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Abstract: This paper assesses the effectiveness of different unsupervised Bayesian changepoint
detection (BCPD) methods for identifying soil layers, using data from cone penetration tests (CPT). It
compares four types of BCPD methods: a previously utilised offline univariate method for detecting
clay layers through undrained shear strength data, a newly developed online univariate method, and
an offline and an online multivariate method designed to simultaneously analyse multiple data series
from CPT. The performance of these BCPD methods was tested using real CPT data from a study area
with layers of sandy and clayey soil, and the results were verified against ground-truth data from
adjacent borehole investigations. The findings suggest that some BCPD methods are more suitable
than others in providing a robust, quick, and automated approach for the unsupervised detection of
soil layering, which is critical for geotechnical engineering design.
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1. Introduction

The identification of soil layering is an essential task in geotechnical engineering, as it
provides essential information for the design of various infrastructures such as foundations,
tunnels, and roads. A soil layer is defined in this paper as a stratum of geological material
that belongs to the same classification group. Identifying soil layering involves determining
the number of layers and their thickness. Accurately identifying soil layering is crucial for
designing foundations such as surface footings [1,2], piles [3–6], and suction caissons [7–10],
as it would significantly affect engineering performance such as foundation stiffness [11].
This process is commonly achieved through a manual and often time-consuming interpreta-
tion of in situ site investigation measurements using techniques such as borehole sampling
and cone penetration testing (CPT). Therefore, there is significant motivation in developing
robust and automated interpretive tools for more reliable and objective interpretations of
ground models.

The CPT [12] is an in situ testing method that is widely used in geotechnical engineer-
ing for soil characterisation, where a cone-shaped probe is pushed into the ground at a
constant rate, and measurements of the cone resistance and sleeve friction are recorded
continuously as the probe advances. These CPT measurements can be used directly in
foundation design (e.g., [13–15]) and to identify soil layering by applying soil behaviour
type (SBT) classification rules (e.g., [16–21]). Since the CPT results at each depth can be
associated with a soil behaviour type, the boundaries of soil layers can be identified by
changes in the soil behaviour type. This technique was improved by using kriging [22] to
spatially interpolate the CPT results, enabling the identification of soil layering at unsam-
pled locations.

Bayesian methods have gained significant attention in geotechnical engineering. They
been employed to assess the probability of slope failure [23–27] and to predict tunnel
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deformation [28–32], excavation movements [33–37], pipe-jacking forces [38], and pile
driveability [39]. The advantages of Bayesian methods in geotechnical engineering include
the ability to integrate multiple sources of information, such as expert opinions, field
data, and laboratory tests, to reduce uncertainties and improve decision-making. Bayesian
methods have also become a popular means of identifying soil layers using CPT data owing
to several benefits they offer, such as robustness to noisy measurements and the ability
to handle uncertainty in a consistent mathematical framework. For instance, a Bayesian
approach [40] was proposed that combines prior knowledge with CPT data to determine
the most likely number and boundaries of statistically homogeneous soil layers. It was
found that the results of this approach can be significantly affected by the prior knowledge
used. As a result, it is recommended to prioritise high-quality, site-specific test data and
use relatively uninformative priors when prior knowledge is not well justified. Another
study [41] proposed a Bayesian model class selection approach that uses both CPT data
and the SBT classification chart to determine the most probable number of soil layers. More
recently, a Bayesian framework [42] was proposed for probabilistic soil stratification that
uses the CPT-derived SBT index Ic to determine the most likely number and thicknesses of
soil layers, as well as their associated identification uncertainty.

A distinct class of Bayesian methods that have been used to identify soil layer bound-
aries are Bayesian changepoint detection (BCPD) methods, which originate from the
Bayesian machine learning community. Changepoints refer to sudden changes in the
data that indicate transitions between different states. These changes divide a sequence of
data into non-overlapping partitions, where it is assumed that the data within each partition
are generated by the same statistical model. Therefore, the goal of BCPD is to detect points
in a data series where the underlying data distribution has changed, indicating a change-
point. In the context of soil data, the changepoint would correspond to a significant change
in soil behaviour and, thus, a soil layer boundary. A key advantage of BCPD methods is
their computational efficiency, as it typically takes only a few seconds to predict the soil
layer boundaries at a single location [43]. There are two types of BCPD methods: offline
and online. Offline BCPD methods consider the entire dataset before making inferences
about the changepoints, while online BCPD methods detect changepoints in real-time.

