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Abstract: This work analyses the mobilization of infinite natural slopes that are initially partially
saturated. Starting from dry conditions (the water table is assumed to be deep, far from the slope
surface), the soil shear strength will decrease when the wetting front advances from the surface.
First, the geometry of the failure mechanism that can develop because of such strength reduction is
determined. Second, after the mobilization causes the progressive reduction in the soil strength, the
slide speed reached the minimum strength is determined, obtaining an indicator of the risk derived
from failure.

Keywords: infinite slope; partially saturated conditions; shear strength; slope mobilization;
failure risk

1. Introduction

Landslides are an environmental and safety problem of the greatest social impor-
tance [1–4]. However, their characterization and study are not straightforward. This is
why, despite its limitations, the hypothesis of infinite slope and planar landslide is a useful
tool for their analysis, as in the classic works of Taylor [5] and Skempton and Delory [6],
as well as in more recent research by Duncan et al. [7], Ng et al. [8], Dey et al. [9] and
Huang et al. [10], among others. Assuming plane strain for an ideally homogeneous soil,
the stress field is univocally defined because of the symmetry of the problem when the
depth z values are small compared to the length of the slope L in the direction defined in
Figure 1a. Thus, it is possible to study slope failure analytically. For this purpose, Limit
Equilibrium techniques are usually applied, approximating the failure envelope using a
Mohr-Coulomb model (see, for example, the review presented by Zhang et al. [11]). In
addition, symmetry also makes it possible to identify the translational failure mechanism
(Figure 1a). Chen [12] and Atkinson [13], among others, used this mechanism after applying
Limit Analysis techniques to uniquely characterize the slope failure in idealized conditions.

Under natural conditions, hillslopes are usually unsaturated [14]. Many slides occur
as a consequence of heavy rain events, which increase the water content of the partially
saturated soil and, thus, reduce its shear strength [15,16]. Taking the work of Kim et al. [17]
as a reference, the present work analyses this process. To this end, after defining the stress
state of the soil and the type of failure mechanism to be considered, this work characterizes
of the pore-water pressure profile and the stress state when the failure occurs. Then,
applying the Work-Energy Theorem [15], the increase in speed of this sliding mechanism is
analyzed when the soil strength parameters are reduced as mobilization advances. This
speed is an indicator of the risk derived from system failure. Therefore, the magnitudes
that control the risk can be identified by parametrizing the expression for the speed.
This parametrization provides a new tool to quantify the landslide risk for an ideally
infinite slope.
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Figure 1. Section of the geometry of the unsaturated infinite natural slope considered. (a) Translational
block of the failure mechanism; (b) Static equilibrium diagram.

2. System Analysis and Conceptual Framework Adopted

Figure 1 shows a section of the geometry of the homogeneous natural slope considered.
Plane strain is assumed. Since the slope is infinitely long both to the left and to the right
of the represented zone, segment L is symmetric with respect to any other segment of
the slope.

Symmetry determines the general shape of the failure mechanism. Any mechanism
other than the translational block represented in Figure 1a [18] would imply the contact
of the slip surface with the slope surface, and symmetry would not be fulfilled. The slip
line at depth zF (“F”: failure) is an idealization of the base shear zone (Figure 1b) where the
plastic strains of the failure mechanism are concentrated.

Symmetry also allows the stress state of the system to be determined. First, if forces
RR and RL in Figure 1b (vector magnitudes are represented in bold throughout the paper)
were not equal, a situation would arise in an infinite slope in which either of them would
become infinite. Therefore, the resultant force of RR and RL must be zero. In the same way,
the normal σ and shear τ stresses on any plane Γ parallel to the slope are homogeneous.
Applying equilibrium between the stresses on Γ and the weight W of the mass above Γ.

σ = ρ g z cos2β
τ = ρ g z cos β sin β

(1)

where ρ is the average soil bulk density, g is the gravitational acceleration, z is the depth of
Γ, and β is the slope angle. Consequently, as noted above, symmetry determines the stress
state of the soil.

