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Abstract: Industrial development has significantly increased the concentration of CO2 in the atmo-
sphere, resulting in the greenhouse effect that harms the global climate and human health. CO2

sequestration in saline aquifers is considered to be one of the efficient ways to eliminate atmospheric
CO2 levels. As an important mechanism, the solubility trapping greatly determines the efficiency
of CO2 sequestration in saline aquifers, and this depends, in turn, on the density-driven convection
that occurs during the sequestration. Density-driven convection is influenced by multiple factors.
However, existing discussions on some of these influential factors are still ambiguous or even reach
contradictory conclusions. This review summarizes the common modeling approaches and the
influence of factors on density-driven convection. We suggest that saline aquifers with high values of
depth, permeability, pH, and SO2 impurity concentration are the ideal CO2 sequestration sites. A
certain degree of porosity, fractures, stratification, slope, hydrodynamic dispersion, background flow,
and formation pressure are also considered advantageous. Meanwhile, the geological formation of
the Permian White Rim Sandstone or carbonate is important, but it should not contain brine with
excessive viscosity and salinity. Finally, we discuss the contents in need of further research.

Keywords: geological storage; saline aquifers; CO2 sequestration; solubility trapping;
density-driven convection

1. Introduction

As the negative impacts of global warming are becoming more and more significant,
the general policy on climate-change prevention is universally being recognized around the
world. Based on the extent of global warming, the mid- to long-term (2041–2100) impact
was predicted to be several times higher than currently observed for some of the major
risks that have been identified [1,2]. Geological storage of CO2 is a promising resolution to
the growing global climate and environmental issues, as it would reduce the atmospheric
CO2 concentration [3–5]. Among the various options for CO2 sequestration, subsurface
saline aquifers are considered the most feasible due to the presence of large, porous, and
permeable formation in sedimentary basins worldwide, as these have the greatest potential
for CO2 sequestration compared to others. Additionally, large pores with high permeability
require fewer injection wells and facilitate pressure dissipation for these formations [5,6].

There are four trapping mechanisms in saline aquifers, i.e., structural trapping, capil-
lary trapping, solubility trapping, and mineral trapping [7]. The CO2 injected into saline
aquifers assumes a supercritical state under high temperature and pressure stratigraphic
conditions [8]. Despite the dramatic increase in density due to the reduction in volume,
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supercritical CO2 is still lighter than the brine of the formation. It therefore rises under
buoyancy and accumulates at the top of the saline aquifer by the barrier of the caprock,
which is called structural trapping. CO2 in an irreducible gas saturation state is trapped in
the pores and cannot move because of the interfacial tension between CO2 and formation,
known as capillary trapping. The accumulated CO2 below the caprock gradually dissolves
with time into the brine and is thus isolated from the atmosphere, known as the solubility
trapping in saline aquifers. The dissolved CO2 reacts chemically with the minerals in the
formation and eventually transforms into solid carbonate minerals, which are precipitated
in the pore space, known as mineral trapping. Among them, solubility trapping is regarded
as a more effective and secure mechanism in the medium to long term, as well as providing
the necessary requirements for permanent mineral trapping [9].

In the early stages of solubility trapping, CO2 transfers to brine in the form of diffusion.
The density of the brine in contact with CO2 thus increases, creating a density difference
with the surrounding CO2-free brine. This determines that the CO2–brine interface is
unstable. The sharp vertical concentration gradient of CO2 results in molecular diffusion
being the main mass transfer mechanism, and the development of the instability is arrested.
As an increase in the thickness of the diffusion boundary layer occurs, the diffusive flux
decreases, instability develops, and eventually the CO2-rich brine with a large density
settles downward by gravity and the surrounding lighter brine thus migrates upward,
creating convection called density-driven convection. Once it occurs, it replaces molecular
diffusion as the dominant form for the mass transfer of CO2 into the brine. This will greatly
facilitate the flow of aquifer fluids and greatly improve the efficiency of CO2 dissolution
and migration. It accelerates the transfer of CO2 into the brine and therefore facilitates
the practical benefits of the long-term security of CO2 injection and storage. Studying the
occurrence and form of density-driven convection is necessary to understand the role and
mechanisms of solubility trapping.

Understanding subsurface flow dynamics is necessary to evaluate the effectiveness of
geological storage, which in turn necessitates the comprehension of a wide range of geologic
characteristics in a candidate reservoir. Several significant potential CO2 reserves showed
sedimentary architecture that reflected river deposition, such as the Morrow Sandstone [10]
and the lower Paaratte Formation [11], which were mainly made of conglomerate or sand-
stone. The spatial structure of textural facies, which were, in fact, of fundamental relevance,
could be explained by depositional architecture, and those finer- and coarser-grained sed-
imentary textures might be a major factor influencing the variation of a petrophysical
property such as permeability [12]. The sedimentary architecture could be found in both
contemporary fluvial environments and historical fluvial reservoirs, and its mean particle
sizes range from sand (e.g., the Mt. Simon Sandstone [13]) to gravel (e.g., the Ivishak
Formation conglomerate [14]). Moreover, the sharp, abrupt boundaries between cross-sets
of coarse and fine grains could lead to aquifer connectedness and possibly tortuous flow
channels, which limited the movement of CO2 [15,16]. Consequently, when constructing a
fundamental scientific understanding of CO2 injection and transport, it is necessary to take
into account the complexity of the sedimentary structure found within such reservoirs.

Many investigations have been conducted on the density-driven convection for CO2
solubility trapping in saline aquifers [17,18]. However, the coupling of flow and mass transfer
makes the convection process highly nonlinear, resulting in complex hydrodynamic behavior
and CO2 distribution. The modeling in these investigations will therefore vary depending on
the studying problem. Numerous simplified models have been used to analyze convective
mixing processes under the assumption of a single-phase system [18–20], two-phase sys-
tem [21,22], and multiphase system [23,24]. Moreover, although many studies have been
conducted in the past to address the factors influencing the convective mixing process, such
as the slope of caprock [25,26], permeability [27,28], fractures [29,30], impurities [31,32],
etc., these influencing factors have not been systemically summarized and generalized. To
accurately perceive how CO2 behaves in the subsurface after it has been injected into the
saline aquifer, the influence of various factors on convection must be taken into account. By
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reviewing the relevant literature, this review discusses the influence mechanism of factors
on density-driven convection, aims to guide CO2 saline aquifer sequestration projects, and
highlights the areas that require intensive study of geological storage.

2. Modeling
2.1. Modeling Methodology

Figure 1 illustrates the typical modeling setup for CO2 solubility trapping in a saline
aquifer. The spatial characteristic of the saline aquifer is that the horizontal length is
much greater than the vertical depth, so the influence of the lateral boundary on the
convection is insignificant. The convection that is of interest occurs in the space between
the lower part of the caprock and the impermeable rock at the base of the saline aquifer,
as shown in Figure 1a. Within the limited space of the saline aquifer, more attention was
paid to the vertical development and horizontal migration behavior of CO2-rich brine
in convection, as shown in Figure 1b. The rock pore space is initially completely filled
with brine. An ideal rectangular porous medium is commonly considered to describe the
density-driven convection for CO2 solubility trapping in the saline aquifer, as shown in
Figure 1c. The medium is permeable and heterogeneous. Incompressible Newtonian fluids
are considered a two-dimensional laminar flow with non-slip boundaries. Moreover, the
fluid thermophysical properties (other than density) are considered to be constant.
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Figure 1. Typical modeling for CO2 solubility trapping in a saline aquifer. (a) Schematic of CO2

sequestration in a saline aquifer. (b) Density-driven convection for CO2 solubility trapping in a
saline aquifer. The brine with dissolved CO2 settles downward in the form of fingers, which is called
convective fingering and is an important phenomenon of density-driven convection. (c) The 2D
physical layout for density-driven convection.

Single-phase flow system was commonly applied to CO2 density-driven convec-
tion [33–35]. In this system, the dissolved CO2 no longer exists as a separate phase but as a
solute. In most studies employing a single-phase flow system, the fluid flow within the
pore space is described by Darcy’s law, and the degree of dissolved CO2 is represented
by the concentration for which the mass transport equation is solved. Based on the above
perceptions, the continuity equation can be written as follows [36]:

∂(φρ)

∂t
= −∇·(ρv) (1)
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where φ is the porosity of the saline aquifer, ρ is the fluid density (kg/m3), t is the time
(s), and v is the Darcy velocity vector. The Darcy velocity vector can then be calculated as
follows [37]:

v = − k
µ
·(∇p− ρg∇z) (2)

where k is the absolute permeability (m2), µ is the fluid dynamic viscosity (kg/(m·s)), p
is the fluid pressure (Pa), g is the gravitational acceleration (m/s2), and z means vertical
downward is the positive direction.

The mass transfer equation for the dissolution of CO2 into the brine is then given by
the following [36]:

∂(φc)
∂t

= ∇·(φD∇c− cv) (3)

where c is the concentration of CO2 (mol/m3), and D is the effective diffusion coeffi-
cient (m2/s).

The change of fluid density is very important here, as it causes the convection of the
static fluid. Fluid density is normally determined linearly by the CO2 concentration,

ρ = ρ0[1 + βc(c− c0)] (4)

where βc is the solute volume expansion coefficient (m3/mol).
It should be noted that the density instability caused by the geothermal gradient

prevalent in saline aquifers with large longitudinal scales would trigger extra convection,
which, jointly with the convection generated by CO2 solubility trapping, was known as
double-diffusive convection and has been extensively studied [38–43]. By introducing an
energy balance equation to account for this temperature-induced extra convection, we
obtain the following [44]:

(ρch)m
∂T
∂t

= ∇·(km∇T)− (ρch)fv·∇T (5)

where ch is the specific heat capacity (J/(kg·K)), T is the fluid temperature (K), and km is
the effective thermal conductivity of porous medium (W/(m·K)). (ρch)m = φ(ρch)f + (1−φ)
(ρch)s represents the effective heat capacity, and the subscripts m, f, and s refer to the matrix,
fluid, and solid phase, respectively. Thus, Equation (4) becomes as follows [45]:

ρ = ρ0[1 + βc(c− c0)− βT(T − T0)] (6)

where βT is the volumetric thermal expansion coefficient (1/K). However, Javaheri et al. [39]
pointed out that the effect of the geothermal gradient on density-driven convection was
negligible compared to the solute effect caused by the dissolution and diffusion of CO2
in saline aquifers. Thus, modeling for CO2 solubility trapping in saline aquifers could be
postulated as isothermal in terms of density-driven convection.

The fluid viscosity also increased slightly with the CO2 concentration, which affected
density-driven convection, as shown in Equation (2), and could be quantified as a mono-
tonic logarithmic relationship for concentration [46]:

µ = µ0eΓ(c−c0) (7)

where µ0 is the dynamic viscosity for c = c0, and Γ is the viscosity variation parameter.
However, the viscosity difference caused by this change was rather insignificant [47–49].
Although it has been suggested that this difference in viscosity would trigger similar
transversal convection (called viscous fingering) at the base of the saline aquifer caprock
during the initial stages of CO2 injection [50–54], the change in density was apparently more
significant compared with the change in viscosity during the stage when CO2 stabilized
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and began to dissolve [55–57]. Therefore, the change of viscosity is generally ignored in the
modeling of the convective flow.

