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Abstract: It is well recognised that plant vegetation and roots are capable of improving the shear
strength of hillslopes by reinforcing soil shear resistance. Several key factors influencing the level
of slope reinforcement include root geometry, orientation and strength. To assess the mechanical
performance of vegetated slopes using numerical methods, root structures can be represented by beam
and pile elements to mirror root behaviour. In contrast, root reinforcement can be modelled indirectly
through a root cohesion factor, supplying additional strength to the soil surrounding the root zone.
In this paper, correlations between these two numerical methods are presented, highlighting the
applicability of each technique based on various root characteristics. Three types of root geometries
are presented, consisting of a primary tap root, a secondary cohesion zone surrounding the main root
and a root branching process. The results of the finite element analysis demonstrate the variation
in the slope factor of safety for both methods, with a set of correlations between the two modelling
approaches. A series of stability charts are presented for each method, quantifying the effects of root
characteristics on slope reinforcement.

Keywords: root reinforcement; apparent root cohesion; slope stability analysis

1. Background

Vegetation can have a beneficial effect on slope stability and erosion due to the re-
inforcement properties of plant roots, vertically anchoring the uppermost soil to the un-
derlying slope. In many cases, roots can provide a sustainable alternative to soil nails,
geosynthetics and retaining walls, reinforcing slopes against shallow failure [1–3]. The role
of root vegetation in providing additional slope strength can be divided into two distinct
categories: mechanical and hydrological effects. Mechanical reinforcement is supplied
by the tensile strength of the roots, adding cohesive strength to the soil mass through an
increase in the apparent cohesion, known as root cohesion (cr) [4,5]. Typical observations
of the apparent root cohesion range from 1 kPa to 17.5 kPa.

The use of vegetation for slope reinforcement has been widely implemented for a
variety of plants including grass, shrubs and trees. Although these effects have often been
assessed in a qualitative manner, a number of pioneering studies were conducted in the
1960s with the purpose of quantifying the impact of vegetation on slope stability [6–8].
In contrast to soil cohesion, the internal friction angle remains largely unaffected by the
presence of roots, due to the predominantly random orientation of root structures [9].
In many cases, root reinforcement can also reduce the formation of tension cracks in
the slope surface [10–12]. Roots can impact a number of hydrological characteristics,
including the infiltration of rainfall, run-off velocity and soil moisture content through
transpiration, resulting in an increase in the soil shear strength of the soil due to increased
suction [13–15]. Wu et al. [12] used the limit equilibrium method (LEM) to investigate
forest cover and reinforcement for infinite slopes, while a number of other studies have
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implemented LEM-based analyses for vegetated hillslopes [16,17]. More recently, the finite
element method (FEM) has been used to model apparent root cohesion [18,19]. A number
of additional studies have directly modelled root structures to understand the key root
features impacting numerical slope stability models [20–22]. Dupuy et al. [23] assessed the
pull-out resistance of six categories of root morphology using two-dimensional FEM, while
Mickovski et al. [24] simulated two-dimensional and three-dimensional FEM models of
direct shear tests on multi-rooted soil structures. Further hybrid studies have combined
both methods of analysis to investigate primary tap roots and secondary root zones through
the use of root cohesion factors [25,26].

Root architectures commonly exhibit spatial variability in their composition, with
each root displaying geometrical variations in depth, thickness and branching processes.
Although the effects of root structure variability on a root-to-root basis is uncommon within
slope stability analysis, a number of studies have quantified the characteristics of various
root structures based on a set of statistical distributions [17,27,28]. In cases where the impact
of root structure variability has been considered, minimal differences to slope Factors of
Safety were observed when assessing constant versus linearly increasing root reinforcement
with depth [29].

Often, the effects of root structures are only examined through fibre reinforcement,
providing additional root cohesion [30,31]. One of the most commonly used methods of
estimating root cohesion is the perpendicular root model of Wu [12] and Waldron [32]
(known as the WWM), as defined by:

cr = K·tR (1)

where K is the coefficient used to account for the random orientation of roots with respect to
the slope failure plane, frequently observed between 1.0 and 1.3 [27], and tR is the mobilised
root tensile strength, which can be written as:

tR = Tr·ar (2)

such that Tr (kPa) defines the average root tensile strength per cross-sectional area and ar is
the root area ratio (RAR) [9].

ar =
Ar

A
(3)

where Ar is the total combined cross-sectional area of the roots and A is the soil area
within which the roots are considered. The WWM coefficient K is based on the angle of the
root structure (β), as shown in Figure 1, where the root is displaced a distance of x, with
the initial root segment NPQ, extending to a length of NP′Q′ [33], and φ′ is the effective
cohesion of the soil. K can be used to estimate the root cohesion as shown in Equation (1).

