
Citation: Baghbani, A.; Soltani, A.;

Kiany, K.; Daghistani, F. Predicting

the Strength Performance of

Hydrated-Lime Activated Rice Husk

Ash-Treated Soil Using Two

Grey-Box Machine Learning Models.

Geotechnics 2023, 3, 894–920. https://

doi.org/10.3390/geotechnics3030048

Academic Editor: Raffaele Di Laora

Received: 29 July 2023

Revised: 13 August 2023

Accepted: 1 September 2023

Published: 11 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Predicting the Strength Performance of Hydrated-Lime
Activated Rice Husk Ash-Treated Soil Using Two Grey-Box
Machine Learning Models
Abolfazl Baghbani 1,* , Amin Soltani 2 , Katayoon Kiany 3 and Firas Daghistani 4,5

1 School of Engineering, Deakin University, Waurn Ponds, VIC 3125, Australia
2 Institute of Innovation, Science and Sustainability, Future Regions Research Centre, Federation University,

Churchill, VIC 3842, Australia; a.soltani@federation.edu.au
3 Melbourne School of Design, The University of Melbourne, Parkville, VIC 3010, Australia;

kianyk@student.unimelb.edu.au
4 Department of Civil Engineering, La Trobe University, Bundoora, VIC 3086, Australia;

f.daghistani@latrobe.edu.au
5 Civil Engineering Department, University of Business and Technology, Jeddah 23435, Saudi Arabia
* Correspondence: abaghbani@deakin.edu.au

Abstract: Geotechnical engineering relies heavily on predicting soil strength to ensure safe and
efficient construction projects. This paper presents a study on the accurate prediction of soil strength
properties, focusing on hydrated-lime activated rice husk ash (HARHA) treated soil. To achieve
precise predictions, the researchers employed two grey-box machine learning models—classification
and regression trees (CART) and genetic programming (GP). These models introduce innovative
equations and trees that readers can readily apply to new databases. The models were trained and
tested using a comprehensive laboratory database consisting of seven input parameters and three
output variables. The results indicate that both the proposed CART trees and GP equations exhibited
excellent predictive capabilities across all three output variables—California bearing ratio (CBR),
unconfined compressive strength (UCS), and resistance value (Rvalue) (according to the in-situ cone
penetrometer test). The GP proposed equations, in particular, demonstrated a superior performance
in predicting the UCS and Rvalue parameters, while remaining comparable to CART in predicting the
CBR. This research highlights the potential of integrating grey-box machine learning models with
geotechnical engineering, providing valuable insights to enhance decision-making processes and
safety measures in future infrastructural development projects.

Keywords: hydrated lime; rice husk ash; machine learning; grey-box model; classification and
regression trees; genetic programming

1. Introduction

Soil stabilization techniques play an important role in geotechnical engineering to
improve the engineering properties of weak or problematic soils [1]. Traditional methods,
such as soil replacement or compaction, have limitations in terms of cost, implementation,
and environmental impact [2,3]. As a sustainable and economical alternative, soil stabiliza-
tion using supplementary materials/additives has attracted considerable attention. One of
these approaches includes adding hydrated lime and rice husk ash to the soil [4].

Because of its unique properties, hydrated lime is a widely used additive in soil
stabilization [4,5]. It is a fine, white powder obtained from the hydration of quicklime
(calcium oxide) and consists mainly of calcium hydroxide [4,5]. When hydrated lime is
added to soil, it undergoes chemical reactions with clay minerals, which lead to reduced
soil compressibility, improved shear strength, and increased durability [4–6]. These reac-
tions, known as cation exchange and pozzolanic reactions, lead to the formation of stable
compounds that bind soil particles together [4–6].
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Rice husk ash (RHA), a byproduct of the rice milling industry, is also promising
as an additive in soil stabilization [7]. RHA is obtained by burning rice husks at high
temperatures, which converts the organic matter into amorphous silica and other inorganic
components [8]. When added to soil, RHA acts as a pozzolanic agent and reacts with
calcium hydroxide from hydrated lime to form additional cementitious compounds [4,5].
The inclusion of RHA in the soil stabilization process further improves the strength, stiffness,
and durability of the stabilized soil [9]. Utilizing rice husk ash in cement and concrete offers
numerous advantages, including reduced heat of hydration, improved strength, decreased
permeability at higher dosages, enhanced resistance to chloride and sulfate, cost savings
through reduced cement usage, and environmental benefits by mitigating waste disposal
and lowering carbon dioxide emissions [10–17]. Jafer et al. [18] focused on developing
a sustainable ternary blended cementitious binder (TBCB) for soil stabilization. TBCB
incorporates waste materials and improves the engineering properties of the stabilized
soil. The results showed a reduced plasticity index and increased compressive strength.
XRD and SEM analyses confirmed the formation of cementitious products, leading to a
solid structure. TBCB offers a promising solution for soil stabilization with a reduced
environmental impact [18].

The combination of hydrated lime and rice husk ash has synergistic effects in soil
stabilization [19,20]. The pozzolanic reactions between these materials and the soil matrix
contribute to the development of cementitious compounds, thereby increasing strength and
reducing permeability [21]. In addition, the incorporation of rice husk ash contributes to
the utilization of an agricultural waste product and increases sustainability in construction
practices [22,23].