However, the geological storage of CO2 involves multicomponent and multiphase
processes, and, similarly, the convective mixing process is also a multiphase-involved
process. The results based on multiphase flow were shown to be different from those of
single-phase flow [58–60]. The simplification of single-phase systems would pose problems
and lead to biased conclusions for density-driven convection. It is suggested that the accu-
racy of the results of convective mixing process studies could be effectively improved by
considering multiphase flow, as well as permeability field variations [61,62]. The modeling
using simplifying assumptions might cause the results to be underestimated, while un-
necessary assumptions might increase the computational cost. Emami-Meybodi et al. [63]
pointed out that the single-phase system ignored the transversal flow of CO2-rich brine at
the interface and the volume expansion of brine caused by CO2 dissolution. This would
lead to an overestimation of the convection onset with an underestimation of the CO2
dissolution flux. A series of investigations [62,64–67] further showed that a two-phase flow
system would correct the misestimation of convective onset time and dissolution flux. This
implied a more-than-three-times increase in the CO2 convective dissolution flux, along
with a three-to-six-times reduction in the onset time of convection.

The two-phase system of saline aquifers is formed by the non-wetting phase CO2 and
the wetting phase brine. To introduce the concept of saturation, the continuity equation
can be written as follows [68]:

∂

∂t
(φSiρi) +∇·(ρivi) = Ic

i (8)

where the subscript i is the phase involving the non-wetting phase (nw) and the wetting
phase (w), Si refers to the phase saturation, ρi is the phase density (kg/m3), and Ii

c refers to
the rate of CO2 mass transfer by the interface of two-phase (kg/(m3·s)). Moreover, vi is the
Darcy velocity vector of the phase, which can be calculated as follows:

vi = −
kkri
µi

(∇pi − ρig) (9)

where kri is the relative permeability of the phase, µi is the dynamic viscosity of the phase
(kg/(m·s)), and pi is the pressure of the phase (Pa).

The distribution for CO2 in brine is then given by the following [69]:

∂

∂t
(φSwρwmc

w) +∇·(ρwvwmc
w) +∇·(−Dc

wφSwρw∇mc
w) = Ic

w (10)

where mw
c is the CO2 mass fraction in the wetting phase, Dw

c is the CO2 diffusion coeffi-
cient in the wetting phase (m2/s), and Iw

c refers to the rate of CO2 mass transfer by the
interface of two-phase to the wetting phase (kg/(m3·s)).

The above equation is closed by the Brooks–Corey model [70]:

Snw + Sw = 1
Se = Sw−Swr

1−Swr−Snwr

krw = S
2+3λ

λ
e

krnw = (1− Se)
2
(

1− S
2+λ

λ
e

)
pc = pnw − pw = pdS

− 1
λ

e (pc ≥ pd)

(11)

where Se is the effective saturation; Snwr and Swr are the residual saturation of the non-
wetting and the wetting phase, respectively; λ is the Brooks–Corey coefficient; and pc and
pd are the capillary and pore-injection pressure, respectively (Pa).
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Zhang et al. [71] further adopted the three-phase model, meaning that the rock as
the matrix of porous media was also considered as an independent phase. Although the
influence of geochemical reaction on density-driven convection was accommodated based
on this consideration, the discussion of it even exceeded the dissolution effect and should
be investigated in the relevant content of CO2 mineral trapping in a saline aquifer.

2.2. Coordinate Selection and Boundary Conditions

For a more realistic simulation of CO2 density-driven convection development in
a saline aquifer, the two coordinate settings proposed based on the 2D physical layout
represent different degrees of consideration, as shown in Figure 2, which will induce the
discussion of top-boundary conditions.
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single-phase system (the lower) and the two-phase system (the upper), respectively.

When the injected CO2 contacts the brine in a saline aquifer, a zone forms at the inter-
face of these two miscible phases. It is governed by a combination of capillary forces with
gravity and is called the capillary transition zone. In this zone, CO2 coexists in equilibrium
with brine and freely flows, and the CO2 effective saturation decreases nonlinearly in the
gravitational direction [67,72]. Thereafter, the free-phase CO2 becomes a solute of brine by
dissolution, contributing to the diffusion boundary layer in the lower part of the capillary
transition zone. The consideration for the presence of the capillary transition zone therefore
determines whether the model is a multiphase system.

The coordinate system built on the lower part of the capillary transition zone almost
corresponds to the single-phase system. By ignoring the capillary transition zone between
the gas and liquid phase, the CO2–brine interface could be sharp and fixed. Therefore, only
the liquid phase is modeled, and the CO2 that accumulates at the top of the aquifer saline
is represented as a top boundary condition with a fixed value. A constant concentration
top boundary condition is employed in most studies accordingly, with the CO2-pure and
-rich region in the upper part of the saline aquifer being replaced by an impermeable
concentration boundary with the value of the maximum dissolved concentration under
initial conditions. This simplification might lead to the neglect of multiphase processes
affecting CO2 density-driven convection, such as capillary effects, upward transport and
volume expansion of brine, and decreases in CO2 phase partial pressure [62,63,73–75].
On the other hand, Amooie et al. [35] mentioned the constant flux boundary condition.
They pointed out that density-driven convection based on both top boundary conditions
developed a quasi-steady state to balance the formation and merging of the CO2 plume.
For the constant concentration boundary condition, the quasi-steady state is typically
represented by a plateau in dissolution flux, but this would not apply to the constant flux
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boundary condition. Furthermore, in the case of the constant flux boundary condition, the
changes in maximum density and concentration were time dependent.

On the other hand, the coordinate system established at the top considers the presence
of CO2 as a separate phase, implying a two-phase system, and thus additionally considers
the capillary transition zone. CO2 is in contact with brine through microscopic pores in
the zone, and the two fluids are in equilibrium, with the average fluid density increasing
from the density of CO2 to the CO2–brine solution density in maximum equilibrium.
The phase interface in the two-phase system was commonly defined as the interface
separating the brine-saturated zone from the capillary transition zone [62,66]. The capillary
pressure increases from 0 at the interface, and the CO2 dissolution flux is controlled by
the mass transfer via the interface. A separate CO2 single-phase region with a constant
permeability different from the brine-saturated porous media is considered a capillary
transition zone [64,66,76,77].

The capillary transition zone permitted CO2–brine flow to cross the phase interface
longitudinally, which increased the instability of the system [66,78]. This accelerates the
onset of density-driven convection even up to several times [62,64–67]. Zhang et al. [78]
similarly noted that the capillary transition zone destabilizes the diffusion boundary layer
by allowing transversal flow through the phase interface. However, further investigations
on the influence of the capillary transition zone on the CO2 density-driven convection
development are awaited.

In the actual aquifer, natural background flow is always present [79,80], which will
probably have an impact on CO2 sequestration. The background flow is taken into account
in the modeling of CO2 density-driven convection by the laterally fixed velocity boundary
condition [81–84]. The intensity of the background flow is characterized by the value of the
fixed velocity, v0, or Peclet number,

Pe =
v0H
φD

(12)

where v0 is the transversal velocity of background flow (m/s), and H is the height of the
porous medium (m). The larger transversal flow due to background flow would allow
mixed convection to play an important role in CO2 solubility trapping. In mixed convection,
the background flow in saline aquifers prevents the construction of the longitudinal velocity
field of the CO2–brine solution and may delay or even inhibit density-driven convection
from occurring [82].

3. Influencing Factors

To accurately perceive how CO2 behaves in the subsurface after it has been injected
into the saline aquifer, the influence of various factors on convection must be taken into
account, and these factors can be divided into two categories. One category of factors
directly affects the hydrodynamics of convection, often those of reservoir characteristics.
Another category of factors relates to the dissolution dynamics of CO2 in the saline aquifer.
These factors generally include fluid properties, which affect the pattern of changes in
fluid density by influencing the CO2 dissolution process, thus determining the convection
process. This section describes the impact of these factors on the convection process based
on the CO2–brine system.

3.1. Fluid Dynamics
3.1.1. Permeability

Fluids within porous media flow and transfer mass through the interstices of particles.
Permeability indicates the degree of difficulty in passing fluids through porous media. Its
value depends on the porous structure of the media and is an important characterization
parameter for the properties of porous media. A porous medium composed of geological
rocks with a certain degree of permeability is a prerequisite to ensure that density-driven
convection of brine occurs. In general, density-driven convection for CO2 solubility trap-
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ping in saline aquifers can be determined by the Rayleigh number. When the Rayleigh
number exceeds 4π2 [85,86], convection will occur:

Ra =
k∆ρgH

φµD
(13)

where ∆ρ is the maximum density difference between CO2-rich brine and CO2-free brine
(kg/m3). Ra is an important parameter for quantifying convection in porous media and is
expressed by the ratio of buoyancy to diffusion forces. It determines the intensity of fluid
flow and mass transfer in convection, and convection with different Ra presents differences
in fluid flow and development characteristics. It is easy to see from Equation (13) that
Ra is determined by the properties of the porous medium and fluid, which vary with the
location of the CO2 sequestration. For these parameters, only the variation in permeability
across different trapping sites is of orders of magnitude, meaning that Ra, or the state
of density-driven convection for CO2 solubility trapping in the saline aquifer, is highly
dependent on the permeability value of the local saline aquifer. This is further illustrated
by the research of Pau et al. [33] on the influence of parameter fluctuation on the initial
stability of CO2 density-driven convection, where the initial stability of the CO2–brine
system showed high sensitivity to slight fluctuation in permeability. Furthermore, they
found that the dissolution flux of CO2 at the top boundary would reach a steady state after
a certain time. This flux was proportional to permeability, unrelated to effective diffusion
coefficient and porosity, indicating that the flow was predominantly convective.

The analysis of CO2 dissolution flux allows the description of the important dynamic
behavior of CO2 convection processes caused by changes in aquifer conditions. Slim [77]
described the hydrodynamics of CO2 density-driven convection from the diffusion to the
shutdown in a two-dimensional porous medium with Ra between 100 and 5 × 104. From
the time-dependent profile of the dissolved CO2 flux at the top boundary, this convective
process was described in six stages, and it is found that Ra controlled the transition of
convective stages and the mass transfer characteristic of convection within the different
stages. Moreover, as the permeability of the porous medium increased, convection delayed
the time to end the constant flux stage, as shown in Figure 3a. Erfani et al. [87] further
gave dissolution flux for different permeabilities corresponding to Ra from 350 to 95,000, as
shown in Figure 3b. As the permeability increased, there was a significant advance in the
onset of convection with a corresponding increase for the maximum CO2 dissolution flux
during the flux growth stage. In general, as the permeability of porous media increased,
density-driven convection would become more intense, not only in terms of an earlier
onset of convection, but also in terms of a longer flux growth stage, which meant that
the maximum dissolution flux of CO2 would also increase significantly. In addition, the
convection would experience a longer period of merging. CO2 convection would also
undergo a constant flux stage in porous media with high permeability, and this would be
more pronounced at higher permeability, implying a later shutdown of convection and a
higher level of CO2 dissolution and mixing.