The BCPD method was first applied in geotechnical engineering as an offline BCPD
method [44] that uses undrained shear strength su to identify layering structures in clayey
ground. Recently, both online and offline BCPD methods [43] were proposed that use
dynamic penetration test (DPT) data to identify soil layer boundaries between three soil
classes (fine-grained soils, sand, and gravel). The BCPD method proposed in Ref. [44]
provides the maximum a posteriori estimate of the soil layer boundaries, while the BCPD
methods proposed in Ref. [43] provide the probability of a changepoint at each depth,
which is then compared to a threshold to determine whether a changepoint has been
detected. The main difference between the BCPD methods proposed in Refs. [43,44] is
that the former is an ‘unsupervised’ method that requires no training process, while the
latter is a ‘supervised’ method that requires a training process to calibrate the changepoint
threshold. Unsupervised BCPD methods are generally more convenient to apply, as it takes
significant time and effort to prepare the training data.

This paper addresses significant gaps in current research, particularly focusing on the
challenges associated with Bayesian methods applied to CPT data for soil layer identifi-
cation. The primary issue is that most existing Bayesian approaches are computationally
demanding and time-consuming, which limits their adoption in favour of faster methods
like the SBT classification method. Although the BCPD method offers a fast Bayesian
approach, its application to CPT data remains unexplored. Consequently, it is uncertain if
BCPD methods can effectively delineate soil layer boundaries using CPT data. Moreover,
prior research on BCPD methods in geotechnical engineering has exclusively focused on
univariate data, overlooking the potential use of multivariate data available from CPT
measurements, such as tip resistance and sleeve friction. Thus, it is uncertain if utilizing
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multiple data points could enhance changepoint detection accuracy. This paper aims to fill
these research gaps.

The main aim of the current paper is to provide an assessment of the accuracy and
computational efficiency of different unsupervised BCPD methods for soil layering identi-
fication using CPT data, in view of identifying the most effective BCPD method for this
task. Four types of BCPD methods are assessed: a previously established offline univariate
method [44] designed for identifying clay layers via undrained shear strength data, a
new online univariate method introduced in this study, and multivariate versions of both
methods that are capable of detecting changepoints using multiple data sources from CPT.
The core task to be carried out by the BCPD methods is to divide the soil profile up into two
categories: (i) predominantly fine-grained soils (e.g., clay and silt) and (ii) predominantly
coarse-grained soils (e.g., sand and gravel). These categories are the two main groups
of the USCS [45] soil classification system. These two soil categories have very different
permeability, stiffness, and strength properties such that poor identification will have a
negative impact on geotechnical design. The evaluation of the BCPD methods is carried
out using real-world CPT data from a case study involving multi-layered sandy–clayey
deposits. The BCPD predictions of soil layer boundaries are compared with the ground
truth provided by the neighbouring borehole data.

The novel contributions of this paper are as follows: (i) it is the first study to evaluate
the effectiveness of different BCPD methods for identifying soil layers using CPT data; (ii) it
pioneers the application of BCPD methods to multivariate geotechnical data, exploring
whether this approach offers advantages over the traditional use of univariate data in pre-
vious research; and (iii) it develops two new unsupervised online BCPD methods suitable
for univariate and multivariate data, termed BCPD-ON and BCPD-ON-MV, respectively.

2. Methodology

Changepoint detection has been used in various fields, including medical condition
monitoring, climate change detection, speech analysis, and image analysis [46–50]. Figure 1
illustrates the concept of changepoints for an arbitrary data series.
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Figure 1. Illustration of a series of data points (shown as grey markers). There are three distinct
partitions in the data series, separated by changepoints. The changepoints are detected at locations
where abrupt changes are observed.