K = cos(β) + sin(β) tan φ′ (4)

As an alternative approach to simulate root reinforcement, structural elements such as
pile and beam elements can be embedded in the soil, allowing for direct simulation where
roots are considered as flexural cables or bending beams. Studies have combined both
methods of analysis to investigate primary tap roots and secondary root zones through the
use of root cohesion factors [25,26]. This research considers FEM simulation of structural
elements to model root reinforcement and topological root structures with comparisons to
root cohesion FEM models presented. The results of the two model paradigms are used to
develop a set of correlations between the direct simulation of root properties and associated
root cohesion factors, bridging the gap between the two techniques.
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Figure 1. WWM model of a disturbed, flexible root, adapted from Waldron and Dakessian [33]. 
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Figure 1. WWM model of a disturbed, flexible root, adapted from Waldron and Dakessian [33].

2. Methodology
2.1. Finite Element Method

The finite element method was adopted to simulate the impact of root cohesion on
shallow slope failure, with the geotechnical FEM package Plaxis 2D [34] chosen based on its
ability to accommodate the scripting of root structural geometries. As part of the analysis,
the slope FOS was determined by performing shear strength reduction (SSR) [35], whereby
the original shear strength parameters defining the Mohr–Coulomb failure envelope are
iteratively reduced by a strength reduction factor (SRF) until failure is observed [36].

2.2. Simulation of Apparent Root Cohesion

Extensive FEM sensitivity analyses of apparent root cohesion factors for shallow
failure were conducted by Chok et al. [18], considering slope geometry, the location of
vegetation and root cohesion depth, the result being a collection of stability charts. The
geometry and shear strength parameters outlined by Chok et al. are shown in Figure 2 and
Table 1, respectively. Figure 2 identifies the root reinforcement zone overlying the rest of the
slope (with height hr). The dimensions of the slope are calculated based on a height H. The
FEM mesh distribution is shown in Figure 3, based on the geometry adopted from Chok
et al. [18] with fine elements concentrated around the expected shallow failure zone. Such
a concentrated mesh distribution is employed for the direct simulation of root structures
for the tap root and branched root simulations to follow.
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Table 1. Geotechnical input parameters of a cohesionless sand as adopted from Chok et al. [18].

Input Variable Value(s)

Elastic modulus (E, kN/m2) 50× 103

Poisson’s ratio (ν) 0.2
Unit weight (γ, kN/m3) 20
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While plant roots can provide reinforcement as a result of their tensile strength and
adhesional characteristics, the capacity to provide additional apparent cohesion to soils
is closely linked to the composition of their root matrix [37]. Based on the species of
vegetation, an increase in shear strength varying from 5 to 20 kPa can be observed [38].
Complexities in root architecture are commonly measured through the root area ratio
as a means to quantify the influence of embedded root systems on the surrounding soil.
Approximately 60–80% of grass-rooted vegetation is found within the top 50 mm of soil,
while trees and shrubs often exhibit roots 1–3 m in depth [2]. The rooting depth and below-
ground spreading geometries for a variety of species is the focus of Schenk and Jackson [39].
Based on the associated dataset, Zhu et al. [22] fitted a log-normal root length distribution
with a mean and coefficient of variation of 2.2 and 0.9 m, respectively. In determining the
influence of root diameters on the stiffness of combined soil–vegetation samples, Operstein
and Frydman [40] presented a set of correlations based on four plant varieties. Similarly,
relationships between tensile strength, root length, density and moisture content are the
subject of laboratory-based studies [41]. Direct evidence suggests that root tensile strengths
express significant variation as a function of root diameter [30,41]. Although in this study,
the direct effects of highly variable root architectures are not assessed, the aforementioned
research provides context for the variable nature of root structures.