The morphological characteristics of convective fingering movements can also be used
to determine the state of convection. Teng et al. [88,89] investigated density-driven flow
transport processes by magnetic resonance images. It was found that, as the permeability
increased, the rate of convection development and the amount of convective fingering
increased, with an earlier onset of convection. Numerical simulations by Ching et al. [90]
showed a significant increase in the wavelength of convective fingering in high-permeability
porous media, while experimental results by Amarasinghe et al. [91] showed that the
mixing rate of CO2 convection in porous media increased with increased permeability. It
was also observed that the morphology of the convective fingering of CO2 depends on
the permeability, with the observed fingering in highly permeable porous media being
consistent with previous studies, in contrast to the piston displacement of brine with
dissolved CO2 in low permeability porous media (e.g., 500 mD).
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However, actual saline aquifers are heterogeneous, and this heterogeneity in reser-
voir conditions, particularly in permeability, will significantly affect the mixing process
of density-driven convection. The flow characteristics of the mixing due to convective
processes depend on the aquifer permeability heterogeneity. Thus, when considering
convection in heterogeneous porous media, spatial variation in permeability is often used
to introduce heterogeneity, which means that the absolute permeability, k, in Equation (2)
will become k(x, z) or a tensor.

The degree of heterogeneity of reservoir permeability can be expressed by the value
of fluctuation in the random field attached to the permeability. In the CO2- brine model
of Pau et al. [33], the onset time of convection exhibited sensitivity to the magnitude of
fluctuation in the permeability field, with the convective onset time decreasing as the mag-
nitude of fluctuation increased. However, this decreasing trend is gradually diminishing;
when the fluctuation reaches 15% or higher, the onset time of convection shows a certain
degree of certainty. Lengler et al. [92] used a similar stochastic approach to create a spatially
varying permeability field for a real CO2 sequestration site. In their random field, the
permeability values varied from 0.02 to 5000 mD, resulting in reservoirs with permeability
heterogeneity having higher CO2 dissolution storage capacity compared to homogeneous
reservoirs. On the other hand, Mahyapour et al. [18] used sequential Gaussian simulation
methods to generate stochastic permeability fields to elucidate the influence of permeability
heterogeneity for CO2 convection in saline aquifers. Convective results in the stochastic
permeability field showed that an increase in permeability fluctuation enhanced the CO2
dissolution flux and the tendency for convective fingering.

The Dykstra–Parsons coefficient and correlation length were also considered as the
measure of the degree of permeability heterogeneity. The permeability variation was first
introduced by Dykstra and Parsons [93] to quantify the degree of reservoir heterogeneity:

Vk =
Sk
Ak

(14)

where Sk and Ak are the standard deviation and the average value of k, respectively. Vk is
the so-called Dykstra–Parsons coefficient, a dimensionless measure for the variability of
porous media that characterizes the heterogeneity of k [94]. Values for Vk range between 0
for a completely homogeneous aquifer and 1.0 for a completely heterogeneous aquifer. In
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between, it is generally suggested that when Vk was less than 0.25, the heterogeneity of the
aquifer was slight and could be approximated by the homogeneous model in numerical
simulation. As 0.25 < Vk < 0.75, the influence of the aquifer heterogeneity was gradually
significant. Once Vk exceeded 0.75, the aquifer was extremely heterogeneous and required
special treatment methods for numerical simulation. Note that Sk and Ak usually tend to
vary in tandem; thus, Vk is relatively constant in a saline aquifer. Bestehorn et al. [95] exam-
ined permeability heterogeneity over a wide range, using Vk and correlation lengths. The
results pointed to the convective onset time being significantly correlated with perturbation
strength and correlation length. Using different degrees of permeability heterogeneity
achieved by spectral methods, Farajzadeh et al. [96] identified different flow states charac-
terized by Vk for density-driven convection. For a smaller Vk (0.1), convective fingering
close to the same occurrence in homogeneous porous media was observed. However, even
though the phenomena are similar, CO2 dissolution in the heterogeneous porous medium
generally occurs in larger quantities as compared to the homogeneous ones. Convection
in heterogeneous porous media with a larger Vk (0.3, 0.5, and 0.8) exhibits more direct
mass transfer than convective fingering. The different patterns exhibited by density-driven
convection at different heterogeneities are thus classified into three groups: fingering,
dispersive, and channeling. Chen et al. [97] noted that, in dispersion, the square of the
dissolved mass of CO2 was approximately proportional to time, while the dissolved mass
of CO2 is approximately proportional to time in both fingering and channeling. However,
fingering was largely controlled by gravitational instability, while channeling depended on
the permeability structure.

Similarly, these three patterns of density-driven convection were observed in the het-
erogeneous saline aquifers of Ranganathan [98] and Kong et al. [99], with the latter referring
to these three flow patterns of density-driven convection as dispersive, preferential, and
unbiased fingering. It was noted that the unbiased fingering converted to preferential and
dispersive fingering was largely dependent on Vk, while the preferential fingering converted
to dispersive fingering was determined by the length of the permeability dependence.

The dissolution flux and convective onset time of CO2 certainly increase with in-
creasing permeability heterogeneity regardless of how heterogeneity is introduced and
evaluated in the CO2–brine system. This indicates that the introduction of heterogeneity
introduces more instability, dissolution rates, and flow opportunities to density-driven
convection, which will further contribute to the efficiency of CO2 solubility trapping in
saline aquifers.

The work by Green et al. [100] also considered two models of permeability heterogene-
ity. Even though the initial flow state of density-driven convection was sensitive to changes
in local permeability, the flow in the constant flux stage of each case was well approximated
by the anisotropic homogeneous porous media model. This suggested that the average
permeability properties of the porous media actually affected the flow of density-driven
convection, meaning that heterogeneity could be expressed equivalently by the permeabil-
ity anisotropy of a homogeneous porous medium. The consistency between the anisotropic
model and heterogeneous porous media in estimating the dissolved mass flux of CO2 by
Elenius and Gasda [101] also illustrates this point well. Anisotropy can be described by the
anisotropy ratio,

γ =
kv

kh
(15)

where kv and kh are the vertical and horizontal permeability of the reservoir, respectively. In
practical reservoirs, thin structures are often found in saline aquifers, which means that the
horizontal permeability is usually much greater than the vertical permeability. Therefore, it
is generally reasonable to believe that γ is less than 1.0.

Previous studies [102–104] have investigated the effect of anisotropy ratios on density-
driven convection by holding kh constant while lowering kv to reduce γ. The results of their
stability analysis showed that gravitational instability was mitigated to some extent with
decreasing γ, as evidenced by a delay in the convection onset, a decrease in the critical wave
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number for convective fingering, an increase in the critical wavelength, and a decrease
in the CO2 dissolution rate. It is important to note that, although it is geologically more
reasonable to keep kh constant, Xu et al. [105] further considered the reduction in γ caused
by increasing kh while keeping kv constant. In this case, the reduced γ would instead cause
the opposite of the previous conclusion. This is because an increase in permeability, either
kh or kv, would destroy the solute interface during CO2 solubility trapping in saline aquifers,
resulting in an earlier onset of instability causing higher CO2 dissolution rates. This view
was also supported by the results of several numerical simulation studies [87,97,106].
Notably, the results further indicated that the effect of γ on dissolution flux was more
significant at a lower value of Ra and permeability of porous medium [107]. It can therefore
be established that, regardless of how γ is varied, for kh and kv, while keeping one constant,
the higher the value of the other, the more unstable the convection system, the earlier
the onset time, and the higher the CO2 dissolution flux. In this process, kv has a more
significant effect on density-driven convection than kh.

New representations of permeability anisotropy have recently been proposed. For
example, Li et al. [108] represented anisotropic permeability fields in terms of vertical and
horizontal correlation lengths, i.e., lv and lh. The results showed that for a relatively small lv
and lh, competing phenomena of scale coupling and anisotropy were found, with resonance
effects accelerating the downward brine as lh increased to a scale close to the convective
fingering, leading to the earlier onset time and correspondingly lower dissolution, while
once lh increased to a scale much larger than the convective fingering, anisotropy became
the dominant effect so that the onset of convection was delayed. On the other hand, for
changes in lv, consistent results of change were observed for relatively large lh, i.e., later
onset of convection with higher CO2 dissolution.

3.1.2. Porosity

The rock particles that contribute to the matrix of saline aquifers are normally incom-
pletely integrated due to the highly irregular shape. The resulting void space that can be
occupied by CO2 or brine is called pore and quantified as porosity:

φ =
Vp

Vb
(16)

where Vp is the pore volume (m3), and Vb is the bulk volume of the matrix (m3), including
the solid and void components. Two distinct categories of porosity are defined in saline
aquifers, i.e., absolute porosity and effective porosity. Saline aquifers may have considerable
absolute porosity with low fluid conductivity due to the lack of interconnected pores. This
is negative for CO2 sequestration. Therefore, the porosity in studies of CO2 sequestration
in saline aquifers generally refers to the effective porosity.

The porosity significantly influences the density-driven convection by controlling the
pattern of CO2-rich brine front in saline aquifers. Sun et al. [109] showed that for a low φ
(less than 0.05), CO2-rich brine maintained the form of a stable boundary layer that slowly
diffused downward. In contrast, the instability is further developed in saline aquifers
with high φ (greater than 0.10), and convective fingering is clearly observed, as shown in
Figure 4. The diffuse boundary layer thickness was also influenced by φ. A higher φ was
characterized by a thinner diffusive boundary layer, implying earlier convective onset. The
same conclusion was reached by Gasow et al. [110,111].

This increased diffusion instability and decreased convective strength may be ex-
plained by the change in the effective diffusion coefficient due to the φ. As indicated by the
results of Aggelopoulos and Tsakiroglou [112], errors were caused by unconsidered varia-
tions in the effective diffusion coefficient due to the φ. The effective diffusion coefficient, D,
in Equation (3) is thus defined as follows:

D =
D0φ

τ
(17)
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where D0 is the molecular diffusion coefficient (m2/s), and τ is the tortuosity. Ozgur and
Gumrah [113,114] pointed out that the dissolution of CO2 in diffusion processes increased
due to the increase in the effective diffusion coefficient by an increased φ. This produced
greater instability in the diffusive boundary layer. However, once this increased instability
prematurely triggered convection, a reduction in convective strength ensued. This was
because the fluid velocity was reduced in aquifers with a high φ. More effects of dispersion
on density-driven convection are discussed in Section 3.1.5. In addition, Beni et al. [115]
pointed out that a change in φ would cause a change in k. However, Islam [116] indicated
that this change was negligible and therefore would not significantly affect the CO2 density-
driven convection.