Numerous studies have focused on developing new methods for detecting change-
points, as summarised in [51–58]. These methods can be broadly classified as either offline
or online. Offline methods (e.g., [59,60]) use the entire dataset to detect changepoints,
whereas online methods (e.g., [61,62]) process each data point in real-time to detect a
changepoint as soon as it occurs. This paper assesses the effectiveness of offline and online
unsupervised BCPD methods for identifying soil layering. Univariate and multivariate
data series from CPT are used to evaluate both methods. An overview of each BCPD
method is provided below, where it is assumed that the dataset being interrogated contains
one-dimensional ‘depth-series’ data indexed by depth. To clarify the notation used in
this paper, x1:n refers to the set of data {x1, x2, . . . , xn−1, xn} and p(A| B) refers to the
probability of event A occurring given that event B has occurred.
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2.1. Offline BCPD

This paper investigates the offline BCPD method [59,60], which was previously used
in geotechnical engineering [43] to delineate clay layers based on undrained shear strength
data. Offline Bayesian changepoint detection algorithms aim to pinpoint moments when
the statistical characteristics of data significantly shift. Unlike online methods that process
data points in real-time as they are received, offline approaches analyse the complete dataset
in a single operation after all data have been gathered. This analysis involves comparing
every possible set of changepoint locations to identify the most probable arrangement
based on the data. Tackling the entire dataset simultaneously, particularly with large
datasets, demands substantial computational effort. The offline BCPD method studied
in the current paper employs a recursive algorithm to efficiently calculate the posterior
probability distribution for changepoint locations, a notable improvement over earlier
Markov Chain Monte Carlo methods [63]. This recursive approach simplifies the calculation
process by breaking down the overall problem into smaller, more manageable sub-problems,
allowing for a more feasible and efficient determination of changepoint probabilities.
Detailed explanations of this algorithm can be found in the literature [43,59,60], and the
following section briefly describes the key equations behind the algorithm. The data within
each partition are modelled using a probability distribution, with parameters that are
independent of those determined for other partitions. Let cj represent the jth changepoint.
The posterior distribution of cj is p

(
cj
∣∣ x1:n

)
. The probability of a changepoint occurring at

depth z can be calculated as follows:

p(changepointat z| x1:n) =
z

∑
j=1

p
(
cj = z

∣∣ x1:n
)

(1)

where the summation is due to the possibility of there being 1 to z changepoints thus
far at depth z. p

(
cj
∣∣ x1:n

)
in Equation (1) is obtained by marginalising out the previous

changepoints:

p
(
cj
∣∣ x1:n

)
=

∫
p
(
cj, . . . , c1

∣∣ x1:n
)

dcj−1 . . . dc1 (2)

As the probability of a changepoint is assumed to be dependent only on the previous
changepoint, the integrand in Equation (2) can be calculated as follows:

p
(
cj, . . . , c1

∣∣ x1:n
)
= p

(
cj
∣∣cj−1, x1:n

)
p
(
cj−1

∣∣cj−2, x1:n
)

. . . p(c2|c1, x1:n)p(c1|x1:n) (3)

Each of the terms on the right-hand side of Equation (3) can be calculated exactly using
the recursive algorithm described in Ref. [59], which is briefly outlined here. Let L(i, j) =
p
(

xi:j
∣∣partition from i to j

)
be the likelihood of the data in the partition from depth i to j,

and g(n) = 1/n be the prior distribution of a changepoint. In the context of CPT data,
L(i, j) can be interpreted as the likelihood of the CPT data at depth i to j belonging to the
same soil layer. Let Q(z) = p(xz:n|changepoint at z − 1) be the marginal probability of the
data from depth z to the end, given that there is a changepoint at depth z − 1:

Q(z)=
n−1

∑
j=z

p(xz:n|next changepoint at j) + p(xz:n|no more changepoint)

=
n−1

∑
j=z

L(z, j)Q(j + 1)g(n) + L(z, n)g(n)

(4)

The presence of Q(j + 1) indicates that Equation (4) is a recursive algorithm. To calculate
Q(z) for all depths, Equation (4) should be applied recursively, starting from depth n − 1
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and working backwards. Thereafter, each of the terms on the right-hand side of Equation (3)
is calculated as follows:

p
(
cj
∣∣cj−1, x1:n

)
=

p
(

cj ,xcj−1+1:n

∣∣∣cj−1

)
p
(

xcj−1+1:n

∣∣∣cj−1

)
=

p
(

xcj−1+1:cj

∣∣∣cj , cj−1

)
p
(

xcj+1:n

∣∣∣cj , cj−1

)
p(cj| cj−1)

p
(

xcj−1+1:n

∣∣∣cj−1

)
=

L(cj−1+1,cj)Q(cj+1)g(n)
Q(cj−1+1)

(5)