The success of soil stabilization using hydrated lime and rice husk ash depends
on various factors such as the type and properties of the soil, dosage and ratio of sup-
plementary materials/additives, curing conditions, and testing methods used [24,25].
Accurate predictive models that consider these parameters can help optimize the stabiliza-
tion process and ensure the desired engineering performance of treated soils [25,26]. The
accurate prediction of soil strength performance is crucial for geotechnical engineering.
Artificial intelligence (AI) methods, including ANN, SVM, ANFIS, CNN, LSTM, decision
trees, and GPR, have been applied in various geotechnical applications [27–30]. ANN
is the most widely used AI technique, contributing to improved predictions and opti-
mizations in geotechnical engineering [27]. These AI methods enhance understanding
and decision-making in areas such as frozen soils [31–33], rock mechanics [34–36], slope
stability [37–39], soil dynamics [40–44], tunnels [45–47], dams [48–50], and unsaturated
soils [51–53]. Onyelowe et al. [25] used artificial neural network (ANN) algorithms to pre-
dict the strength parameters of expansive soil treated with hydrated-lime activated rice
husk ash. The algorithms performed well, with the Levenberg−Marquardt Backpropaga-
tion (LMBP) algorithm showing the most accurate results. The predicted models had a
strong correlation coefficient and a high performance index.

AI algorithms aimed at material characterization and design have faced doubt because
people are worried about the opacity and reliability of their intricate models [54]. The
primary obstacle is the absence of transparency and methods to extract knowledge from
these models [54]. There are different categories of mathematical modeling techniques:
white-box, black-box, and grey-box, each varying in their level of transparency [54,55].
White-box models are grounded in fundamental principles and can elucidate the underlying
physical relationships within a system [54–56]. On the other hand, black-box models lack a
clear structure, making it difficult to understand their inner workings [54–56]. Grey-box
models fall in between, as they identify patterns in data and offer a mathematical structure
for the model [54–56]. Artificial neural networks (ANN) are well-known examples of black-
box models in engineering [57]. Although they are widely used, they lack comprehensive
information about the relationships they establish. In contrast, genetic programming (GP)
and classification and regression trees (CART) are newer grey-box modeling techniques
that employ an evolutionary process to develop explicit prediction functions and trees,
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respectively, making it more transparent compared to black-box methods such as ANN.
GP and CART models provide valuable insights into system performance as they offer
mathematical and tree structures, respectively, that aid in understanding the underlying
processes. They have shown promise in terms of accuracy and efficiency across various
applications. Here are the benefits of AI-based grey-box models:

- Transparency with Structure: Grey-box models, such as genetic programming (GP)
and classification and regression trees (CART), strike a balance between white-box
and black-box models. They offer transparency by identifying data patterns while
providing a clear mathematical or tree-based structure, making it easier to understand
the model’s operations [58].

- Enhanced Insights: The structured nature of grey-box models allows for a deeper
understanding of the underlying processes. Unlike black-box models such as artificial
neural networks (ANN), GP and CART provide insights into system performance
through their explicit prediction functions and tree structures.

- Transparency in Evolution: Techniques such as genetic programming (GP) use an
evolutionary process to develop prediction functions, making the model’s develop-
ment and evolution more transparent. This transparency aids in tracking the model’s
progress and understanding its decision making [59].

- Accuracy and Efficiency: Grey-box models, including GP and CART, have demon-
strated promise across various applications, offering a combination of accuracy and
efficiency. Their transparency, coupled with the ability to capture complex relation-
ships in data, makes them valuable tools for mathematical modeling in engineering
and other fields.

Based on the literature review provided, this research is groundbreaking in its system-
atic application of two distinct grey-box artificial intelligence models: genetic programming
(GP) and classification and regression tree (CART). These models are utilized for the first
time to predict critical soil parameters—California bearing ratio (CBR), unconfined com-
pressive strength (UCS), and resistance value (Rvalue) determined through in-situ cone
penetrometer tests—for expansive soil treated with recycled and activated rice husk ash
composites. The study further evaluates the significance of input parameters, performing
a sensitivity analysis on 121 datasets, each consisting of seven inputs: hydrated-lime ac-
tivated rice husk ash (HARHA), liquid limit (LL), plastic limit (PL), plasticity index (PI),
optimum moisture content (wOMC), clay activity (AC), and maximum dry density (MDD).
HARHA, a material produced by blending 5% hydrated lime with rice husk ash, acts as
an activator, and it is created from the controlled combustion of rice husk waste. Different
proportions of HARHA (ranging from 0.1% to 12% in increments of 0.1% of weight) were
employed to treat clayey soil, with the resulting effects on soil properties meticulously
examined and documented within the study.

2. Database Processing

This study uses a 121-laboratory database, originally studied by Onyelowe et al. [25],
who examined expansive clays by conducting tests on both untreated and treated soils to
determine the datasets by observing the effects of stabilization on the predictor parameters.
Onyelowe et al. [25] conducted a series of tests utilizing a laboratory to gather the data.
The database is represented as three-dimensional diagrams in Figure 1. Experiments were
conducted on expansive clay soil, both untreated and treated with hydrated-lime activated
rice husk ash (HARHA). The HARHA, a binder developed by blending rice husk ash with
hydrated lime, was tested at varying proportions on the clayey soil.
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Figure 1. Distribution of the database used based on (a) CBR, (b) UCS, and (c) resistance values.

Figure 2 depicts the effect of adding HARHA on three parameters: CBR, UCS, and
resistance values. The results indicate that all three parameters increased with the percent-
age of additive until they reached a peak. Afterward, they showed slight decreases. An
approximate value of 11.5% could be considered the optimal amount of HARHA additive.

The existing database contained seven inputs, which were as follows: hydrated-lime
activated rice husk ash (HARHA), liquid limit (LL), plastic limit (PL), plasticity index (PI),
optimum moisture content (wOMC), clay activity (AC), and maximum dry density (MDD).
The plasticity index parameter was derived by subtracting the liquid limit from the plastic
limit, while the remaining parameters were independent and lacked a direct correlation.