In terms of heterogeneity, Jensen and Lake [117] pointed out that the spatial variation
of φ in aquifers was much more insignificant compared to permeability. However, consid-
ering that the common geochemical reactions in aquifers would significantly change the
local φ [118–123], a few relevant studies on φ heterogeneity were still developed. The φ
heterogeneity was generally introduced into numerical models as a perturbation (or fluctu-
ation), leading to instability and correlating with convection onset time [124]. Pau et al. [33]
pointed out that the onset time decreased by increased φ fluctuation, and this decrease was
more significant compared to the same degree of permeability fluctuation. The results by
Tilton [125] showed that there was an optimal φ perturbation that could minimize the onset
time. This suggested that even though a small φ perturbation was usually neglected, it
was sufficient to trigger nonlinear convection. Future studies should take this factor fully
into account.
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3.1.3. Fractures and Stratification

When there was a certain structure in the heterogeneous permeability field, such as a
low permeability or permeability jump zone, the heterogeneous structure of the aquifer
would have a greater impact on the total amount of CO2 sequestration compared to the
equivalent effective permeability of the aquifers [126]. Typical heterogeneous stratigraphic
structures include fractures and stratification. Fractures can be found in several seques-
tration sites, such as the Salah site in Algeria [127], the Kevin Dome site in Montana [128],
and the Janggi site in South Kore [129]. Some sequestration sites will increase injectivity
by hydraulic fracturing to increase the permeability of the aquifer or oilfield near the
wellbore [130,131]. Fractures imply an intense media anisotropy and preferential flow. The
consequent uncertainty in fluid flow and solute transport increased the risk of leakage
and contamination [132]. Furthermore, a few numerical simulation studies have been
developed for the effect of the fracture-skin on solute transport [133,134]. Except for the
naturally existing fractures, the injection of CO2 will lead to artificial fractures in saline
aquifers. This occurs due to the increased pore pressure, and the reduced effective stress
will result in geo-mechanical deformation. This deformation may also reactivate faults
and change permeability to affect the integrity of the reservoir [135]. During the injection
process, related studies have revealed that the presence of fractures, whether artificial or nat-
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ural, can provide the escape pathways for undissolved CO2 in a saline aquifer, negatively
affecting the long-term secure storage of CO2 [21,22,136]. On the other hand, the presence
of the fractures creates a large contact area between CO2 and brine, thereby facilitating the
dissolution of CO2.

In the studies of solute transport by density-driven convection in fractured formations,
the models of single fracture and the fracture network were considered. Compared with the
complex fracture network, the single fracture is often treated as a simple system to study
the transport between the fracture and the matrix [137]. Graf and Therrien [138] found
that a continuous 45◦ inclined single fracture in a low-permeability matrix system allowed
solutes to penetrate through the fractures and migrate downward. Iding and Blunt [139]
found that the dissolution rate of gas-phase CO2 in the system could be increased by 5% by
inletting a horizontal single fracture in a 2D model, indicating that fractured aquifers were
able to increase the solubility trapping of CO2. Rezk and Foroozesh [19] used numerical
simulations to find that high permeability and big inclination angle of fractures favored
the CO2 solubility trapping process in the single fracture system. Similar findings were
found by Kim et al. [140] that a small inclination single fracture structure in the aquifer
enhanced the mass transfer between the fracture and matrix, while the large inclination
fractures promoted brine movement toward the top boundary, facilitating circulation in the
region and enhancing CO2 dissolution.

The permeability of matrix and fracture also has an impact on CO2 solubility trapping.
Kim et al. [140] investigated the effects of fracture–matrix permeability ratio on convection.
When the permeability values of the matrix and the fracture are similar, the influence of
fracture on density-driven convection was negligible. In addition, the intersection of two
fractures was found to promote the merging of fingering, which enhanced the mass transfer
between fractures. Wang et al. [17] showed that the higher permeability of fractures was
favorable to solubility trapping, and the greater inclination angle was favorable for mixing
between the two-phase fluids. In addition, when the permeability of the fractures was
smaller than the matrix, the fractures acted as flow barriers in the system, hindering the
fingering development. When the permeability was larger than the matrix, the fractures
enhanced the liquid-phase circulation, allowing more brine at the bottom boundary to enter
the top region of the fractures.

In a fracture network consisting of multiple fractures, the transport of the plume tends
to be much more complicated. The results by Shikaze et al. [141] showed that convection
patterns depended on fracture spacing. In porous media with random fracture spacing,
irregularly shaped convective cells were formed. The intricate convection patterns were also
found in porous media with orthogonal fractures, regardless of the uniform spacing and
pore size of the fractures. In addition, it is suggested that solute migration and mass transfer
rates properly not be predicted in complex fractured formations. The above findings suggest
that the geometry of fractures is highly related to the stability of density-driven convection
within the fractured system. Graf and Therrien [142] investigated the dense plume transport
in the orthogonal and irregular fracture networks. The geometry of the porosity network
had a significant impact on the dense plume transport. In the orthogonal network, the
variable density flow was mainly controlled by the convective patterns found in the large
fracture network. In an irregular fracture grid, density-driven transport was favored if
there were few uniformly distributed fractures close to the source. On the other hand, a
large number of fractures near the solute source had a stabilizing effect. Vujevic et al. [143]
investigated the density-driven flow and transport patterns in uninterrupted, interrupted,
perpendicular, and inclined fracture networks in low-permeability matrices. The results
revealed that the influence of irregular networks on stability was more difficult to predict
than that of regular networks, but it was possible to determine that the average length of
fractures had a greater influence on density-driven convection than the distribution density
of fractures.

In fractured formations, a 2D fracture is essentially represented by a line, so convection
within the fractures is disregarded due to this restriction on the spatial dimension. Although
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the fractures models used in the previous studies have small apertures, making their
permeability vastly different from that of the reservoir matrix. There was evidence that an
increase in fracture aperture increased the velocity of the upward flow of brine within the
fractures, leading to an increase in early convective instability [144], which favored CO2
solubility trapping [19]. The results also implied that the heterogeneity of permeability
between the fracture and matrix might have a dramatic influence on the flow pattern
in the convective mixing process. Moreover, it has been suggested that both the flow
between fractures and the storability of the fractures play a significant part in the stability
behavior of the system, and the convection within the fractures may have an impact on CO2
solubility trapping. However, currently, the relevant studies are still lacking. One of the
reasons may be attributed to the fact that it is challenging to study in different dimensions
in fractured systems considering the heterogeneity, especially in more complex 3D systems,
and that the consistency between 2D and 3D results needs to be further demonstrated.
Vujevic and Graf [145] tried to study the convective behavior within fractures by using a
3D model and found that the mass transport between fractures was greater than within
fractures. However, in the more complex 3D fracture networks, it was difficult to use the
Rayleigh criterion to predict the convective behavior. Only under specific conditions were
the 2D results useful for predicting the convective onset time and intensity in a 3D fracture
network. In addition, the impact of the physical properties of the fracture (e.g., roughness,
tortuosity, etc.) on the convection in the fracture system has not been fully understood.
Note that the current study of CO2 solubility trapping in fractured systems is mainly
focused on single-phase flows, and further study of two-phase flows, especially from the
beginning of injection to the post-injection, involving the drainage process, capillary action,
and reinfiltrating phenomena, is more helpful to understand the convection behavior in
the fracture network.

Stratification is another common heterogeneous structure, and the influence of such
aquifers with a certain number of different permeability layers on convection has also
gained much attention in recent years. It is suggested that low permeability zones in saline
aquifers play an important role in avoiding CO2 leakage [146,147]. At the same time, the
heterogeneity of the layering permeability affects the migration of injected CO2 and the
subsequent process of mass transfer [121,148].

Wang et al. [149] used the non-destructive technique of X-ray micro-tomography
to capture the fingering development process in the 3D layered formation and found
that the wavelength of fingering increased when fingering passed through the stratified
interface in the decreasing-permeability aquifers. By using a numerical modeling method
in multilayered porous media, Farajzadeh et al. [150] discovered that when the higher
permeability layer was posed at the top layer, the mass transfer increased and fingering
moved more quickly as Ra increased. However, the convection weakened as fingering
moved into the low permeability layer.

Taheri et al. [151] defined the concept of strong and weak heterogeneity by the mag-
nitude of the ratio of the permeability in the upper and lower layers. It was found by
numerical simulation methods that when the low permeability layer was in the upper
layer, either strong or weak heterogeneity, the upper layer controlled the convection be-
havior of the whole system. When the upper layer was a high permeability layer, the
upper layer also acted as a control layer in the weak heterogeneous system. However, in
strong heterogeneous systems, the lower permeability of the lower layer facilitated the
dissolution of more CO2. This work was later extended by upgrading the Hele-Shaw to
study convection in a two-layer heterogeneous system [152]. It is found that when the
high permeability layer was posed above the low permeability layer, the dissolution rate
would be more than twice as large as that in a low-permeability homogeneous system. This
implied that the higher permeability upper layer facilitates the rapid dissolution of CO2
in brine. Agartan and Trevisan [153] used a laboratory tank with analog fluids to study
density-driven convection. It was found that the process of diffusive mixing would be
more pronounced than density-driven convection in the stratified formations and that a
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longer retention time in the lower permeable layer might favor long-term secure storage of
CO2. Similar findings were also found in the laboratory experiments by Wang et al. [154],
who used magnetic resonance imaging techniques to visualize the evolution of convection
in multilayered porous media. It was found that the permeability heterogeneity had a
significant impact on the dissolution rate of CO2, and the presence of low permeability
layers hindered the fingering flow and decreased the dissolution rate of CO2 but promoted
the transversal diffusion of the permeable transition region.

In addition to the slope caprock, as mentioned earlier, there is a certain inclination
at the stratified interface in the actual aquifers, which may also affect the convection.
Tsai et al. [155] found that, compared with the horizontal case, the presence of the inclined
stratified interface increased the propagation velocity of fingering by about 20%. Both Agar-
tan et al. [153] and Wang et al. [156] used tank experiments to investigate the convection in
the inclined stratification aquifers, and they found that the presence of an inclined interface
altered the behavior of fingering. For example, in the coarse/fine layers system, fingering
migrated along the lower part of the stratified interface, enhancing the fingering spreading
in the vertical direction. Unfortunately, there are no available studies focusing on the
specific behavior of fingering and the mass transport during convection within the inclined
layered system. Moreover, the transformation involving convective dissolution processes
at multiple spatial and temporal scales associated with CO2 sequestration in saline aquifers
poses a challenge to the widespread application of it. Macroscopic spatial scales up to
thousands of meters and has a timescale of up to hundreds or thousands of years. Related
results suggested that the heterogeneity of pore size and wettability altered the inherent
flow permeability of the stratified structure [157]. The transport of dissolved CO2 was
intimately related to pore geometry, and the difference in solute distribution between large
and small pores dramatically influenced the upscaling process, making the study of pore
scale vital [158]. Therefore, this challenge is faced in both laboratory experiments and
numerical simulations. To consider the effects of the multiphase and multicomponent
flows occurring at the actual CO2 sequestration field, as well as the possible geochemical
reactions, and geo-mechanical effects, the appropriately fine-scale discretization may need
to be used in the numerical model to obtain an accurate result to assess the effectiveness
of CO2 sequestration in the stratification formations, which is a topic worth discussing in
the future.

