation hardened grout.
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Figure 10. Example of grout solution resistance from MIT testing [46]. Black: Segregated grout.
White: Hardened grout.

7. Electrochemical Noise

Testing of steel in alkaline sulfate solutions showed that localized corrosion can
develop. OCP, LPR, macrocell, and EIS testing does not necessarily clarify this corro-
sion modality. The anodic potentiodynamic polarization test elucidates pitting corrosion
development and provides an indication of metastable pitting by the transient current
fluctuations. The electrochemical noise (EN) technique assesses ambient electrochemical
fluctuations at the steel surface that develop due to local disruptions of the passive film and
local active corrosion events. EN ideally could elucidate the localized corrosion behavior of
steel subjected to the early presence of elevated sulfate ion concentrations in alkaline solu-
tions. Examples of EN events for steel in alkaline sulfate solutions are shown in Figure 11.
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Figure 11. Example of EN current events in alkaline sulfate solutions [33].

EN measurements have evolved over the years and several test setup configurations
have been implemented. A comprehensive review is provided in refs. [39,66,67]. Gener-
ally, EN test setup requires two nominally identical steel electrodes connected across a
zero-resistance ammeter (ZRA) with a stable reference electrode. Appropriate anti-aliasing
filters and instrument settings are required [68,69]. The EN data can be analyzed in the
time domain by statistical evaluation of the electrochemical potential and current time
signatures such as the mean, rms, standard deviation, skew, and kurtosis. Deviations
from a normal distribution can be inferred from the spontaneous events associated with
the local disruption of the passive film. The spectral analysis includes assessment of the
power spectral density (PSD), as shown in Figure 12, to characterize the characteristic
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charge (q), characteristic frequency (fn), and corrosion current, (Icorr). Additionally, com-
parisons of the noise impedance (Zn) and noise resistance (Rn) can be made. The noise
resistance (Rn = σE/σI) has often been compared with the polarization resistance.
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Figure 12. Example of (a) potential and (b) current PSD by FFT and MEM [46].

Characteristics of the transient events can be assessed from the PSD by shot noise
analysis. The PSD would ideally show a low-frequency limit (ΨE0 for potential and ΨI0
for current) but assuming a nominal ΨE0 and ΨI0 at a low frequency such as at 1 mHz can
provide adequate qualitative comparisons of the noise parameters. The corrosion current
was described as

Icorr = B

√
ΨIo
ΨEo

(4)

where B is the Stern–Geary coefficient and is related to the noise admittance Zn
−1 = (ΨI0/ΨE0)0.5.

The characteristic charge, q, of the transient events was described as

q =

√
ΨIo×Ψeo

B
(5)

and the characteristic frequency, fn, of the transient events was described as

fn =
B2

ΨEo
(6)

Results of EN testing of steel in alkaline sulfate solution by [39] are shown in Figure 13.
The general trend indicated that the characteristic charge increases and the characteristic
frequency decreases with sulfate ion concentration, yet the overall corrosion rate increases.
This would consist of more extensive localized corrosion at higher sulfate concentrations.
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Figure 13. EN (a) characteristic charge, q and (b) frequency, fn in sulfate solutions [39].

8. Overview of Steel Strand Corrosion in Deficient Grout

It was evident that the severe and highly localized corrosion of the steel strand was
associated with the deficient grout coincident with elevated sulfate concentrations. Through
a series of research utilizing various electrochemical testing techniques as reviewed in the
preceding, the corrosion behavior of steel strands in deficient grout can be clarified. The
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relatively high pH > 12, low-level chloride content, and inconsistent coincidence of grout
voids indicated that the conventional means of chloride-induced or carbonation-induced
corrosion were not the dominant mechanisms for the failure. The electrochemical testing of
field-extracted and lab test specimens revealed that elevated concentrations of sulfate ions
in moderately alkaline pH solutions (i.e., pH ~ 12.6) can allow the destabilization of the
passive film where initially localized metastable and stable pitting can occur. Testing in
solution indicated that local disruption of the passive film can develop above 2000 ppm
Na2SO4 and local corrosion can develop above 20,000 ppm Na2SO4. However, the passive
film stability is largely influenced by the pH. Testing in sulfate solutions at pH > 13 did not
develop corrosion [49] and pH > 14 can allow for active steel dissolution [59]. The critical
concentration values in relation to pH require clarification [19]. Once local disruption
to the passive film develops, macrocell coupling of the local anode to the rest of the
strand assembly can allow adverse galvanic coupling and anodic polarization that would
promote pitting.

Assessment of the effect of the deficient grout with its lower binder content on sulfate
and chloride ion binding is warranted as is the synergistic effect of sulfate ions and low-
level chloride ions on steel depassivation. Initial research on these topics is discussed in [19].
The development of practical sulfate limits for grout materials and testing for material
robustness is discussed in [56,57].

9. Conclusions

Assessment of the corrosion mechanism of steel strands in segregated grout with
elevated sulfate concentrations has been difficult due to discrepant information on the role
of sulfates on corrosion initiation in the literature. Electrochemical testing would ideally
elucidate the role of the sulfates. Corrosion potentials and current densities (OCP and
LPR testing) are good indicators of active corrosion for steel in elevated sulfate environ-
ments (differentiating behavior of steel in hardened and deficient grouts) and support
the supposition that macrocell coupling (macrocell corrosion) of strands in the deficient
grout with the rest of the strand within the tendon allows for aggravated corrosion condi-
tions. However, these techniques would not necessarily capture the propensity for pitting.
Anodic potentiodynamic polarization testing revealed that the anodic current exchange
densities can increase at high sulfate concentrations and account for the manifestation
of more electronegative OCP and higher corrosion rates. Metastable pitting and pitting
were characterized by anodic current excursions at the elevated sulfate concentrations.
Electrochemical noise (EN) testing revealed the metastable and stable pitting events that
can occur in alkaline sulfate solutions. Electrochemical impedance spectroscopy (EIS) can
identify corrosion rates and, importantly, characteristics of the bulk grout material that can
differentiate hardened and deficient grouts.
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