This database is noteworthy for using one of the largest sources of laboratory-derived
UCS, CBR, and Rvalue measurements documented in the literature, boasting a considerable
number of entries, totaling seven.

Table 1 shows the statistical characteristics of the database utilized in this study,
presenting the minimum, maximum, and mean values for both inputs and outputs. These
descriptive statistics offer valuable insights into the distribution and properties of the data,
providing crucial information for model selection and optimization in subsequent analyses.
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Figure 2. Effect of HARHA on (a) CBR, (b) UCS, and (c) resistance values.

Table 1. Descriptive statistics for the collected database.

Variable Observations Minimum Maximum Mean Std. Deviation

Outputs
CBR (%) 121 8.000 44.600 23.999 11.743

UCS (kN/m2) 121 125.000 232.000 172.868 31.659
Rvalue 121 11.700 27.000 20.503 4.480

Inputs

HARHA (%) 121 0.000 12.000 6.000 3.507
LL (%) 121 27.000 66.000 47.997 11.536
PL (%) 121 12.800 21.000 17.173 2.414
PI (%) 121 14.000 45.000 30.824 9.148

wOMC (%) 121 16.000 19.000 18.024 0.768
AC 121 0.600 2.000 1.348 0.398

MDD (g/cm3) 121 1.250 1.990 1.686 0.243

2.1. Outliers

Within the realm of database preparation, a pivotal concern revolves around the
detection of outliers. Within a database context, an outlier denotes a data point that exhibits
notable deviation from the majority of the data points [60,61]. The imperative lies in
identifying and outrightly excluding these data points from the modeling process, as they
have the potential to lead the model astray. Recognizing these particular data instances
constitutes a pivotal stride in statistical analysis, commencing with the description of
normative observations [62–64]. This entails an overarching evaluation of the graphed
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data’s configuration, with the identification of extraordinary observations that diverge
significantly from the data’s central mass—termed outliers.

Two graphical techniques commonly used to identify outliers are scatter plots and box
plots [54,65]. The latter utilizes the median, lower quartile, and upper quartile to display
the data’s behavior in the middle and at the distribution’s ends. Furthermore, box plots
employ fences to identify extreme values in the tails of the distribution. Points beyond an
inner fence are considered mild outliers, while those beyond an outer fence are regarded as
extreme outliers [54,66,67].

For this study, a dataset consisting of 121 observations was analyzed using a box
plot to detect outliers. The process involved computing the median, lower quartile, up-
per quartile, and interquartile range, followed by calculating the lower and upper fences.
Figure 3 indicates that the first quarter parameter of CBR, UCS, and Rvalue values were
14, 141, and 17, respectively, and values of 34, 194, and 24 for the third quarter, respec-
tively. The results demonstrate favorable distribution across the parameter range, from
the minimum to the maximum values, with appropriately sized boxes. Additionally, the
average parameters within all three boxes fall towards the center of the box, a positive
indicator of data dispersion. According to Figure 3, no points were found to exceed the
extreme values defined by the computed fences. Furthermore, Figure 4 shows histograms
for different outputs.
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2.2. Testing and Training Databases

The dataset employed in this study was divided into two distinct categories: the
training database and the testing database. To achieve this, a random selection process was
utilized, assigning 80% of the data to the training database and the remaining 20% to the
testing database. The decision to allocate 80% of the data to the training database and the
remaining 20% to the testing database is crucial in machine learning due to several reasons.
The larger training set allows the model to learn patterns and generalize from the data,
while the separate testing set provides an accurate evaluation of the model’s real-world
predictive capabilities, avoiding overfitting and ensuring robustness. This division also
permits validation, enabling fine-tuning and parameter optimization, resulting in a more
realistic assessment of the model’s practical utility, which is essential for guiding decisions
on real-world deployment.

Tables 2 and 3 provide a comprehensive overview of the statistical characteristics,
including the minimum, maximum, and average values, for the parameters in the training
and testing databases, respectively. The results of the statistical analysis reveal that the
two databases share similar characteristics, indicating that the data used for training the
artificial intelligence model are representative of the data used for testing the model. This
similarity in statistical properties between the training and testing databases is likely to
enhance the accuracy and robustness of the developed model. The findings from this study
underscore the importance of using representative and well-characterized data for the
development of effective and reliable artificial intelligence models. In Tables 2 and 3, (U95)
is 95% Confidence Interval.
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Table 2. Descriptive statistics for the training database.

Variable Observations Minimum Maximum Mean Std. Deviation U95

Outputs
CBR (%) 97 8.100 44.600 23.030 11.934 2.405

UCS (kN/m2) 97 125.000 232.000 174.351 31.849 6.419
Rvalue 97 11.700 27.000 20.709 4.313 0.869

Inputs

HARHA (%) 97 0.100 12.000 5.697 3.573 0.682
LL (%) 97 27.000 66.000 48.979 11.706 2.238
PL (%) 97 12.800 21.000 17.391 2.448 0.470
PI (%) 97 14.000 45.000 31.589 9.283 1.775

wOMC (%) 97 16.000 19.000 17.991 0.806 0.148
AC 97 0.600 1.980 1.379 0.406 0.077

MDD (g/cm3) 97 1.250 1.990 1.662 0.245 0.048

Table 3. Descriptive statistics for the testing database.