Different lithologies are associated with the stratification of aquifers, which affects
structural geometry and aquifer properties (e.g., permeability and porosity) [159]. Take
the White Rim Sandstone reservoir as an example; Wheatley et al. [160] explained the
relevant reservoir characteristics (e.g., sedimentary structure, facies, and diagenesis). Seven
independent litho-facies were used to describe the White Rim Sandstone: grain-flow facies,
wind-ripple facies, ripple-laminated facies, soft-sediment deformation facies, symmetrically
ripped facies, bioturbated facies, and massive facies. They discovered that the quantity
and relative spacing of internal laminae or boundary surfaces that were horizontally or
obliquely oriented, which impeded fluid flow, accounting for a major portion of perme-
ability variances in facies. White et al. [159] compared the potential reservoirs, including
Jurassic Navajo Sandstone, Jurassic Wingate Sandstone, Permian White Rim Sandstone,
and Mississippian Redwall Limestone, and found that the Permian White Rim Sandstone
was the best reservoir for CO2 injection, with great permeability and porosity. In fact, it
was not rigorous to judge the applicability of geological storage based on permeability and
porosity. The composition of the rocks, sedimentary diagnostic eolian features, thickness
and depth of the layers, etc., should all be considered [161].

In addition, transmissibility plays an important role in the stratification and sub-
sequent fault of aquifers. It implies a measure of how much brine can be transmitted
horizontally and is commonly present in studies of aquifers with pumping behavior [162].
The transmissibility of an aquifer can be defined as follows:

Tt = ∑ Ti = ∑ Kidi (18)
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where Tt is the total transmissibility of the aquifer (m2/day), Ti is the transmissibility of a
horizontal flow for the ith aquifer layer, Ki is the horizontal hydraulic conductivity, and di
is the layer thickness.

The transmissibility multiplier was commonly used in studies [163]. A transmissibility
multiplier of 0 implied that the fault was sealed, and therefore the flow across the fault
zone is considered to be restricted. A transmissibility multiplier of 1 implied that the
fault zone was free-flowing, similar to the rock matrix. Alexander et al. [164] noted that a
transmissibility multiplier significantly affected the amount of CO2 that could be injected
into an aquifer and ultimately stored. For a transmissibility multiplier of less than 0.01,
the injectable CO2 was completely stored. This was because the injected CO2 was not
reaching the production well and therefore remained in an aquifer. For a transmissibility
multiplier greater than 0.01, the amount of injectable and stored CO2 increased linearly.
For a transmissibility multiplier greater than 0.1, the amount of stored CO2 was almost
constant, although the amount of injectable CO2 still increased dramatically. Therefore,
a transmissibility multiplier between 0.01 to 0.1 seemed to be the optimal range for CO2
sequestration in saline aquifers.

However, Hsieh et al. [165] suggested that a saline aquifer with an optimal trans-
missibility multiplier might not be the best option for CO2 sequestration safety. Other
risks still need to be assessed in order to find the best solution. Based on this perception,
Ghanbari et al. [166] pointed out that the key to the distribution of CO2 plume and solute
was not the transmissibility multiplier; instead, it was the location of the injection well.

3.1.4. Slope of Caprock

The fact that saline aquifers are generally tilted and discontinuous may have an impact
on the convective process in CO2 solubility trapping. Given the differences in scale, the
influence of saline aquifer structure on density-driven convection occurs more often at the
upper and lower boundaries, i.e., at the caprock or the bottom impermeable rock layer
(Figure 1a). Here, the caprock is a prerequisite for the successful retention of injected
supercritical CO2, providing the potential for the occurrence of dissolved sequestration and
later density-driven convection. For a long period of time, the injected CO2 will remain
and migrate as a plume at the bottom of the caprock under buoyancy, and the state of the
caprock will still have an impact on the flow and mass transfer of density-driven convection
even after the stage of solubility trapping. On the other hand, Vilarrasa et al. [167] pointed
out that the effect of the inclined impermeable rock layer at the bottom of the saline aquifer
acted only after the convective fingering front in density-driven convection contacted the
rock. Therefore, the caprock is considered to be the primary target for considering the effect
of saline aquifer slope and integrity on CO2 solubility trapping.

In the study by Tsai et al. [155], the tilt of the saline aquifer was considered an inclined
modeling domain, and numerical simulations showed that a sloped boundary would
enhance density-driven convection, as reflected in the large transversal movement, merging,
and coarsening of the convective fingering, which enhanced convection and implied that
a sloped saline aquifer would be the ideal site for CO2 solubility trapping. However,
Macminn et al. [168] found that a small slope of the caprock was indeed beneficial for
CO2 solubility trapping, resulting in a sharp reduction in the time that the CO2 plume
was present, with the maximum transport distance only slightly increased. However,
a continued increase in slope would still pose some risks, such as greater increases in
transport distance and very little reduction in the time the CO2 plume was present. Even
though residual trapping provided a strong complement to density-driven convection in
solubility trapping, the increase in slope was expected to still expose the CO2 plume to
fresh water and cause pollution.

Sung et al. [121] evaluated the potential for an ideal CO2 geological sequestration site,
and their study noted that the prevalence of tilted saline aquifers in sequestration sites
would significantly affect the fate of injected CO2, resulting in a marginal asymmetry of CO2
plume in the direction of upslope, as shown in Figure 5. Meng and Jiang [25] considered the
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inclined saline aquifer as the slope of the top boundary of the modeling domain. For both
2D and 3D numerical simulations, as the slope of the caprock increased, the diffusion of
the boundary layer became smoother, and the number of convective fingerings decreased,
and this was accompanied by a significantly different fingering merging behavior than in
the horizontal caprock case. While the interaction between fingering weakened and the
flow showed more reliance on the direction of the caprock slope. This implies a more stable
density-driven convection, as the component of gravity in the slope direction increases
with the increasing caprock slope, thus making it more difficult for the top boundary layer
to satisfy the thickness for sufficient instability. Note that the slope of the caprock in the
3D numerical simulations would result in a later onset of convection than the horizontal
caprock case for the same reservoir, and this effect was more pronounced than in the 2D
numerical simulations.
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resulting in a marginal asymmetry of the CO2 plume in the direction of upslope [168].

In general, the influence of a tilted saline aquifer on the fate of injected CO2 is mainly
reflected in the effect of the caprock slope on CO2 plume flow and density-driven convection.
The presence of a caprock slope will cause the CO2 plume to migrate upslope under
buoyancy, meaning that, even if there are benefits, the slope of the caprock should not be
overly steep. Because the overly steep slope often implies an unexpectedly large migration
of the CO2 plume and the consequent risk of CO2 exposure to fresh water, it is contrary
to the original intention of CO2 solubility trapping in saline aquifers to isolate it from the
atmosphere and to limit its migration. However, a slightly sloping caprock may have an
advantage in that once solubility trapping is dominant, density-driven convection will be
intensified, as evidenced by the transversal migration of convective fingering downslope by
both gravity and slope, as well as the consequent consolidation and coarsening of fingering.
This will greatly facilitate the process of density-driven convection and ensure efficient
CO2 solubility trapping to further secure CO2 sequestration in the saline aquifer.

3.1.5. Hydrodynamic Dispersion

The mass transfer of mechanical dispersion, jointly with molecular diffusion, is widely
present in aquifers [169] and is called hydrodynamic dispersion [170–172]. Note that
hydrodynamic dispersion is generated by the local variations in fluid velocity due to the
micro- and/or macroscopic heterogeneity and structure of the porous media, such as
friction on the pore walls, heterogeneous pore sizes, and different trajectories, and presents
an enhancement of dissolution [173] with the heterogeneity of velocity. This velocity
heterogeneity will enhance molecular diffusion, which has a substantial impact on solute
migration, also known as mechanical dispersion. Therefore, when the effect of mechanical
dispersion is considered, the effective diffusion coefficient, D, in Equation (3) should be
given by the hydrodynamic dispersion tensor as follows [174]:

Dxy = D0δxy + (αl − αt)
vxvy

φ|v| + αt
|v|
φ

δxy (19)
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where δ is the Kronecker delta; αl and αt indicate longitudinal and transversal dispersity
lengths, respectively (m); and subscripts x and y refer to the axes of the Cartesian coordinate
system. The first part on the right of the equation is a representation of the effect of molecu-
lar diffusion, where D0 is a constant that takes into account the volume diffusion coefficient
with the tortuous effect of the porous medium and is proportional to the local gap velocity.
The second and third parts are the effects due to mechanical dispersion. In most analyses
of hydrodynamic dispersion, Equation (19) is usually given in the dimensionless form,
which leads to different dimensionless parameters being derived to characterize the effects
of dispersion, commonly the dispersion ratio, α, and the longitudinal dispersion strength,
S. The dispersion ratio characterizes the degree of mechanical dispersion anisotropy of
porous media and is usually expressed as follows:

α =
αt

αl
(20)

The numerical results by Emami-Meybodi [84] showed that both longitudinal and
transversal dispersity had a considerable influence on the fingering patterns and dissolution
mass flux. As for α, it represents the ratio of the strength of longitudinal dispersion to
molecular diffusion and is given in different forms depending on the purpose of the
analysis. In the study by Hidalgo and Carrera [175], the longitudinal dispersion strength
was expressed in the following form:

S =
αlub

φD0 + αlub
(21)

where ub = k∆ρg/µ is the velocity scalar (m/s), also known as the reference velocity. Al-
though they refer to the same α as in Equation (20), it is kept constant at 0.1, which is
commonly presented in most subsurface aquifers. The results showed a significant linear
reduction in the convective onset time of even two orders of magnitude with increasing
mechanical dispersion strength. Ghesmat et al. [176] used the same representation of
dispersion, and their results revealed that the presence of dispersion affected the fingering
development pattern, with higher dispersion implying faster dissolution of CO2 in brine,
enhancing mixing and significantly reducing the convection onset. In addition, the effect of
α on density-driven convection was investigated, and the results were similar to the pre-
diction of the numerical study by Xie et al. [177], where aquifers with different dispersion
ratios was saturated with dissolved CO2 almost simultaneously, and its overall effect on
density-driven convective efficiency was negligible.

However, it is important to note that a dimensionless way of generating this form of S
will lead to a non-independence of the dimensionless number, meaning that an increase
in S will lead to the same change in Ra. It is consistently agreed upon that an increase
in Ra will significantly reduce the convective onset time and increase the intensity of
convection, which antagonizes and may easily override the influence of an increasing S on
density-driven convection, and this probably explains the significantly reduced convective
onset time as S increases. Recent work by Dhar et al. [178] indicated that the convective
onset time should increase with S for α = 0.1, which was also consistent with previous
experimental results [179,180]. In their simulations, S was independent of Ra according to
the following form:

S =
αlub
φD0

(22)

This dimensionless approach may also lead to a more significant role in the dispersion
ratio. Their results further suggest that transversal dispersion accelerates this process,
implying that an increase in the dispersion ratio promotes the onset of density-driven
convection, which seems to be explained by an increase in the dispersion ratio that would
destabilize the diffusion boundary layer. Moreover, the increase in transversal dispersion
has facilitated the development of transversal growth of the fingering, thus contributing to
reducing the density of fingering and possibly tending to homogenize the CO2 concentra-
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tion field, which is similar to the results of Wang et al. [181,182] and Nakanishi et al. [183].
This phenomenon is attributed to the strength of transversal dispersion between down-
ward and upward flow significantly influencing the interaction, merging, and coarsening
of fingering.