Maximum a Posteriori Estimations of Changepoints

In Ref. [43], a changepoint is defined to have occurred if the probability calculated
by Equation (1) exceeds some user-defined probability threshold. This threshold is to be
determined by a training process that relates the changepoint probability to some ground-
truth data such as expert judgment of a soil layer boundary. To avoid this training process,
the current study will calculate the maximum a posteriori locations of the changepoints
using the Viterbi algorithm [59], as follows. Let Qm(z) = p(xz:n|changepoint at z − 1,
maximum a posteriori changepoint for z : n) be the probability of the data from depth z
to the end, given that there is a changepoint at depth z − 1 and there is a maximum a
posteriori estimate of the next changepoint between depth z to the end. Qm(z) can be
calculated as follows:

Qm(z)= max
j∈z:n

{p(xz:n|next changepoint at j)}

= max
j∈z:n

{L(z, j)Qm(j + 1)g(n)}
(6)

The presence of Qm(j + 1) indicates that Equation (6) is a recursive algorithm. Similar to
Equation (4), Equation (6) should be applied recursively, starting from depth n − 1 and
working backwards. Let jm(z) = argmax

j∈z:n
{p(xz:n|next changepoint at j)} be the maximum

a posteriori estimate of the next changepoint from depth z to the end. After Qm(z) has
been calculated for all depths, the maximum a posteriori estimates of the changepoints
can be determined recursively as follows. First, let c1 = jm(1). Then, let c2 = jm(c1 + 1),
c3 = jm(c2 + 1) . . . , cj = jm

(
cj−1 + 1

)
until the end of the data is reached.

The authors of Refs. [59,60] considered only univariate data series, while another
study [64] expanded on that work by considering multivariate data series. The offline
BCPD methods for univariate and multivariate data are referred to in this paper as ‘BCPD-
OFF’ and ‘BCDP-OFF-MV’, respectively. The main difference in the implementation of
these two methods is the modelling of the likelihood and conjugate prior of the data, which
will be discussed later in this paper.

2.2. Online BCPD

The second BCPD method investigated in this paper is based on the online BCPD
method proposed in Ref. [61], which estimates the probability of a changepoint at a given
depth based on data processed up to that depth. This method computes the probability
distribution of a random variable called the ‘run length’ rz, which represents the amount of
data between the current depth z and the last changepoint. The reason behind the need
for the run length variable is that it encapsulates essential information about the recent
history of the data stream in a single statistic. Online changepoint detection processes data
sequentially as they arrive. It aims to detect changepoints as soon as possible after they
occur, without the benefit of future observations. In contrast, offline methods can consider
the data in their entirety, applying algorithms that optimise over all possible changepoints
simultaneously, thus not requiring the concept of run length. The goal of online changepoint
detection methods is to update beliefs about the presence of a changepoint with each new
data point. By maintaining a probability distribution over the run length variable, the
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algorithm can make immediate decisions about the likelihood that a changepoint has just
occurred. This allows for real-time detection, and is more efficient than offline changepoint
detection methods where all data must be analysed together.

The changepoints divide the sequence of data into non-overlapping partitions, where
the length of each partition is rz. Each new data point either belongs to the same distribution
(and rz increases by one), or it belongs to a new distribution (which means a changepoint
occurs and rz resets to zero). Therefore, a spike in the probability of rz = 0 suggests the
likely presence of a changepoint at depth z. If rz increases by one, the new data point
will update the parameter estimates of the current distribution using Bayes’ theorem.
Otherwise, the new distribution resets back to the prior distribution. Figure 2 illustrates
how the (known) changepoints for an arbitrary data sequence coincide with the locations
where the most probable value of rz is 0.
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The probability of a changepoint at depth z is equivalent to the posterior probability
of rz = 0 at depth z, as follows:

p(changepoint at z| x1:z) = p(rz = 0|x1:z) (7)

The posterior distribution of the run length p(rz|x1:z) in Equation (7) is calculated using
the recursive algorithm described in Ref. [61], which is briefly explained here. p(rz|x1:z) in
Equation (7) can be calculated as follows:

p(rz|x1:z) =
p(rz, x1:z)

p(x1:z)
(8)

where p(x1:z) = ∑rz p(rz, x1:z). The joint distribution p(rz, x1:z) can be calculated using the
following recursive relationship:

p(rz, x1:z) = ∑
rz−1

p(rz, xz, |rz−1, x1:z−1)p(rz−1, x1:z−1)

= ∑
rz−1

p(rz|xz, rz−1, x1:z−1) p(xz|rz−1, x1:z−1) p(rz−1, x1:z−1)