Variable Observations Minimum Maximum Mean Std. Deviation U95

Outputs
CBR (%) 24 8.000 44.600 27.917 10.249 4.327

UCS (kN/m2) 24 126.000 231.000 166.875 30.804 13.000
Rvalue 24 11.700 27.000 19.671 5.118 2.161

Inputs

HARHA (%) 24 0.000 11.500 7.225 2.988 1.678
LL (%) 24 29.000 66.000 44.025 10.095 5.575
PL (%) 24 13.000 21.000 16.292 2.094 1.160
PI (%) 24 16.000 45.000 27.733 8.033 4.422

wOMC (%) 24 16.000 19.000 18.156 0.586 0.377
AC 24 0.700 2.000 1.225 0.347 0.196

MDD (g/cm3) 24 1.250 1.990 1.784 0.215 0.108

2.3. Linear Normalizations

In a database context, each input or output variable is linked to specific units of
measurement. To mitigate the impact of units and improve the efficiency of artificial
intelligence training, a common approach involves data normalization. This process
rescales the data to fit within a standardized range, often between zero and one. The
normalization is achieved through the application of a linear transformation function, as
described below:

Xnorm =
X − Xmin

Xmax − Xmin
(1)

The four terms in this equation are Xmax, Xmin, X, and Xnorm, which correspond to
maximum, minimum, actual, and normalized values, respectively.

3. Data-Driven Modelling
3.1. Classification and Regression Tree (CART)

In the realm of data mining, decision tree (DT) stands out as a widely used technique
known for its simplicity and interpretability [68]. Unlike complex black-box algorithms
such as artificial neural networks (ANNs), DT provides a white-box model, making it
easier to comprehend and computationally efficient [69]. Among the various types of DT
methods, CART (classification and regression trees) has demonstrated a high accuracy and
performance for predicting engineering problems [70,71].

A specific type of DT, known as regression tree (RT), employs recursive partitioning to
divide the dataset into smaller regions with manageable interactions [70,71]. RT consists
of root nodes, interior nodes, branches, and terminal nodes. It utilizes a binary-dividing
procedure based on questions about independent variables to achieve optimal splits and
construct a tree with high purity [70,71].
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To select the best split in RT algorithms, the Gini index is often employed [72]. The
partitioning process continues until a stop condition—determined by parameters such as
the minimum number of observations, tree depth, or complexity—is met [73]. Pruning can
be applied to enhance the tree’s generalization capacity and prevent overfitting [74,75].

An essential capability of CART is its ability to detect and eliminate outliers during
the partitioning process [76]. Additionally, CART utilizes principal component analysis
(PCA) to identify crucial parameters for modeling [77,78].

Figure 5 shows a typical decision tree, comprising multiple nodes and branches. As
depicted in the figure, a combination of nodes and branches forms a leaf. Each node is
bifurcated into left and right nodes, guided by specific rules assigned to each branch (for
example, if Node A is less than or equal to ‘a’, then proceed to Node C). Ultimately, the final
node within each leaf reveals the predicted output (exemplified by nodes D–G in Figure 5).
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Figure 5. A typical decision tree for CART.

3.2. Genetic Programming (GP)

Genetic programming (GP) is a remarkable field in artificial intelligence and machine
learning, utilizing evolutionary algorithms to create computer programs [79]. Proposed by
John Koza in the early 1990s [80], GP has become widely researched and applied across
various domains, including image recognition, classification, and prediction. One of its
key strengths lies in its flexibility, enabling it to address a diverse range of problems in
fields such as engineering, finance, and biology [81]. Moreover, GP’s ability to automati-
cally generate computer programs without human intervention saves valuable time and
effort [82]. Additionally, it excels at optimizing complex functions that may be challenging
for traditional methods, and its creative nature often leads to unexpected and innovative
solutions, potentially uncovering new discoveries.

However, despite its advantages, GP does come with certain drawbacks. Its computa-
tional demands can be time consuming, especially when dealing with large search spaces.
Furthermore, the generated programs can be challenging to understand and interpret,
which can hinder result validation [54,83]. A GP’s performance may also be influenced by
the choice of parameters, and it may not always achieve the optimal solution. Additionally,
there is a risk of overfitting, as GP-generated programs can become overly specialized to
the training data, potentially limiting their generalization to new and unseen data [54,83].
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Genetic programming manipulates and optimizes a population of computer models
(or programs) to find the best-fitting solution for a given problem. It involves creating an
initial population of models, each comprising sets of user-defined functions and terminals.
These functions may include mathematical operators (e.g., +, −, ×, and /), Boolean logic
functions (e.g., AND, OR, and NOT), trigonometric functions (e.g., sin and cos), or other
custom functions, while the terminals can consist of numerical constants, logical constants,
or variables. These elements are randomly combined in a tree-like structure, forming a
computer model that is evolved over generations to improve its performance in solving the
problem at hand, as represented in typical GP tree structures. Figure 6 shows an example
of a function of [(x1 + x2)× (x3 − 3)]2.
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4. Results

In the development of artificial intelligence (AI) systems, the evaluation of various
models is of paramount importance. This assessment process relies heavily on statisti-
cal parameters, which are instrumental in gauging the performance of AI models. The
essential parameters are outlined by Equations (2)–(7), encompassing the mean absolute
error (MAE), mean squared error (MSE), root mean squared error (RMSE), mean squared
logarithmic error (MSLE), root mean squared logarithmic error (RMSLE), and coefficient of
determination (R2). Leveraging these metrics, both researchers and developers can aptly
gauge and juxtapose the efficacy of distinct AI models [54].

MAE =
∑N
(
Xm − Xp

)
N

(2)

MSE =
∑N
(
Xm − Xp

)2

N
(3)

RMSE =

√
∑N
(
Xm − Xp

)2

N
(4)

MSLE =
∑N
(
log10[Xm + 1]− log10

[
Xp + 1

])2

N
(5)

RMSLE =

√
∑N
(
log10[Xm + 1]− log10

[
Xp + 1

])2

N
(6)
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R2 =

[
∑N

(
Xm − Xm

)(
Xp − Xp

)
∑N
(
Xm − Xm

)2
∑N
(
Xp − Xp

)2

]2

(7)

where N, Xm, and Xp are the number of datasets, actual values, and predicted values,
respectively. In addition, Xm and Xp are the averages of the actual and predicted values,
respectively. To have the best model, R2 should be 1 and MAE, MSE, RMSE, MSLE, and
RMSLE should equal 0.