Hidalgo and Carrera [175] showed that the onset time of the density-driven convection
might be shortened by up to two orders of magnitude when hydrodynamic dispersion
was taken into consideration in the no-background flow model. The similar results by
Ghesmat et al. [176] demonstrated that the existence of dispersion impacted the fingering
development patterns, with larger dispersion meaning faster dissolution of CO2 in brine,
this promoting mixing and greatly slowing the onset time of convection.

Particularly, the results of Chevalier et al. [61] revealed that, in the Hele-Shaw cell, an
experimental device commonly used to visualize density-driven convection, mechanical
dispersion was diminished to a Taylor dispersion due to changes in Poiseuille-type velocity
over the cell pore. However, even though the Taylor dispersion increased the hydrodynamic
dispersion coefficient by two to five times, it only seemed to retard convection slightly, as
expected, because the presence of dispersion tended to reduce the concentration gradient of
CO2 at the top region of the model and was still a non-significant parameter of mass transfer
in the Hele-Shaw. The results of Bharath et al. [184] also indicated that the shape boundary
of the convective fingering would be blurred by the presence of dispersion. When studying
the convective fingering in solubility trapping by numerical simulations, attention should
be paid to the inability of the two-phase interface model to catch the boundary. This reflects
the superiority of the mass transfer model in this problem.

Furthermore, the existence of natural background flow in the actual aquifers associated
with the dispersion should be taken into account, which was usually distinguished by
hierarchical nested background flow systems [185]. These systems included background
flow systems at the local, intermediate, and regional levels and occurred in a variety of
hydrogeological environments. The local flow systems moved water from water table
crests to nearby troughs in shallow and small-scale circulations. The flow lines of the inter-
mediate flow systems often extended over numerous water table crests and troughs, and
the circulations were typically deeper. A regional flow system covered the entire aquifer’s
surface. Local flow systems were characterized by precocious background flow and low
solute concentrations because solute concentrations and mean background flow ages rise
down the gradient [186]. The hydraulic gradient was treated as a general driving force
for background flow [187,188]. It was suggested that the penetration depth of local back-
ground flow systems became shallower as the local hydraulic gradient was reduced [189].
Although the above studies reflect the complexity of the subsurface geographic system,
background flow is mostly considered to be a simple horizontal single-directional flow
during convective mixing, which may change the vertical diffusion layer before convec-
tion onset and increase the CO2 dissolution by transporting it to greater distances. The
convective mixing processes when considering background flow and dispersion effects
have also been studied by related scholars. The ratio of Pe/Ra was usually used to quantify
the magnitude of the horizontal flow. Hassanzadeh et al. [81] found that the horizontal
flow was discovered to have the potential to retard the convection onset. Furthermore, it
was observed that the convection onset was proportional to Pe. Emami-Meybodi et al. [82]
created a 2D semi-analytical model to investigate the influence of the background flow on
convection. The intensity of the density-driven convection was strongly affected by the
background flow, and the velocities of background flow could extend the convection onset
and change the subsequent convection process. The horizontal element of the background
flow velocity inhibits the forming of vertical elements, and this impact was more apparent
in the formations with a strong background flow. A similar conclusion was conducted by
Cserepes and Lenkey [187], who found that the cells of convection were fully eliminated by
the strong hydraulic flow and were newly organized in a “unicell” shape.

The situation is much more complicated when considering the hydrodynamic disper-
sion on the formations with background flow. Emami-Meybodi [84] demonstrated that
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decreasing either the velocity of the background flow or the dispersity while holding the
other fixed accelerated the onset of convection and reduced the total dissolution mass flux.
Michel-Meyer et al. [190] discovered that background flow inhibited the fingering forming
in laboratory experiments using analog-fluid pairs, resulting in a two-fold reduction in the
fingering descending rate and a five-fold reduction in the wavenumber of fingers. How-
ever, the presence of hydrodynamic dispersion effects enhanced the dispersion flux. Thus,
the dissolution rate may be governed by a combined effect of convection and dispersive
processes, which must be carefully considered. Tsinober et al. [191] verified the results
by Michel-Meyer and found that, in the range of Pe/Ra < 0.77, the predominant process
was density-driven convection, and the dissolution rate was roughly constant. When
0.77 < Pe/Ra < 2, both the forced and density-driven convections were crucial. When
Pe/Ra > 2, the pure forced convection governed the dissolution process and increased with
the value of Pe/Ra.

In general, when considering the background flow and neglecting the hydrodynamic
dispersion, the results are coincident: the presence of the background flow hinders the
convective mixing process; however, the results obtained from these simplified models
may be inaccurate. When considering hydrodynamic dispersion effects, the current work
will become a more complicated problem, consisting of the interaction of background flow,
density-driven convection, and diffusion, and the current studies are far from adequate.
Meanwhile, the dissolved CO2 sequestration should be a long-term process, the flow rate
of the background flow should not be a constant value, and the corresponding geochemical
reactions may occur. When all of these factors are taken into account, it may make the
results of the next study more meaningful for long-term and safe CO2 sequestration.

3.2. Dissolution Dynamics
3.2.1. Temperature, Pressure, and Salinity

The dissolution of CO2 in brine is necessary for the solubility trapping mechanism, and
can be represented by Equations (23)–(26). The injected CO2 is initially dissolved in brine
to form the aqueous solution. A chemical equilibrium between the aqueous solution and
the carbonic acid was then minimally established [192]. As a product of the reaction, the
carbonic acid subsequently partially dissociates into H+, HCO3

−, and further CO3
2−. The

effect of condition parameters of the saline aquifer on the dissolution of CO2 in brine has
been extensively studied and discussed [63,193–209], and it has been consistently concluded
that the solubility of CO2 in brine increases with increasing pressure and decreasing
temperature and salinity. This change can be explained by the fact that an increase in
pressure drives a further increase in the density of CO2, and the dissolution equilibrium
shifts to the right, thus reflecting an increase in the solubility of CO2 in brine. While a
decrease in temperature should cause the same change in the dissolution equilibrium. A
decrease in salinity leads to the presence of fewer cations, and this increases the solubility
of CO2 in brine given that the cations will form further hydrates and act as barriers to
CO2 dissolution.

CO2(g)→ CO2(aq) (23)

CO2(g) + H2O(l)↔ H2CO3(aq) (24)

H2CO3(aq)↔ H+(aq) + HCO−3 (aq) (25)

HCO−3 (aq)↔ H+(aq) + CO2−
3 (aq) (26)

The solubility of CO2 in brine affects the maximum value of the density change (i.e.,
∆ρ) of the brine in an aquifer, which affects Ra and the formation of the diffusion boundary
layer, implying a change in the development of instability and subsequent density-driven
convection. A low maximum value of ∆ρ will retard or even inhibit the development of
instability and convection.

Seyyedi et al. [203,206] pointed out that an increase in temperature or salinity of brine
in an aquifer negatively affected the convection, as expected, with increased convective
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onset time and smaller length and development rate of fingering in higher salinity brine.
This is because the suppression of the maximum value of ∆ρ at higher brine salinities or
higher temperatures leads to smaller values of Ra and thus the Sherwood number. The
Sherwood number is a characterization of the dissolution rate of CO2 in brine and is defined
as follows:

Sh =
FH

φD∆c
(27)

where F = φv∆c is the CO2 dissolution flux (mol/(m2·s)), and ∆c is the solute concentration
difference (mol/m3). This dimensionless number could be used to approximate and
evaluate the dissolution and mixing of CO2 in brine [203,210]. A reduction in Ra and Sh
would make convection and CO2 dissolution flux retarded and moderated, and this will
negatively affect the CO2 solubility trapping in a saline aquifer, and the same conclusion
was reached by Teng et al. [211]. Jiang et al. [212] further showed that high pressure and
low salinity represented an early convective onset time, a lower fingering number, and a
large fingering wavelength and mobility, which implied more efficient convection and had
a positive consequence for CO2 solubility trapping in saline aquifers. Nomeli et al. [204]
similarly suggested that the aquifer with high pressure and low temperature might be
most suitable for CO2 solubility trapping. However, it is noteworthy that their conclusions
regarding the effect of salinity on density-driven convection are contrary those of other
authors, and the reason for this deviation may stem from the definition of the density
of the solution in the saline aquifer by their model, which is the density of a saturated
H2O-CO2-NaCl solution and thus accounting for the effects of CO2 molar fraction and
volume, which need to be further investigated and discussed.

It is also important to note that, even though the increase in saline aquifer pressure has
a positive effect on CO2 solubility trapping, it is still frequent and not entirely desirable. A
high CO2 injection volume and rate, as well as a high aquifer depth, will lead to additional
increases in aquifer pressure, which will overburden the caprock of the saline aquifer,
especially in naturally fractured areas, and make it susceptible to the risk of CO2 leakage.
Szulczewksi et al. [213] pointed out that the ability of saline aquifers to store CO2 was
limited by the increase in pressure due to CO2 injection, particularly in aquifers with high
CO2 injection rate requirements. The risks and limitations caused by increased pressure may
perhaps be mitigated by optimizing other condition parameters. Abbaszadeh et al. [214]
increased the solubility of CO2 in the injection well by cooling it so that the risk of pressure
fluctuation during injection was eliminated.

3.2.2. Ions and Impurities

The value of pH characterizes the concentration of H+ in solution, and it is easily seen
from Equations (25) and (26) that a decrease in the pH of the aquifer will tend to shift the
chemical equilibrium of the CO2 dissolution reaction in brine to the left, and this inhibits
the dissolution of CO2. A study by Wan et al. [215] also confirmed this point of view. Some
types of rock that form the aquifer induce the opposite effect in a similar way. Geochemical
reactions caused by carbonate rocks will reduce the H+ concentration of brine. This change
drives the dissolution reaction of CO2 in brine to the right. The CO2 in an aquifer is thus
fixed in the aqueous or mineral phase, with the latter belonging to the CO2 mineral trapping
in a saline aquifer, while the former will lead to an increase in CO2 solubility. The results of
Rosenbauer et al. [216] also supported this conclusion. Note that the solubility of CO2 in
brine was also influenced by the type of salt, with monovalent solutions (such as potassium
chloride and sodium chloride) tending to dissolve more CO2 than divalent solutions (such
as calcium chloride and magnesium chloride) [193,215,217–221]. Since saline aquifers often
contain multiple ions, such as Mg2+, Ca2+, K+, and SO4

2−, the possibility that the solubility
of CO2 in NaCl solution is overestimated compared to that in actual aquifer solution needs
to be considered, as the former is often used in experiments to represent aquifer fluids
instead of the latter.
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The sequestered CO2 captured from large point sources (typically industrial factories)
frequently contained impurities due to process constraints or requirements [222–224]. For
reasons of separation costs and hazardous substance sequestration, CO2 injected into saline
aquifers was often accompanied by these impurities, which could affect CO2 dissolution
and transport [225–228]. It has been shown that the SO2 impurity would enhance the
density increase which was caused by CO2 dissolution, thus enhancing density-driven
convection, while N2 and H2S showed a negative effect [229–234]. This difference stemmed
from the different degrees of change in fluid density after dissolution due to the molecular
mass of the impurities [235,236]. However, it should be noted that the confrontation
between CO2 and impurity diffusion might lead to a non-monotonic effect of the latter on
density-driven convection [237–240]. Experimental results by Mahmoodpour et al. [241,242]
found that a 10 mol% N2 impurity reduced the convective onset time and increased flux,
with a greater pressure drop in CO2 solubility trapping. The opposite effect was observed
in the case of 20 mol% N2 impurity, suggesting that the concentration level of N2 is non-
monotonic, concerning its effect on density-driven convection. This non-monotonicity is
considered to be a macroscopic manifestation of the difference in diffusion coefficients
and is more pronounced in the case of the lighter impurity, H2S. Raad et al. [243] found a
slight barrier to CO2 dissolution in brine for a H2S impurity concentration below 30 mol%,
as evidenced by an insignificant delay in convective onset time. However, a significant
reduction in onset time occurred at 52 mol% H2S. More extensive studies have shown that
H2S impurity might cause different CO2 convective mixing dynamics depending on its
concentration [233,242,244–246].