= ∑
rz−1

p(rz|rz−1) p
(

xz

∣∣∣rz−1, x(z−1−rz):z−1

)
p(rz−1, x1:z−1)

(9)
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The following describes how each of the three terms in the last line of Equation (9) is
calculated. First, p(rz−1, x1:z−1) is a recursive term, which represents the previous iteration
of Equation (9) at depth z − 1. Second, p(rz|rz−1) is the conditional prior of the run length:

p(rz|rz−1) =


1/κ

1 − 1/κ
0

i f rz = 0
i f rz = rz−1 + 1

otherwise
(10)

where κ is a parameter that controls the sensitivity of the changepoint occurrence. Larger
values of κ mean that stronger evidence is required to support a higher changepoint
probability. To allow for a fair comparison with the offline BCPD method, κ is set as
the number of data points in order to match the prior probability of changepoints g(n)
for the offline BCPD method. Finally, p

(
xz

∣∣∣rz−1, x(z−1−rz):z−1

)
is the posterior predictive

distribution of the data point xz based on the likelihood of the data partition. This is
calculated analytically due to the use of conjugate priors, as described later in this paper.

Maximum a Posteriori Estimations of Changepoints

The online BCPD method in Ref. [43] defines a changepoint to have occurred if the
probability calculated by Equation (7) exceeds some calibrated user-defined probability
threshold. To avoid the training process required for this threshold, the maximum a
posteriori estimates of the changepoints are used instead. As the algorithm for obtaining
these estimates is not provided in Ref. [61], the current study proposes the following new
algorithm to identify them.

Let Mz be the event that the maximum a posteriori estimate of changepoints has
occurred prior to depth z. Let CMAP(z) = p(rz, Mz, x1:z) be the joint probability of the
current run length and the maximum a posteriori estimate of the changepoints prior to
depth z. It can be calculated as follows:

CMAP(z) = max
j∈1:z−1

{
p(rz = z − j|x1:z)p

(
rj = 0

∣∣x1:j
)
CMAP(j − 1)

}
(11)

where CMAP(0) = 1. Equation (11) should be applied recursively, starting from the first
data point and working forward until CMAP(z) is calculated for all depths. At any depth
z, the maximum a posteriori estimate of the set of changepoints prior to depth z can
be determined recursively using the values of j obtained in each recursive calculation.
This process can be explained by estimating the maximum a posteriori locations of the
changepoints for the exemplar data series in Figure 1. Suppose z = 12 (i.e., the maximum a
posteriori estimations is made considering all the data points in Figure 1), the maximum
a posteriori estimate of the set of changepoints is {5, 9} and it is obtained by applying
Equation (11) repeatedly until the following recursive path produces the maximum value
for CMAP(12):

CMAP(12) = p(r12 = 3|x1:12)p(r9 = 0|x1:9)CMAP(8) (12)

where
CMAP(8) = p(r8 = 3|x1:8)p(r5 = 0|x1:5)CMAP(4) (13)

CMAP(4) = p(r4 = 3|x1:4)p(r1 = 0|x1:1)CMAP(0) (14)

The online BCPD methods for univariate and multivariate data are referred to in this paper
as ‘BCPD-ON’ and ‘BCDP-ON-MV’, respectively. The main difference in the implemen-
tation of these two methods is the modelling of the likelihood and conjugate prior of the
data, which will be discussed in the next section.

2.3. CPT Data Case Study

The CPT data used in this paper were acquired from a ground investigation carried
out in Brandenburg, Germany. The ground conditions consist of layers of coarse-grained
soils (predominantly sands, including gravelly sand) and fine-grained soils (silts and clay).
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The water table at the site is approximately 6.5 m to 7.5 m below ground level. The ground
investigation included conducting CPTs and borehole sampling at discrete locations, and
there is at least one borehole positioned within 3 m of each CPT location. This means that
each CPT dataset had a corresponding ‘ground-truth’ profile to evaluate the soil layering
predictions. In total, five pairs of CPTs and borehole data are evaluated in this paper. The
five CPT locations are termed CPT01,. . ., CPT05 in this paper. A workflow summarising
the application of the BCPD methods to the raw CPT measurements is shown in Figure 3.
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The raw CPT measurements (e.g., cone tip resistance qc and sleeve friction fs) are
typically normalised for soil classification purposes. For example, the Robertson (2009)
SBT classification method [18] uses the following normalised versions of the raw CPT
measurements:

Qt =
qt − σv0

σ′
v0

(15)

Fr =
fs

qt − σv0
(16)

Bq =
u2 − u0

qt − σv0
(17)

where Qt is the normalised cone resistance, Fr is the normalised friction ratio, σ′
v0 and σv0

are the in situ vertical effective and total stress, respectively, and Bq is the pore pressure
ratio. The parameter qt = qc + (1 − a)u2 is the total cone end resistance corrected for
the presence of the pore pressure filter, where a is cone area ratio. σ′

v0 and σv0 are the
in situ vertical effective and total stress, respectively. The authors in Ref. [20] propose a
soil classification index Ic that combines Qt and Fr to approximate the SBT boundaries
as follows:

Ic =
√
(3.47 − log10(Qt))

2 + (1.22 + log10(Fr))
2 (18)

Table 1 gives the Ic ranges that correspond to the different SBT zones. For the purpose of
this paper, fine-grained soils are defined as soils that belong to the Robertson (2009) SBT
zones 2, 3, and 4, while coarse-grained soil are defined as the Robertson (2009) SBT zones 5,
6, and 7. The boundary between fine- and coarse-grained soils corresponds to an Ic value
of approximately 2.6.
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Table 1. Soil behaviour type zones and their corresponding ranges.

SBT Zone Ic Range Soil Mixture Description

9 - Stiff fine grained
8 - Stiff sand to clayey sand
7 <1.31 Gravelly sand to dense sand
6 1.31–2.05 Clean sand to silty sand
5 2.05–2.6 Silty sand to sandy silt
4 2.6–2.95 Clayey silt to silty clay
3 2.95–3.6 Silty clay to clay
2 >3.6 Organic soils
1 - Sensitive soils

Ic is an empirical index that incorporates information from both Qt and Fr. However,
it is uncertain if soil layering identification would be more effective by using Qt and Fr
directly. Therefore, this paper will assess the effectiveness of using Ic as a univariate data
input and Qt and Fr as multivariate data inputs into the BCPD methods.

2.4. Priors for Univariate and Multivariate BCPD Methods

The likelihood of univariate and multivariate data is modelled using a Gaussian distri-
bution and multivariate Gaussian distribution, respectively. Conjugate prior distributions
are adopted for the data, which allow for efficient analytical calculations of the posterior
distributions [65–68]. The same likelihood and conjugate prior distributions are adopted
for both the online and offline BCPD methods. Following Ref. [44], a normal-inverse
gamma distribution NIG(µh, λ, α, β) is adopted as the conjugate prior for univariate data.
As the BCPD methods are proposed as unsupervised methods, the prior hyperparame-
ters values for the normal-inverse gamma distribution are not calibrated using the CPT
data considered in this paper and are simply set to the values determined in Ref. [43]:
α = 1, β = 0.1, λ = 1, µh = 0. Perturbation of these hyperparameters values indicates that
the final results of the current study are generally not sensitive to their values. Retrospective
calibration analysis using the CPT Ic data provides the optimal values of α = 1.3, β = 0.067,
as shown in Figure 4, but the use of these optimal values did not change the univariate
BCPD predictions of the soil layer boundaries in this paper.
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Following Ref. [64], a normal-inverse Wishart distribution NIW(µ0, λ0, V0, N0) is
adopted as the conjugate prior for multivariate data, and weakly informative prior hy-
perparameter values of N0 = d, V0 = σ̂2I, λ0 = 1, µ0 = 0 are adopted, where d is the
dimensions of the multivariate data (i.e., two for the current study), σ̂2 is the mean of
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the empirical variance pooled across all the data, and I is the identity matrix. Employing
weakly informative priors gently steers the early stages of the analysis without dictating the
outcome. This approach allows the data to play a significant role in shaping the final results.

2.5. Performance Metrics

The performance of the proposed BCPD methods used in this study is evaluated in
terms of accuracy and computational efficiency. To quantify the accuracy of the methods,
several accuracy metrics are used as follows:

• True Positive (TP)—the number of times the method has correctly identified a soil
layer boundary;

• False Positive (FP)—the number of times the method has incorrectly identified a soil
layer boundary;

• False Negative (FN)—the number of times the method has failed to identify a true soil
layer boundary;

• Precision = TP/(TP + FP);
• Sensitivity = TP/(TP + FN);
• F1 score = 2(Precision × Sensitivity)/(Precision + Sensitivity).