4.1. Classification and Regression Tree (CART) Results

In this study, the development of the CART model was carried out using the MATLAB
2020 software package. The validity of a CART model hinges on selecting suitable distance
ranges and maximum tree depth. Several strategies were tested through trial and error to
determine the optimal values for these key parameters. Typically, setting a high value for
the maximum tree depth may lead to an excessively complex model. Conversely, opting
for a small value for the tree depth may result in the removal of certain input parameters,
as the algorithm strives to minimize prediction errors. By iterating through trial and error,
the most favorable CART model with well-tuned key parameters can be identified.

Figures 7–9 present the performance of the optimal CART model, showcasing the pre-
dicted values versus the actual values obtained from experiments for CBR, UCS, and Rvalue
testing, respectively. The results indicate that the CART method demonstrated satisfactory
predictive capabilities in accurately determining the CBR, UCS, and Rvalue parameters.

Tables 4–6 present a detailed evaluation of the best CART model’s overall performance
in predicting the CBR, UCS, and Rvalue parameters. These tables aim to provide compre-
hensive insights into the accuracy and generalization capabilities of the model on both
the training and testing databases. Table 4 focuses on the CART model’s performance
in predicting the CBR parameter. The metrics utilized for the evaluation include MAE,
MSE, RMSE, MSLE, RMSLE, and R2. The model demonstrates excellent accuracy, with low
MAE (0.976 for training and 1.141 for testing) and RMSE (1.195 for training and 1.363 for
testing) values. The minimal MSLE and RMSLE values (approximately 0.004) indicate that
the model’s predictions were closely aligned with the actual CBR values. Additionally,
the high R2 values (0.990 for training and 0.982 for testing) suggest that the model cap-
tures a substantial portion of variance in the data, leading to reliable predictions of the
CBR parameter.
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Figure 7. The results of CART modelling for predicting CBR using (a) training and (b) testing databases.
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Figure 8. The results of CART modelling for predicting UCS using (a) training and (b) testing databases.
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Figure 9. The results of CART modelling for predicting Rvalue using (a) training and (b) testing
databases.

Table 5 evaluates the CART model’s performance in predicting the UCS. The model
performed admirably with reasonably low MAE (3.262 for training and 3.742 for testing)
and RMSE (3.868 for training and 4.300 for testing) values, showcasing its accuracy in
predicting the UCS. The MSLE and RMSLE values (both approximately 0.001) further
reinforce the strong correlation between predicted and actual values. The high R2 values
(0.985 for training and 0.980 for testing) indicate that the model captured a significant
portion of variation in the data, resulting in reliable UCS predictions.

Table 6 highlights the CART model’s performance in predicting the Rvalue parameter.
Once again, the model delivered impressive results, as indicated by the low MAE (0.539 for
training and 0.548 for testing) and RMSE (0.672 for training and 0.663 for testing) values. The
MSLE and RMSLE values (both approximately 0.001) reinforce the close correspondence
between the predicted and actual values. Moreover, the high R2 values (0.975 for training
and 0.983 for testing) demonstrate a strong correlation between the model’s predictions
and the actual resistance values.
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Table 4. Overall performance of the best CART model to predict the CBR for both the training and
testing databases.

Metric Training Database Testing Database

MAE 0.976 1.141
MSE 1.428 1.858

RMSE 1.195 1.363
MSLE 0.004 0.004

RMSLE 0.066 0.064
R2 0.990 0.982

Table 5. Overall performance of the best CART model to predict the UCS for both the training and
testing databases.

Metric Training Database Testing Database

MAE 3.262 3.742
MSE 14.958 18.493

RMSE 3.868 4.300
MSLE 0.001 0.001

RMSLE 0.023 0.027
R2 0.985 0.980

Table 6. Overall performance of the best CART model to predict the resistance value for both the
training and testing databases.

Metric Training Database Testing Database

MAE 0.539 0.548
MSE 0.451 0.439

RMSE 0.672 0.663
MSLE 0.001 0.001

RMSLE 0.035 0.033
R2 0.975 0.983

The consistency in the model’s performance between the training and testing databases
across all three tables indicates its ability to generalize unseen data well. Generalization is
a critical aspect of machine learning models as it ensures that the model can make accurate
predictions on new data, not just the data it was trained on. The fact that the model main-
tains its accuracy on unseen data suggests that it successfully learned meaningful patterns
and relationships from the training database without overfitting. Furthermore, the values
of MSLE and RMSLE close to zero in all three tables indicate that the model’s predictions
were robust and stable, even for cases where the actual values exhibited significant fluc-
tuations. This property is particularly useful in engineering, where data may have wide
variations, and the logarithmic metrics provide a more balanced evaluation of the model’s
performance. Moreover, the low values of the MAE, MSE, and RMSE metrics across all
three tables indicate that the CART model performed well in minimizing the discrepancy
between predicted and actual values. This suggests that the model’s predictions were
relatively close to the true values. Small differences between the predicted and actual
values are crucial in engineering applications, where precise estimations are vital for design,
construction, and safety considerations.

Figures 10–12 illustrate the optimal and best CART models for predicting the CBR,
UCS, and Rvalue, respectively. Each model consists of 15 nodes, with the LL, PL, and PI
serving as the root nodes, respectively. The model determined the number of nodes, which
is an outcome of the modeling process. The node count can vary based on the initial tree
depth chosen. A higher initial tree depth can result in more nodes, leading to increased
model complexity and longer processing times. In this context, an optimal model consisted
of 15 nodes.
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To obtain the predicted number using any of these models, one must follow the
branch rule from node 1 to the end of the tree. These CART models offer valuable tools for
engineers and researchers to make accurate predictions based on specific input conditions,
facilitating informed decision making in various engineering applications. Further analysis
and examination of these models can provide deeper insights into their performance and
effectiveness in real-world scenarios.