As a baseline for comparison with the tap root and branched root models subsequently
presented, a set of apparent root cohesion sensitivity analyses were conducted for the
parameters of a cohesionless sand proposed by Chok et al. [18] and outlined in Table 2,
varying the apparent root cohesion and the depth of the root cohesion zone for assorted
friction angles. Selection of the proposed soil provides a validating case with which to
consider effective root cohesion values as with the aforementioned study, providing strong
agreement. Figures 4 and 5 highlight the increase in slope FOS ratio (which is normalised
with respect to the FOS for zero root cohesion FOScr) in relation to the apparent root
cohesion, for the root reinforcement zone depth and friction angle, respectively, highlighting
the increase due in the slope FOS due to the strength added by the apparent root cohesion.
In the case of apparent root cohesion considered for various root zone depths, the trend
is linear over a range of 1 kPa to 8 kPa. The spread of results is minimal for small levels
of apparent root cohesion. A linear trend is also observed for all of the simulated friction
angles, with all R2 coefficient of determination values in excess of 0.97, indicating strong
linear trends. In both cases, the level of reinforcement provided by the apparent cohesion is
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increasingly pronounced with a greater root reinforcement depth and increasing friction
angle. Figure 6 provides an example of the shallow failure mechanism observed for an
apparent root cohesion of 4 kPa and friction angle of 15◦. The geometry dimension H is
equal to 10 m, with a root reinforcement depth of 2 m.

Table 2. Input variables and values for root cohesion parametric studies undertaken.

Input Variable Value(s)

Effective root cohesion (cr, kN/m2) 0, 1, 2, 3, 4, 5, 6, 7, 8
Root cohesion zone depth (m) 0.5, 1, 1.5, 2, 2.5
Effective friction angle (φ′, ◦) 5, 15, 25, 35
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2.3. Primary Taproot Modelling

As an alternative method for modelling the stability of vegetated slopes, root structures
such as primary tap roots can be directly modelled using beams and piles to represent
root structures. FEM simulation of root structures can be modelled using beam elements,
with the interface between the soil and structure presented through springs by a maximum
force (Figure 7).
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In performing a parametric study of root characteristics directly modelled through the
simulation of root structures, the root parameters presented in Zhu et al. [22] were adopted
(Table 3). Root structures were generated through dedicated Python code, used to define
root geometry, spacing and location. Figure 8 presents a typical tap root model, with the
root radius r, depth D and angle with the vertical θ presented. Tap roots are large, central
root structures, which are commonly very thick and straight, growing directly downwards.
Tap roots are in stark contrast to dense fibrous root systems that branch out sideways.
Table 4 presents the list of root properties used to assess the variability in slope safety factor.
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Table 3. Root parameters adopted from Zhu et al. [22].

Parameter Symbol Value

Root pull-out resistance P (kN/m) 2.5
Root tensile capacity T (kN) 12.5
Root shear capacity Q (kN) 6.25
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Figure 8. Slope model incorporating tap root structures.

Table 4. Input variables and values for tap root parametric studies undertaken.

Input Variable Value(s)

Root strength (kN) 6.5, 9.5, 12.5, 15.5, 23.5
Root thickness (m) 0.05, 0.1, 0.15, 0.2, 0.25
Root spacing (m) 0.25, 0.5, 1, 1.25, 1.67, 2.5, 5