Precision, sensitivity, and F1 score are common composite metrics comprising TP,
FP, and FN; a higher value indicates better performance. Precision is a measure of how
accurate a model is when it detects something, sensitivity is a measure of how good a
model is at detecting something, while the F1 score is an overall measure of how good a
model is at both detecting something and the accuracy of those detections. It is important
to note that due to the potential deviation of up to 3 m between the borehole location and
the CPT location, as well as the unaccounted cone sensing and development distances [69],
the predicted boundaries based on the CPT data are not expected to exactly align with the
boundaries indicated by the borehole data. Consequently, this study considers a soil layer
boundary to be correctly identified if the CPT-predicted boundary falls within a distance
of 1m from the borehole-indicated soil layer boundary. To evaluate the computational
efficiency of the methods, the average computational times required to process each CPT
location by the proposed BCPD methods are calculated and compared.

3. Results

This section presents the soil layering predictions for the CPT locations using the BCPD
methods. The BCPD predictions are compared with soil layering predictions obtained from
the Ic form of the Robertson (2009) SBT classification method, where an Ic value of 2.6 is
considered the threshold between fine- and coarse-grained soils.

Figures 5–9 compare the BCPD predictions, the Robertson (2009) predictions, and the
expert interpretation of the corresponding borehole data for CPT locations 1 to 5. This expert
interpretation approach is consistent with the validation approach described in Ref. [44].
It represents the existing manual and time-consuming process required to determine
information on soil layering, and is considered as the industry standard. Overall, these
figures demonstrate that BCPD-ON provides the most accurate soil layering predictions,
correctly identifying almost all soil layer boundaries as determined from the borehole
data. It is worth noting that the BCPD methods are unsupervised, meaning they are not
trained using any data to discern the locations of the soil layer boundaries. Nevertheless,
the detected changepoints in BCPD approximately coincide with the soil layer boundaries
from the borehole data.
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BCPD-OFF also predicts the same soil layer boundaries as BCPD-ON but with more 
false soil layer boundary predictions. As for the multivariate counterparts of BCPD-ON 
and BCPD-OFF, it can be observed that BCPD-ON-MV and BCPD-OFF-MV generate even 
more false soil layer boundary predictions compared to their univariate counterparts. 

Additionally, Figures 5–9 reveal that the Robertson (2009) method is prone to pre-
dicting numerous thin layers. This tendency is noticeable at depths where the computed 𝐼௖ values are close to the assumed boundary between fine- and coarse-grained soils such 
that a small amount of noise can trigger the prediction of multiple thin layers. 
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Figure 8. Comparison of soil layer boundary predictions with the borehole data at location CPT04.
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Figure 9. Comparison of soil layer boundary predictions with the borehole data at location CPT05.

BCPD-OFF also predicts the same soil layer boundaries as BCPD-ON but with more
false soil layer boundary predictions. As for the multivariate counterparts of BCPD-ON
and BCPD-OFF, it can be observed that BCPD-ON-MV and BCPD-OFF-MV generate even
more false soil layer boundary predictions compared to their univariate counterparts.

Additionally, Figures 5–9 reveal that the Robertson (2009) method is prone to predict-
ing numerous thin layers. This tendency is noticeable at depths where the computed Ic
values are close to the assumed boundary between fine- and coarse-grained soils such that
a small amount of noise can trigger the prediction of multiple thin layers.

Comparison of Performance Metrics

The accuracy metrics for the different BCPD methods are shown in Table 2.

Table 2. Accuracy metrics for the soil layer boundary predictions by the different methods.

Method True
Positive

False
Positive

False
Negative Precision Sensitivity F1 Score

BCPD-OFF 6 5 0 0.545 1 0.706
BCPD-ON 6 1 0 0.857 1 0.923

BCPD-OFF-MV 5 8 1 0.385 0.833 0.526
BCPD-ON-MV 6 12 0 0.333 1 0.5

Robertson (2009) 6 18 0 0.25 1 0.4
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Among these methods, the BCPD-ON method consistently outperforms the others,
achieving the highest scores across all metrics. It notably achieves the highest F1 score of
0.923, indicating a strong balance between sensitivity and precision. Comparatively, all the
BCPD methods evaluated in this study exhibit higher F1 scores than the Robertson (2009)
method, which has the lowest precision due to its tendency to make numerous predictions
of thin-layer soils. However, it is important to acknowledge that, depending on the
geotechnical application, this model’s behaviour may be desirable in certain geotechnical
applications. For example, in slope stability assessments, it is crucial to identify very thin,
free-draining layers that might not be easily detected using borehole data alone. These
layers play a significant role in promoting excess pore pressure dissipation.