4.2. Genetic Programming (GP) Results

In this study, the second grey-box model under investigation was genetic programming
(GP). To attain the highest performance, several iterations of this model were tested, and
the most optimal configuration was identified. Table 7 presents a summary of the crucial
parameters used in the GP model, encompassing various properties that were adjusted to
achieve the best possible predictive performance for the target variable.

Table 7. The properties of the optimum GP model for predicting the CBR, UCS, and Rvalue.

Output
Variable

Population Probability of GP Operations Selection Tree Structure Level Random
Constants

GP imp.
Parameters

Size Initia
lization Crossover Mutation Repro

duction Elitism Method Tour
Size

Max.
Initial

Max.
Operation

From-
to Count Brood Size

CBR 500 HalfHalf 0.99 0.99 0.2 1
Rank

Selection

2 7 7 0–1 3 7
UCS 300 HalfHalf 0.99 0.95 0.2 1 2 6 6 0–1 3 6
Rvalue 250 HalfHalf 0.99 0.90 0.2 1 2 5 5 0–1 3 5

The parameters listed in Table 7 were derived from a series of deliberate attempts to
refine the model, with the goal of finding the combination of values that produces the best
balance of accuracy and performance. This iterative process involves making adjustments,
experimenting with different settings, and analyzing the results to reach the most effective
configuration. The table serves as a summary of these endeavors, showcasing the parameter
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values that have been identified as the most optimal based on the criteria of prediction
accuracy and overall model quality.

Table 7 provides a detailed summary of the properties of the optimum GP model
utilized to predict the CBR, UCS, and Rvalue parameters. Each parameter has its unique
configuration in the GP model, which plays a crucial role in determining its predictive
performance. The table presents key properties such as the population size, probabilities
of GP operations (crossover, mutation, and reproduction), tree structure level, random
constants, selection method, tour size, maximum initial and operation tree depth, range for
initial values, count of node replacements during crossover, and brood size. By meticulously
adjusting these properties for each parameter, the authors aimed to optimize the GP model’s
accuracy in providing reliable CBR, UCS, and Rvalue predictions.

For each parameter, the GP model followed the HalfHalf method for generating
individuals, leading to linear trees with a depth of 1. The selection method utilized was
‘rank selection’ with a tour size of 2, and various probabilities for GP operations were set,
including 0.99 for crossover, 0.99 for mutation, and 0.2 for reproduction. The GP model
incorporated two random constants, and it defined the maximum initial and operation tree
depth based on values such as 7 for the CBR, 5 for the Rvalue, and 6 for the UCS. The range
for initial values varied from 0 to 1, and during crossover, a count of 3 nodes was replaced.
Furthermore, the brood size is set at 7 for the CBR, 5 for the Rvalue, and 6 for the UCS. The
properties listed in Table 7 offer crucial insights into the GP model’s tailored configuration
for predicting the CBR, UCS, and Rvalue.

Figures 13–15 show comparisons between the predicted CBR, UCS, and Rvalue gen-
erated by the GP model and the actual values based on results obtained from the testing
and training databases. The GP model exhibited a highly satisfactory performance for
predicting the CBR, UCS, and Rvalue parameters.

Tables 8–10 present the overall performance of the best GP model in predicting the
CBR, UCS, and Rvalue parameters for both the training and testing databases, respectively.
Each table consists of various metrics that evaluate the model’s predictive capability.
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Figure 13. The results of GP modelling for predicting the CBR for (a) training and (b) testing databases.
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Figure 14. The results of GP modelling for predicting the UCS for (a) training and (b) testing databases.
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Figure 15. The results of GP modelling for predicting the Rvalue for (a) training and (b) testing databases.

Table 8 focuses on predicting the CBR parameters and contains six evaluation metrics,
namely MAE, MSE, RMSE, MSLE, RMSLE, and R2. These metrics provide an assessment
of the model’s accuracy and goodness of fit. For the training database, MAE was 1.508,
indicating an average absolute error of 1.508 between the predicted and actual CBR values.
The MAE for the testing dataset was 1.096. Lower MAE and RMSE values are desirable
as they indicate a better model performance. The high R2 values (0.978 for training and
0.981 for testing) suggest that the GP model explained a significant portion of the variance
in the CBR data.

Table 9 focuses on predicting the UCS and shares the same evaluation metrics as
Table 8. The GP model exhibited an impressive performance for predicting the UCS, with
lower MAE, MSE, and RMSE values for both the training and testing datasets compared
with the CBR predictions reported in Table 8. The R2 values were also higher (0.990 for
training and 0.993 for testing), indicating a stronger fit to the UCS data.

Table 10 presents various evaluation metrics associated with the Rvalue predictions.
The GP model’s performance for Rvalue predictions was outstanding, with very low MAE,
MSE, and RMSE values for both the training and testing datasets. The R2 values were
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exceptionally high (0.998 for training and 0.998 for testing), demonstrating an excellent fit
of the model to the Rvalue data.

Table 8. Overall performance of the best GP model to predict the CBR for both the training and
testing datasets.

Metric Training Database Testing Database

MAE 1.508 1.096
MSE 3.111 1.917

RMSE 1.764 1.385
MSLE 0.012 0.005

RMSLE 0.108 0.074
R2 0.978 0.981

Table 9. Overall performance of the best GP model to predict the UCS for both the training and
testing datasets.