Friction angle (φ′, ◦) 5, 15, 25, 35
Root depth (m) 0.5, 1, 1.5, 2, 2.5

Figures 9–12 present the FOS ratio with respect to root density, depth, angle, strength
and thickness for a range of friction angles. The FOS ratio versus root density relationship
highlighted in Figure 9 suggests that once sufficient tap root structures are present within
the defined slope region, the rate at which the root structures are capable of further rein-
forcing the slope begins to diminish, with minimal difference between sands exhibiting
internal friction angles of 15◦ or greater. In contrast, the FOS ratio with respect to root depth
(Figure 10), angle (Figure 11), strength (Figure 12) and thickness (Figure 13) continue to
increase with the friction angle over the defined range, albeit each with distinctly different
profiles. While a linear trend between root depth and the FOS ratio is observed over the
2.5 m depth, the role of root angle induces significant fluctuations in the FOS ratio, which
are not symmetric about the given angle. Although variation in root strength at lower
friction angles signalled minimal change to the FOS ratio, a significant jump is recorded
for the largest friction angle simulated. In the case of primary root thickness, equal-value
increases to the FOS ratio were observed for each friction angle, based on the associated
root thickness. In each case, the FOS ratio was normalised based on the first FOS value in
the parameter set. The variation in root strength over the given range (Figure 12) provided
only minimal contribution to the overall change in FOS, with root depth demonstrating
the greatest impact on slope strength for the parameters tested. Based on the results from
apparent root cohesion simulations (Section 2.2), relationships between primary tap root
parameters and root cohesion were determined, using the comparative FOS values obtained
from both simulation sets. The results present a simple comparison between two distinct
numerical methods for root reinforcement (direct root structural parameters and apparent
root cohesion), allowing apparent root cohesion models to be created based on structural
root properties.
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Figure 14 shows a logarithmic relationship between root density and root cohesion.
For small friction angles, additional root density does not provide an appreciable amount of
reinforcement; however, with an increase in friction angle, elevated levels of root cohesion
are evident.
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Root depth (Figure 15) and angle (Figure 16) supply the greatest amount of root
cohesion for the tested parameters, with 2.5-metre roots providing nearly an additional
10 kPa compared to 0.5-metre-deep roots (φ = 25◦). Although all root structures contribute
to root reinforcement, roots with positive angles (with respect to the perpendicular) result in
significantly higher safety factors than their negative-angled counterparts (note clockwise
rotation denotes positive angles, as shown in Figure 8). It is of interest that over the range
tested, the root tensile strength was not a significant contributor to root reinforcement,
especially with lower friction angles (Figure 17). As with root depth and angle, the effective
root cohesion exhibits increasing linear trends with root thickness (Figure 18).
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2.4. Secondary Cohesion Modelling

The role of mechanical root reinforcement in slope stability can be modelled using
both primary and secondary root structures; however, in most cases, secondary roots are
largely ignored. When modelling a slope containing primary roots, secondary roots and
bare soil, primary roots are often considered as a solid structural element, while secondary
root zones are simulated as a root–soil composite zone [26].

The parametric study of primary and secondary root structures, with their associated
impact on slope stability, is presented through a two-dimensional model (Figure 19). In
keeping with the parameters used in Section 2.3, an additional secondary cohesion zone
was applied through a rectangular region surrounding the primary tap root. The secondary
cohesion zone surrounding the primary root is defined by Rx and Ry, indicating the x and
y dimensions of the secondary root zone. Table 5 presents the primary/secondary root
models simulated, for a root spacing of 1 metre.
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Table 5. Input variables and values for secondary cohesion parametric studies undertaken.

Input Variable Value(s)

Secondary root cohesion (kPa) 1, 2, 3, 4
Secondary root cohesion radius (m) 0.05, 0.1, 0.15, 0.2
Secondary root cohesion depth (m) 0.05, 0.1, 0.15, 0.2

Figures 20 and 21 indicate the FOS sensitivity with respect to secondary root zone
dimensions, while Figure 22 indicates the contribution of the secondary root cohesion value
in reinforcing the slope. By incorporating a secondary root zone, a significant increase in
the FOS can be observed compared to the simulation of solely a primary root structure.
This is especially the case for deeper root structures due to the rapid increase in secondary
root zone area with respect to root depth. Conversely, root zones exhibit minimal impact on
the FOS, suggesting that such structures are not required for shallower root systems. The
relationships of secondary root zone geometry and overall root cohesion are presented in
Figures 23 and 24. Similarly, the level of root cohesion with respect to the level of secondary
root cohesion is shown in Figure 25.
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2.5. Branched Root Model

Despite the simplicity of secondary root zones as a form of indirect modelling of
root reinforcement, the method does not directly simulate the topological features of root
systems. Figure 26 presents the branching processes considered in this study, where B is the
length of each branch, θb is the angle each root branch with respect to the horizontal and L
is the number of branches. A sensitivity analysis was performed for these parameters as
outlined in Table 6, with the mechanical parameters presented in Table 3.
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Table 6. Input variables and values for branched root parametric studies undertaken.

Input Variable Value(s)

Branch length B (m) 0.05, 0.1, 0.15, 0.2, 0.25, 0.3
Branch angle θb (◦) 15, 30, 45, 60

Number of branch layers L 1, 2, 3, 4

Figure 27 highlights the relationship between the number of root branches and the
slope FOS. For shallow roots, the impact of root branching is negligible. An increase to the
branch length produces a largely upward linear trend in the FOS (Figure 28). The angle of
branch roots has an interesting effect on slope reinforcement, with a peak FOS observed
at approximately 30◦; thereafter, an increase in root angle reduces the overall slope FOS
(Figure 29). Figures 30 and 31 display the associated root cohesion factors for the number
of branch layers and the branch length, respectively.
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of the method, the direct simulation of root architectures can be replaced with 

Figure 30. Effective root cohesion versus number of branches.