Table 3 presents the average computational time required to process CPT data for
each location using the different BCPD methods. Using a computer with an Intel i7
2.8 GHz processor (eight central processing units) and 8 GB of RAM, the BCPD-ON method
demonstrates the highest efficiency, processing each CPT location in approximately 0.044 s.
This is about 60 times faster than the next fastest method, BCPD-ON-MV. Generally, the
multivariate BCPD methods are slower than the univariate BCPD methods.

Table 3. Time taken for the soil layer boundary predictions for each location in the dataset.

Method Time Taken Per CPT Location (s)

BCPD-OFF 2.46
BCPD-ON 0.044

BCPD-OFF-MV 3.32
BCPD-ON-MV 2.38

4. Discussion

The study found that univariate BCPD methods are generally more effective in iden-
tifying soil layering from CPT data compared to their multivariate counterparts. The
composite index Ic was found to be more suitable than the joint behaviours of Qt and Fr
for predicting soil layer boundaries using BCPD. This is likely because the formulation of
the Ic index was derived through calibration against external soil classification databases
and, as such, incorporates valuable prior knowledge for soil layering identification. In
contrast, the multivariate BCPD methods that directly use the Qt and Fr data do not benefit
from this prior knowledge, which may explain their comparative disadvantage. Among
the BCPD methods, BCPD-ON was found to be the most accurate and computationally
efficient, making it suitable for real-time predictions of soil layering during live testing.

Compared to the Robertson (2009) method, the proposed BCPD methods are more
robust to noisy data and less prone to thin layer predictions since they do not rely on
pre-established rules for distinguishing between different soil layers. These BCPD methods
are fast and require minimal manual interpretation of the CPT data. Moreover, they do
not require any training data, which eliminates the need to manually interpret the CPT
data before applying the BCPD methods. This aligns with the trend towards more data-
driven and automated approaches for geotechnical analyses [70–73]. However, for some
geotechnical applications, it may be critical to identify all possible soil layers. In such cases,
using the supervised BCPD methods proposed in Ref. [43] is appropriate as it provides
the probability of soil layer boundaries at every depth. This allows the user to define a
lower changepoint probability threshold to minimise the chance of missing true soil layer
boundaries (potentially at the expense of more false soil layer boundary predictions).

While this study provides valuable insights into the performance of different unsu-
pervised BCPD methods for soil layering identification using CPT data, there are some
limitations that should be considered. One limitation is that the BCPD methods can only
identify the boundaries of soil layers and not the specific soil type within each layer, al-
though this can potentially be remedied by using the Robertson (2009) SBT rules to identify
the dominant soil type within each layer. Moreover, the autocorrelation of the data in each
partition is not modelled for computational efficiency reasons. Modelling the autocorrela-
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tion of the data in each partition using a Gaussian process may enhance the accuracy of
the predictions, although the increase in computational complexity would be a trade-off.
Finally, the stochastic properties of heterogeneous geomaterials [74,75] mean that their
strength and other properties can vary significantly within a material layer. Thus, the
effectiveness of the BCPD method in distinguishing between such geomaterials is uncertain.
These limitations highlight several areas for future research, including the development
and evaluation of new BCPD methods that address these specific challenges.

5. Conclusions

This paper presents an assessment of different unsupervised BCPD methods for distin-
guishing between fine- and coarse-grained soil layers using CPT data. It introduces a novel
unsupervised online BCPD method and benchmarks it against an existing unsupervised
offline BCPD method, using both univariate and multivariate CPT data.

The key findings are as follows:

1. Univariate BCPD methods (using Ic data) are generally more accurate and compu-
tationally efficient than their multivariate counterparts (using Qt and Fr data) in
identifying soil layer boundaries using CPT data.

2. The newly developed univariate online BCPD method demonstrates the highest
accuracy and computational efficiency.

3. This research underscores the advantage of unsupervised BCPD methods, which
forego the need for training data and manual analysis, contributing to the advance-
ment of fast, automated Bayesian geotechnical analysis techniques.
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