Metric Training Database Testing Database

MAE 2.160 1.841
MSE 9.545 6.677

RMSE 3.089 2.584
MSLE 0.000 0.000

RMSLE 0.015 0.013
R2 0.990 0.993

Table 10. Overall performance of the best GP model to predict the Rvalue for both the training and
testing datasets.

Metric Training Database Testing Database

MAE 0.131 0.165
MSE 0.029 0.051

RMSE 0.169 0.225
MSLE 0.000 0.000

RMSLE 0.009 0.014
R2 0.998 0.998

Below is the recommended equation obtained from the GP model:

CBR = ((X1 − ((X1 − R1 × X1)× X4 × R1))−
((

X1
2 × (X5 − X1)

)
× (((X1 − X3 × X5)× X6)× (X7 + X4))

)
) (8)

UCS =
(

X1
4
3 +

((
X1

2 × R2

)
×
(

X2 − X6 + X3
3
)))

(9)

Rvalue = (X1 + (((X4 × X5) + (X5 + R3))× (R3 × X5))) (10)

where X1, X2, X3, X4, X5, X6, and X7 are HARHA, LL, PL, PI, wopt, Ac, and MDD, respec-
tively. In addition, the values of R1, R2 and R3 are constants and equal to 0.32, 0.92, and
0.09, respectively.

5. Discussion
5.1. Comparison of CART and GP Models

Tables 11–13 provide the results of the proposed CART and GP models in predicting the
CBR, UCS, and Rvalue parameters for both the training and testing databases, respectively.
The performance metrics evaluated for each model included the MAE, MSE, RMSE, MSLE,
RMSLE, and R2.
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Table 11. Results of the proposed CART and GP models in predicting the CBR for both the training
and testing databases.

Performance Metrics
Training Testing

CART GP CART GP

MAE 0.976 1.508 1.141 1.096
MSE 1.428 3.111 1.858 1.917

RMSE 1.195 1.764 1.363 1.385
MSLE 0.004 0.012 0.004 0.005

RMSLE 0.066 0.108 0.064 0.074
R2 0.990 0.978 0.982 0.981

Table 12. Results of the proposed CART and GP models in predicting the UCS for both the training
and testing databases.

Performance metrics
Training Testing

CART GP CART GP

MAE 3.262 2.160 3.742 1.841
MSE 14.958 9.545 18.493 6.677

RMSE 3.868 3.089 4.300 2.584
MSLE 0.001 0.000 0.001 0.000

RMSLE 0.023 0.015 0.027 0.013
R2 0.985 0.990 0.980 0.993

Table 13. Results of the proposed CART and GP models in predicting the Rvalue for both the training
and testing databases.

Performance metrics
Training Testing

CART GP CART GP

MAE 0.539 0.131 0.548 0.165
MSE 0.451 0.029 0.439 0.051

RMSE 0.672 0.169 0.663 0.225
MSLE 0.001 0.000 0.001 0.000

RMSLE 0.035 0.009 0.033 0.014
R2 0.975 0.998 0.983 0.998

For the CBR predictions (see Table 11), it can be observed that the GP model generally
performed slightly worse than CART on the training database across all metrics. However,
for the testing database, the performance of the two models was generally on par with each
other. For the UCS predictions (see Table 12), the GP model performed better than CART on
both the training and testing datasets — that is, the GP model consistently showed lower
MAE, MSE, RMSE, MSLE, and RMSLE values compared to those obtained for the CART
model. For the Rvalue predictions (see Table 13), the GP model significantly outperformed
CART on both the training and testing datasets across all metrics. In this regard, the GP
model achieved noticeably lower MAE, MSE, RMSE, MSLE, and RMSLE values compared
to the CART model.

Figures 16 and 17 present convergence curves associated with the output variables
(predicted by the proposed CART and GP models) for the R2 and RMSE parameters,
respectively. The findings of this study indicate that the GP model initially achieved
superior accuracy across all graphs during the first iteration. However, it required a higher
number of attempts (iterations) to eventually reach its maximum accuracy level, with the
convergence occurring between the 80th and 120th iterations. On the other hand, the CART
method exhibited a relatively lower accuracy in the first iteration. However, the CART
method demonstrated a quicker ability to enhance its accuracy over successive iterations,
enabling it to reach its maximum accuracy level sooner, typically between the 50th and 80th
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iterations. This suggests that while the GP model initially showed promise in accuracy, the
CART method displayed a more efficient improvement trajectory, ultimately reaching its
peak accuracy earlier in the iterative process. This insight highlights the dynamic trade-off
between initial accuracy and convergence speed between these two modeling approaches.

The difference in accuracy patterns between the GP and CART models can be at-
tributed to the inherent nature of their respective algorithmic structures and optimization
processes. The GP model’s initial ‘lucky’ solutions might explain its early higher accu-
racy, but the CART method’s efficient splitting criteria and incremental refinement process
allowed it to quickly catch up and even in some cases surpass the GP model’s accuracy
by reaching its peak earlier in the iterative process. The trade-off here is that the CART
method’s accuracy improvement curve might have initially started slower, but accelerated
as the iterations progressed, leading to faster convergence towards the optimal solution.
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Figure 16. Convergence curves for the R2 parameter associated with (a) CBR, (b) UCS, and (c) Rvalue

predicted by the proposed CART and GP models.
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Figure 17. Convergence curves for the RMSE parameter associated with (a) CBR, (b) UCS, and
(c) Rvalue predicted by the proposed CART and GP models.