Even if the effect on CO2 dissolution is not significant at some concentration, the
volume of impurities will reduce CO2 sequestration efficiency. Yu et al. [228] showed
that 10 mol% N2 reduced CO2 sequestration efficiency by at least 32%, with a consequent
reduction in the economics of the CO2 sequestration project. Wei et al. [247] similarly
showed that CO2 injection accompanied by N2 would reduce its sequestration effectiveness
in saline aquifers.

It is also noted that the preferential dissolution of CO2 compared to N2 in brine
would result in chromatographic partitioning at the fluid flow front [248–250], which
was a consequence of the difference in solubility and would result in gas mixtures with
different compositions exhibiting different characteristics in a saline aquifer. Numerical
simulations by Wei et al. [247] showed that the presence of N2 would enhance the migration
rate and saturation of the CO2-N2 gas mixture. Li et al. [251] further showed that, as
the concentration of N2 impurity increased, the mixture migrated laterally over longer
distances and tended to accumulate below the caprock. These phenomena were caused
by an enhanced buoyancy effect and resulted in an increase in CO2 solubility as the
contact area between CO2 and brine increased. This would obviously enhance density-
driven convection. However, the effect was not significant in the case of co-injection with
H2S impurity.

In addition, Darvish et al. [252] and Li and Jiang [253] showed that the preferential
solubility of H2S over CO2 would result in its breakthrough being delayed. This might
also lead to different sequestration results. For example, CO2 in saline aquifers would be
predominantly sequestered in saline aquifers as CaCO3 [254], while H2S is in the form of
FeS2. Similarly, Choi et al. [255] noted that the SO2 impurity was also fixed in the form of
FeS2, and their results for the change in permeability of porous media due to SO2-induced
geochemical reactions might explain the enhancement of CO2 density-driven convection by
SO2 impurity. Yu et al. [228] found that H2S and N2 impurity would increase and decrease
CO2 dissolution efficiency, respectively, due to the presence of chromatographic partitioning
phenomena, which would have an impact on density-driven convection, especially in low-
temperature aquifers. They also noted that the increase in the CO2 migration rate due
to 10 mol% N2 impurity caused an increase of up to 25%, which could be reduced by
increasing the aquifer temperature, thereby reducing the risk of CO2 leakage.
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4. Conclusions and Future Prospects

This paper reviewed the influencing factors and the current state of research on density-
driven convection in saline aquifers. It is clarified that the density-driven convection
dominating CO2 solubility trapping is influenced by several factors. Considering the safety
of CO2 sequestration in saline aquifers, the mechanisms of these factors need to be further
investigated for a more comprehensive understanding. Based on this review, the following
conclusions and future perspectives are presented:

(1) The simplification of the single-phase system in a two-dimensional ideal rectangular
porous medium will lead to an incorrect estimate of the CO2 convective onset time
and flux. The two-phase system additionally considers the capillary transition zone to
correct this misestimate. Density change is the main key to density-driven convection
and is controlled linearly by CO2 concentration. The geothermal gradient prevalent in
the saline aquifer will also trigger a density change, which is described by introducing
an energy equation into modeling. However, the effect of this additional convection
will not be significant. The viscosity difference of fluids can trigger similar transversal
convection early in CO2 injection and should be discussed in the context of studies
related to structural trapping, as its role is insignificant compared to density difference
after CO2 dissolution has generally occurred. The background flow can be introduced
by a fixed velocity boundary condition that would significantly delay the onset of
density-driven convection. To fully approximate the real CO2 saline aquifer sequestra-
tion situation, future studies should consider and model the modeling simplifications
comprehensively and appropriately.

(2) Permeability is an important property of aquifers and determines the magnitude
of Ra that controls convection. An increase in permeability advances the onset of
convection, which often implies a larger CO2 dissolution flux with a larger num-
ber and wavelength of convective fingers. This leads to more CO2 dissolution and
is positive for CO2 solubility trapping in saline aquifers. The heterogeneity of the
saline aquifer is taken into account through several permeability representations,
and similar to the findings in homogeneous porous media, fluctuating and enhanc-
ing permeability in either direction in heterogeneous saline aquifers promotes CO2
density-driven convection. It is important to note that incomplete consideration of the
sensitivity analysis may produce a biased perception of the permeability anisotropy
impact on CO2 density-driven convection. This requires further research to gain
insight into the heterogeneity of saline aquifers since it is frequently observed in CO2
sequestration projects.

(3) The porosity significantly influences the density-driven convection by controlling the
pattern of CO2-rich brine front in saline aquifers. For low porosity, CO2-rich brine
maintained the form of a stable boundary layer that slowly diffused downward. Fur-
thermore, the convective fingering is clearly observed in the saline aquifer with high
porosity. Implying a thinner diffusion boundary layer, an earlier onset of convection,
and a smaller Sh. This is explained as an effect caused by the change in the effective
diffusion coefficient. Meanwhile, the effect caused by varying the permeability is
insignificant. The porosity heterogeneity is introduced into the numerical model as
fluctuation, leading to instability and correlating with convection onset time. As
the porosity fluctuation increases, the convection onset time decreases and is more
significant than the permeability fluctuation. An optimal porosity fluctuation that
minimizes the convection onset time exists. This suggests that even small porosity
fluctuations are sufficient to trigger nonlinear convection. Future research and CO2
sequestration projects should take this factor fully into account.

(4) In a single fracture system, the greater inclination angle of the fracture is equivalent
to providing a preferential channel for solute transport, which facilitates the solubility
trapping process. In the more complex multi-fracture systems, the situation can
be more complicated. In general, regarding the concerned results, the impact of
fractures on convection should be further emphasized, which will be more relevant
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to the practical applications of CO2 solubility trapping. In stratified heterogeneous
formations, the arrangement of layers with different permeability for convection has
been extensively studied, and although there are relevant findings at each scale, from
pore to the field, the corresponding up/downscale studies are still relatively rare, but
they are overwhelmingly important for the practical application of CO2 sequestration.
Different lithologies are associated with the stratification of aquifers, and this affects
the structural geometry and aquifer properties. The quantity and relative spacing
of internal laminae or boundary surfaces that are horizontally or obliquely oriented,
which impede fluid flow, account for a major portion of permeability variances in
facies. The Permian White Rim Sandstone is the best reservoir for CO2 injection, with
great permeability and porosity. The composition of the rocks, sedimentary diagnostic
eolian features, thickness and depth of the layers, etc., should all be considered to
judge the applicability of geological storage. Transmissibility plays an important role
in the stratification and subsequent fault of aquifers. A saline aquifer with optimal
transmissibility may not be the best option for CO2 sequestration safety. Other risks
in CO2 sequestration projects still need to be assessed to find the best solution.

(5) The slope of caprock is prevalent in saline aquifers and is usually considered to
be the top boundary tilt in the model. The slope of caprock will induce massive
transversal movement, merging, and coarsening of convective fingering, which im-
plies an enhancement of density-driven convection. However, the increasing slope
will lead to an excessive migration of CO2, which increases the risk of contamination
from CO2 exposure to freshwater. More reservoir parameters and chemical reactions
associated with the caprock should be considered in further studies to achieve a
more realistic calculation of optimal slope that can guide the site selection for CO2
sequestration projects.

(6) Some contradictory conclusions are reached on the effect of hydraulic dispersion, and
the deviations may stem from the non-independence of the dimensionless number
and can be resolved by specific dimensionless methods. It shows that an increase in
the dispersion ratio accelerates the onset of density-driven convection. Nevertheless, it
is important to further explore the practical effects of hydraulic dispersion anisotropy
in conjunction with experiments to gain insight and a consistent conclusion. Density-
driven convection becomes more complex when both background flow and diffusion
are considered, and further research is needed to provide as much guidance as possible
for CO2 sequestration projects.

(7) The increase in pressure and decrease in temperature or salinity in the aquifer will
promote the dissolution of CO2 in brine, which accelerates the development of density-
driven convection. It is important to note that the positive impact of increased pressure
on CO2 solubility trapping comes with a burden on caprock, particularly in a naturally
fractured one. The ability of saline aquifers to sequester CO2 is limited by this risk,
and future studies should consider the interaction between these parameters to maxi-
mize CO2 sequestration with acceptable risk. The brine properties also significantly
influence the dissolution of CO2. A low pH and high concentration of divalent ions
in brine will inhibit the dissolution of CO2, and, conversely, an aquifer composed
of carbonate rocks will accelerate this process. Moreover, for reasons of economic
efficiency and environmental protection, CO2 injection into the saline aquifer is fre-
quently accompanied by impurities. It is generally accepted that SO2 has a greater
solubility density, and this will enhance density-driven convection, while N2 and H2S
show the opposite impact. However, the actual effect of impurities on density-driven
convection may be non-monotonic, depending on the molar percentage of impurities
in brine. Chromatographic partitioning should also be noted, as it accelerates density-
driven convection in some cases. For reasons of economy and safety, a more specific
study of these effects is awaited, as there is an optimum impurity ratio to enhance
density-driven convection. These saline aquifer parameters also significantly affect
CO2 structural and mineral trapping, thus revealing that the actual saline aquifer
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sequestration of CO2 is complex and involves multiple trapping mechanisms. For an
accurate assessment of the ability of saline aquifers to sequester CO2, other trapping
mechanisms and their coupling with solubility trapping should be taken into account.

Overall, for CO2 saline aquifer sequestration projects, permeability is the first concern,
as it almost determines the CO2 sequestration capacity of the saline aquifer. A deep saline
aquifer is also an ideal site, which directly represents a high sequestration capacity, due
to the high volume, low temperature, and high temperature gradient. However, a highly
heterogeneous saline aquifer is not the best choice, it triggers CO2 migration without
causing additional sequestration capacity. Fractures, stratification, slope, and background
flow also lead to additional CO2 migration, and formation pressure may even result in
sequestration failure, but these factors contribute to sequestration efficiency to a certain
degree. Similarly, both the porosity, hydrodynamic dispersion, and viscosity cause positive
and negative effects simultaneously. Depending on the type and content, impurities and
lithology also lead to non-monotonic effects.