Geotechnics 2023, 3 297

Geotechnics 2023, 3, FOR PEER REVIEW  20 
 

 

 
Figure 30. Effective root cohesion versus number of branches. 

 
Figure 31. Root cohesion versus root branch length (branch angle 𝜃𝜃𝑏𝑏  =  30º). 

3. Concluding Remarks 
The impact of plant vegetation in providing reinforcement to shallow slopes can be 

assessed through several numerical techniques. When performing finite element method 
slope stability analysis, roots can be simulated either directly by structural elements or 
indirectly through apparent root cohesion factors, with each method exhibiting a range of 
advantages and disadvantages based on available data and model complexity. 

The results detailed in this research present a comparison between three root rein-
forcement methods for shallow slope stability, with a sensitivity analysis identifying rela-
tionships between direct root simulation methods and apparent root cohesion values. The 
following salient conclusions are drawn: 
(1) The proposed method provides a mechanism of comparative assessment whereby 

complex root structures can be associated with a suitable effective root cohesion, ex-
hibiting comparable deformation characteristics and slope safety factors. As a result 
of the method, the direct simulation of root architectures can be replaced with 

Figure 31. Root cohesion versus root branch length (branch angle θb = 30◦).

3. Concluding Remarks

The impact of plant vegetation in providing reinforcement to shallow slopes can be
assessed through several numerical techniques. When performing finite element method
slope stability analysis, roots can be simulated either directly by structural elements or
indirectly through apparent root cohesion factors, with each method exhibiting a range of
advantages and disadvantages based on available data and model complexity.

The results detailed in this research present a comparison between three root re-
inforcement methods for shallow slope stability, with a sensitivity analysis identifying
relationships between direct root simulation methods and apparent root cohesion values.
The following salient conclusions are drawn:

(1) The proposed method provides a mechanism of comparative assessment whereby
complex root structures can be associated with a suitable effective root cohesion,
exhibiting comparable deformation characteristics and slope safety factors. As a
result of the method, the direct simulation of root architectures can be replaced with
somewhat simplified effective root cohesion parameters, whose relationships have
been provided.

(2) In all cases presented, the relationships were found to be either linear or logarithmic in
nature, except when comparing the angles of branched root structures and apparent
root cohesion values.

(3) For extremely shallow root structures of the order of half a metre in depth, minimal
root cohesion is provided regardless of the structural root characteristics, suggesting
little benefit in modelling the roots through structural elements.

(4) The changes in the observed FOS values for the chosen examples are often quite
modest, with most FOS values of the order of 1.0 to 1.3; however, the method provides
a framework that can be further extended to coupled mechanical and hydrological
models.

While each numerical technique has a range of benefits and limitations, it is important
to understand model performance compared with alternative methods. Limitations of the
study and recommendations for future investigation are identified as follows:
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(1) The current study provides a point of comparison between effective root cohesion
and direct root simulation without the presence of groundwater. In addition to the
mechanical benefits in strengthening soil slopes, roots provide significant hydrome-
chanical benefits through the uptake of groundwater, which has not been considered
within the current research.

(2) Direct simulation consists of idealised root architectures that have not taken into
account the heterogeneity of root geometries. The simulation methods presented
within this study can be considered as amenable to Monte-Carlo-style simulation to
determine how complex, spatially variable root patterns can impact the stability of
soil slopes and the associated effective root cohesion that is considered comparable to
simulations involving root geometries.

(3) While root architecture is a central focus of this research, above-ground tree and
shrub structures and their toppling loads were not considered as within the scope of
investigation.

(4) An initial single-layered slope was presented for a variety of root parameters, indicat-
ing the process whereby more complex multilayered soil layers and slope geometries
may be assessed.

The developed stability charts provide a quick and easy method for comparing the
mechanical performance of numerical methods for the root reinforcement of shallow slopes.
Although the results presented highlight the mechanical behaviour of reinforced slopes, it
is expected that further assessment of similar methods can also be extended to incorporate
various aspects of vegetation hydrology and the impacts of roots on groundwater systems
for complex slope geometries and a wider variety of soils.
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