5.2. Sensetivity Analysis

In the realm of data-driven modeling, the assessment of input parameters’ significance
plays a crucial role. This evaluation involves a systematic process: each individual input
parameter is intentionally modified by both increasing and decreasing it by 100%, and then
the resulting errors in the models are meticulously observed. This meticulous analysis
serves as a tool to gauge the sensitivity of each model to particular parameters. When
the error values are higher, it indicates that the model is more sensitive to those specific
parameters, whereas lower error values suggest that the parameter being examined has a
relatively lesser impact on the overall model performance. This methodology allows us to
pinpoint which input parameters significantly influence the model’s outcomes and helps
us fine-tune the model for better results.

Figures 18–20 provide a visual depiction of the importance of the input parameters
across the proposed CART and GP models for predicting the CBR, UCS, and Rvalue. These
figures offer valuable insights into how the models react to changes in various input
parameters and aid in identifying critical factors influencing the predictive performance of
the models.
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Figure 18. The importance of input parameters in predicting the CBR for the proposed (a) CART and
(b) GP models.
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Figure 19. The importance of input parameters in predicting the UCS for the proposed (a) CART and
(b) GP models.
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Figure 20. The importance of input parameters in predicting the Rvalue for the proposed (a) CART
and (b) GP models.

Tables 14–16 provide a ranking of the input parameters (in terms of their importance)
for the proposed models used for predicting the CBR, UCS, and Rvalue, respectively. In
this ranking, ‘Rank 1’ corresponds to the highest importance, representing the most critical
parameter, while ‘Rank 7’ indicates the lowest importance.

Table 14. Ranking results of variable importance for the proposed mathematical models to predict
CBR.

Model
Input Parameters

HARHA LL PL PI wopt AC MDD

CART 1 2 5 5 5 4 3
GP 1 6 6 2 3 5 4

Total Score 2 8 11 7 8 9 7
Ranking 1 4 7 2 4 6 2
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Table 15. Ranking results of variable importance for the proposed mathematical models to predict
UCS.

Model
Input Parameters

HARHA LL PL PI wopt AC MDD

CART 1 2 3 4 4 4 4
GP 1 2 4 4 4 3 4

Total Score 2 4 7 8 8 7 8
Ranking 1 2 3 5 5 3 5

Table 16. Ranking results of variable importance for the proposed mathematical models to predict
resistance values.

Model
Input Parameters

HARHA LL PL PI wopt AC MDD

CART 1 2 5 4 5 5 3
GP 2 4 4 3 1 4 4

Total Score 3 6 9 7 6 9 7
Ranking 1 2 6 4 2 6 4

Based on the results from Table 14, the parameters HARHA, MDD and PI emerge as
the most crucial factors for predicting the CBR. In contrast, the parameters PL and clay
activity AC hold the least importance in this prediction. Similarly, the findings from Table 15
indicate that the parameters HARHA and LL play pivotal roles, exerting the most influence
for UCS predictions. Lastly, as shown in Table 16, the parameters HARHA, LL, and wopt
hold the highest levels of importance for predicting the Rvalue. Conversely, parameters PL
and AC have the least influence on this prediction.

5.3. Limitations

The present work advances the field by specifically focusing on predicting the soil
strength properties for hydrated-lime activated rice husk ash-treated soil. It introduces inno-
vative and readily applicable equations and trees derived from grey-box machine learning
models, namely CART and GP. The study’s findings on the superior predictive capabilities
of GP equations, particularly for the UCS and Rvalue parameters, is a notable contribution.
The integration of interpretable yet flexible machine learning models within geotechnical
engineering, as practiced in the present study, highlights its potential to enhance decision-
making processes and safety measures in future infrastructure development projects.

The study also identifies some limitations and challenges. One limitation is the reliance
on a specific laboratory database, which most likely does not represent all possible scenarios
encountered in the field; in other words, the generalization of the proposed models to
different conditions and materials could be a concern. Additionally, while the GP approach
showed promising results, it has its computational demands and may be challenging
to interpret, which could pose limitations in real-world engineering applications. The
risk of overfitting in GP-generated programs also needs to be addressed to ensure their
generalization to unseen data.

6. Conclusions

This paper focused on developing predictive equations and trees using data-driven ap-
proaches for three crucial geotechnical properties of hydrated-lime activated rice husk ash-
treated soil, namely the California bearing ratio (CBR), unconfined compressive strength
(UCS), and resistance value (i.e., Rvalue from an in-situ cone penetrometer test). Two mod-
els, namely classification and regression trees (CART) and genetic programming (GP),
were employed to predict these properties based on seven input parameters, consisting of
hydrated-lime activated rice husk ash (HARHA) content, liquid limit (LL), plastic limit (PL),
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plasticity index (PI), optimum moisture content (wOMC), clay activity (AC), and maximum
dry density (MDD).

The proposed CART and GP models both displayed commendable predictive aptitude
for the CBR, UCS, and Rvalue parameters. The models were evaluated using various perfor-
mance metrics, including MAE, MSE, RMSE, MSLE, RMSLE, and R2. The performance of
the models was consistent across both the training and testing datasets, indicating their
ability to generalize unseen data well.

Comparing the two models, CART generally outperformed GP in terms of predicting
the UCS and Rvalue, particularly on the testing database. However, for the CBR predictions,
CART demonstrated a slightly better performance on the training database, while GP
performed slightly better on the testing database. Overall, both models proved effective in
predicting the geotechnical properties under investigation. Additionally, the study assessed
the importance of individual input parameters in the predictive models. This analysis
provided valuable insights into the sensitivity of each model to specific parameters, helping
identify critical factors influencing the models’ performance. The findings of this study
contribute to the understanding of using data-driven approaches in predicting engineering
properties of soils, which can have significant applications in geotechnical engineering and
construction. The developed models offer valuable tools for engineers and researchers to
make accurate predictions based on specific input conditions, facilitating informed decision
making in various geoengineering applications.
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