Further research on the methods of coupling, monitoring, and regulating of various
factors will allow for a better estimation of the saline aquifer’s sequestration capacity.
Moreover, it is possible to better understand and control the state of CO2 in saline aquifers.
This is beneficial in providing the optimal option for siting and operation of CO2 sequestra-
tion projects.
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Synthetic Soda Ash Production and Its Consequences for the Environment. Materials 2022, 15, 4828. [CrossRef]

225. Basava-Reddi, L.; Wildgust, N.; Ryan, D. Effects of Impurities on Geological Storage of Carbon Dioxide. In Proceedings of the 1st
EAGE Sustainable Earth Sciences (SES) Conference and Exhibition, 8–11 November 2011; European Association of Geoscientists
& Engineers: Bunnik, The Netherlands, 2011; p. cp–268-00052.

226. Talman, S. Subsurface geochemical fate and effects of impurities contained in a CO2 stream injected into a deep saline aquifer:
What is known. Int. J. Greenh. Gas Control 2015, 40, 267–291. [CrossRef]

227. Hajiw, M.; Corvisier, J.; El Ahmar, E.; Coquelet, C. Impact of impurities on CO2 storage in saline aquifers: Modelling of gases
solubility in water. Int. J. Greenh. Gas Control 2018, 68, 247–255. [CrossRef]

228. Yu, Y.; Li, Y.; Cheng, F.; Yang, G.; Ma, X.; Cao, W. Effects of impurities H2S and N2 on CO2 migration and dissolution in
sedimentary geothermal reservoirs. J. Hydrol. 2021, 603, 126959. [CrossRef]

229. Ji, X.; Zhu, C. Predicting Possible Effects of H2S Impurity on CO2 Transportation and Geological Storage. Environ. Sci. Technol.
2013, 47, 55–62. [CrossRef] [PubMed]

230. Li, D.; Jiang, X. A numerical study of the impurity effects of nitrogen and sulfur dioxide on the solubility trapping of carbon
dioxide geological storage. Appl. Energy 2014, 128, 60–74. [CrossRef]

231. Li, D.; Jiang, X. An investigation of chromatographic partitioning of CO2 and multiple impurities in geological CO2 sequestration.
Energy Procedia 2015, 75, 2240–2245. [CrossRef]

232. Li, D.; Jiang, X.; Meng, Q.; Xie, Q. Numerical analyses of the effects of nitrogen on the dissolution trapping mechanism of carbon
dioxide geological storage. Comput. Fluids 2015, 114, 1–11. [CrossRef]

233. Kim, M.C.; Song, K.H. Effect of impurities on the onset and growth of gravitational instabilities in a geological CO2 storage
process: Linear and nonlinear analyses. Chem. Eng. Sci. 2017, 174, 426–444. [CrossRef]

234. Li, D.; Jiang, X. Numerical investigation of convective mixing in impure CO2 geological storage into deep saline aquifers. Int. J.
Greenh. Gas Control 2020, 96, 103015. [CrossRef]

235. Ennis-King, J.; Paterson, L. Role of Convective Mixing in the Long-Term Storage of Carbon Dioxide in Deep Saline Formations.
SPE J. 2005, 10, 349–356. [CrossRef]

236. Kather, A.; Kownatzki, S. Assessment of the different parameters affecting the CO2 purity from coal fired oxyfuel process. Int. J.
Greenh. Gas Control 2011, 5, S204–S209. [CrossRef]

237. Jafari Raad, S.M.; Hassanzadeh, H. Onset of dissolution-driven instabilities in fluids with nonmonotonic density profile. Phys.
Rev. E 2015, 92, 053023. [CrossRef] [PubMed]

238. Jafari Raad, S.M.; Emami-Meybodi, H.; Hassanzadeh, H. On the choice of analogue fluids in CO2 convective dissolution
experiments. Water Resour. Res. 2016, 52, 4458–4468. [CrossRef]

239. Jafari Raad, S.M.; Hassanzadeh, H.; Ennis-King, J. On the Dynamics of Two-Component Convective Dissolution in Porous Media.
Water Resour. Res. 2019, 55, 4030–4042. [CrossRef]

240. Omrani, S.; Mahmoodpour, S.; Rostami, B.; Salehi Sedeh, M.; Sass, I. Diffusion coefficients of CO2–SO2–water and CO2–N2–water
systems and their impact on the CO2 sequestration process: Molecular dynamics and dissolution process simulations. Greenh.
Gases Sci. Technol. 2021, 11, 764–779. [CrossRef]

241. Mahmoodpour, S.; Rostami, B.; Emami-Meybodi, H. Onset of convection controlled by N2 impurity during CO2 storage in saline
aquifers. Int. J. Greenh. Gas Control 2018, 79, 234–247. [CrossRef]

242. Mahmoodpour, S.; Amooie, M.A.; Rostami, B.; Bahrami, F. Effect of gas impurity on the convective dissolution of CO2 in porous
media. Energy 2020, 199, 117397. [CrossRef]

243. Raad, S.M.J.; Hassanzadeh, H. Prospect for storage of impure carbon dioxide streams in deep saline aquifers-A convective
dissolution perspective. Int. J. Greenh. Gas Control 2017, 63, 350–355. [CrossRef]

244. Raad, S.M.J.; Hassanzadeh, H. Does impure CO2 impede or accelerate the onset of convective mixing in geological storage? Int. J.
Greenh. Gas Control 2016, 54, 250–257. [CrossRef]

http://doi.org/10.1021/acs.jced.7b00591
http://doi.org/10.3390/su11020317
http://doi.org/10.1103/PhysRevApplied.12.034016
http://doi.org/10.3390/su14020986
http://doi.org/10.1016/j.egypro.2011.02.119
http://doi.org/10.1016/j.pecs.2011.05.002
http://doi.org/10.3390/ma15144828
http://doi.org/10.1016/j.ijggc.2015.04.019
http://doi.org/10.1016/j.ijggc.2017.11.017
http://doi.org/10.1016/j.jhydrol.2021.126959
http://doi.org/10.1021/es301292n
http://www.ncbi.nlm.nih.gov/pubmed/22823266
http://doi.org/10.1016/j.apenergy.2014.04.051
http://doi.org/10.1016/j.egypro.2015.07.398
http://doi.org/10.1016/j.compfluid.2015.02.014
http://doi.org/10.1016/j.ces.2017.09.038
http://doi.org/10.1016/j.ijggc.2020.103015
http://doi.org/10.2118/84344-PA
http://doi.org/10.1016/j.ijggc.2011.05.025
http://doi.org/10.1103/PhysRevE.92.053023
http://www.ncbi.nlm.nih.gov/pubmed/26651795
http://doi.org/10.1002/2015WR018040
http://doi.org/10.1029/2018WR024572
http://doi.org/10.1002/ghg.2078
http://doi.org/10.1016/j.ijggc.2018.10.012
http://doi.org/10.1016/j.energy.2020.117397
http://doi.org/10.1016/j.ijggc.2017.06.011
http://doi.org/10.1016/j.ijggc.2016.09.011


Geotechnics 2023, 3 103

245. Jafari Raad, S.M.; Hassanzadeh, H. Comments on the paper “effect of impurities on the onset and the growth of gravitational
instabilities in a geological CO2 storage process: Linear and nonlinear analyses” M.C. Kim, K.H. Song (2017). Chem. Eng. Sci.
2018, 192, 613–618. [CrossRef]

246. Kim, M.C.; Song, K.H. Responses to the comment on the paper “Effect of impurities on the onset and the growth of gravitational
instabilities in a geological CO2 storage process: Linear and nonlinear analyses” by M.C. Kim and K.H. Song. Chem. Eng. Sci.
2019, 193, 184–187. [CrossRef]

247. Wei, N.; Li, X.; Wang, Y.; Wang, Y.; Kong, W. Numerical study on the field-scale aquifer storage of CO2 containing N2. Energy
Procedia 2013, 37, 3952–3959. [CrossRef]

248. Bachu, S.; Bennion, D.B. Chromatographic partitioning of impurities contained in a CO2 stream injected into a deep saline aquifer:
Part 1. Effects of gas composition and in situ conditions. Int. J. Greenh. Gas Control 2009, 3, 458–467. [CrossRef]

249. Bachu, S.; Pooladi-Darvish, M.; Hong, H. Chromatographic partitioning of impurities (H2S) contained in a CO2 stream injected
into a deep saline aquifer: Part 2. Effects of flow conditions. Int. J. Greenh. Gas Control 2009, 3, 468–473. [CrossRef]

250. Wei, N.; Li, X.C. Numerical studies on the aquifer storage of CO2 containing N2. Energy Procedia 2011, 4, 4314–4322. [CrossRef]
251. Li, D.; He, Y.; Zhang, H.; Xu, W.; Jiang, X. A numerical study of the impurity effects on CO2 geological storage in layered

formation. Appl. Energy 2017, 199, 107–120. [CrossRef]
252. Pooladi-Darvish, M.; Hong, H.; Stocker, R.K.; Bennion, B.; Theys, S.; Bachu, S. Chromatographic Partitioning of H2S and CO2 in

Acid Gas Disposal. J. Can. Pet. Technol. 2009, 48, 52–57. [CrossRef]
253. Li, D.; Jiang, X. Numerical investigation of the partitioning phenomenon of carbon dioxide and multiple impurities in deep saline

aquifers. Appl. Energy 2017, 185, 1411–1423. [CrossRef]
254. Bacon, D.H.; Ramanathan, R.; Schaef, H.T.; McGrail, B.P. Simulating geologic co-sequestration of carbon dioxide and hydrogen

sulfide in a basalt formation. Int. J. Greenh. Gas Control 2014, 21, 165–176. [CrossRef]
255. Choi, B.Y.; Shin, Y.-J.; Park, Y.-C.; Park, J. Preliminary results of numerical simulation in a small-scale CO2 injection pilot site: 2.

Effect of SO2 impurity on CO2 storage. J. Geol. Soc. Korea 2015, 51, 497. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/j.ces.2018.08.011
http://doi.org/10.1016/j.ces.2018.09.004
http://doi.org/10.1016/j.egypro.2013.06.294
http://doi.org/10.1016/j.ijggc.2009.01.001
http://doi.org/10.1016/j.ijggc.2009.01.002
http://doi.org/10.1016/j.egypro.2011.02.382
http://doi.org/10.1016/j.apenergy.2017.04.059
http://doi.org/10.2118/130064-PA
http://doi.org/10.1016/j.apenergy.2015.12.113
http://doi.org/10.1016/j.ijggc.2013.12.012
http://doi.org/10.14770/jgsk.2015.51.5.497

	Introduction 
	Modeling 
	Modeling Methodology 
	Coordinate Selection and Boundary Conditions 

	Influencing Factors 
	Fluid Dynamics 
	Permeability 
	Porosity 
	Fractures and Stratification 
	Slope of Caprock 
	Hydrodynamic Dispersion 

	Dissolution Dynamics 
	Temperature, Pressure, and Salinity 
	Ions and Impurities 


	Conclusions and Future Prospects 
	References