For the considered partially saturated conditions, the definition of effective stress σ′

proposed by Alonso et al. [19] can be adopted

σ′ = σ+ Sr s m (2)

where σ is the total stress vector (engineering or Voigt notation is used for both stress and
strain tensors), s is the matric suction (identified with the capillary suction: s = PG−PL,
where PL is the liquid pressure), the gas pressure PG in the system is assumed to equal the
atmospheric pressure, taken as reference (Patm = 0), Sr is the effective degree of saturation
(freely available water), and m is the vector form of the Kronecker delta. Consistent with
Equation (2), among the formulations for extending the Mohr-Coulomb linear failure
envelope to partially saturated soils (see, for instance, Fredlund et al. [20]; Sheng [21];
Sheng et al. [22]), the following model is adopted [19]

τF = c′ + σ′F tanϕ′ = σF tanϕ′ + c′ + Sr s tanϕ′ (3)
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where τF is the failure shear stress, c′ is the cohesion, σF is the total normal stress, σ′F is the
effective normal stress, both in the failure plane, and ϕ′ is the friction angle.

If low initial water content is assumed (deep water table), the initial suction will be
high. Consequently, according to Equation (3), the reduction in suction due to the advance
of a wetting front will cause a relevant decrease in shear strength. Therefore, it is a critical
situation for the stability of the system and can be understood as the triggering factor that
induces mobilization.

For a position of the water table (WT) deep enough (zW), a degree of saturation profile
as shown in Figure 2a is assumed (see, for example, Terzaghi [23]), with an associated
matric suction profile as that of Figure 2b. The residual degree of saturation SrR corresponds
to suction sR, which is linked to the soil field capacity.
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Figure 2. (a) Initial degree of saturation Sr profile; (b) Initial matric suction s profile, where h is the
hydraulic head when the water table is located at a depth zW.

A wetting process propagating from the surface as a consequence of a rainfall event is
analyzed. Although the modeling of such a process using a wetting front is a non-negligible
simplification (see, for instance, Zhang et al. [11]; Huang et al. [10]), it is a useful modeling
strategy. The present study assumes that the progress of the wetting front causes the
matric suction profile to evolve with time t as outlined in Figure 3 (adapted from [11]). The
soil area closer to the surface is considered to be saturated, in a “perched saturation,” as
referred to by Hungr et al. [15], in which the matric suction is zero. Deeper into the soil,
matric suction is assumed to reach a value of sR after a transition band. The shape of this
transition band, and that of the transition from sR to 0 close to the initial position of the
water table, depends on the type of soil. However, this is not relevant for the calculations
in the following section, which are only conditioned by the fact that suction is null in the
perched saturation zone.
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Figure 3. Evolution with time t of the matric suction caused by the advance of a wetting front (t2 > t1).
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3. Failure and Mobilization

According to Equation (1), the shear stress at the base of the failure mechanism can be
calculated as

τF = ρ g zF cos β sin β (4)

Moreover, according to Equation (3), it will also follow that

τF = ρ g zF cos2β tan ϕ′0 + c′0 + Sr s tan ϕ′0 (5)

For mobilization to occur, the resistance must be less than in the stable state. The
decrease is due to the loss of strength caused by saturation, as the suction s becomes zero,
rewriting Equation (5) as

τF = ρ g zF cos2β tan ϕ′0 + c′0 (6)

where zF is given by the expression

zF =
c′0
ρ g

cos ϕ′0
cos β sin(β− ϕ′0)

(7)

As noted by Potts et al. [24] and Chen et al. [25], if the mobilization δu progresses,
the strains at the base shear zone will increase, and the soil strength will be reduced.
Disregarding viscous terms such as those indicated by Iverson [26] and, for simplicity,
adopting a linear model, the evolution of ϕ′ and c′ shown in Figure 4a can be assumed.
When ϕ′ is equal to ϕ′0 (initial saturated situation), integrating the value of τ at zF, τF0
in Figure 4b, leads to a stabilizing load T that balances the tangential component of the
weight WT. According to Equations (1) and (3)

τF0 = c′0 + σF tan ϕ′0 = c′0 + ρ g zF cos2β tan ϕ′0 (8)

1 

 

 

Figure 4. (a) Friction angle ϕ′ and cohesion c′ as a function of mobilization displacement δu; (b) Shear
strength τF as a function of mobilization displacement δu.

However, when δu increases, ϕ′, and c′ decrease [24], and τF will be lower (Figure 4b)

τF = c′ + ρ g zF cos2β tan ϕ′ (9)

Consequently, T will not balance WT, resulting in the accelerated sliding of the mech-
anism at zF. The decrease in friction angle and cohesion accelerates the mechanism, in-
creasing its kinetic energy as the mobilization progresses. According to the Work-Energy
Theorem [15,27], when a slope segment reaches displacement δu, the failure mechanism
will have kinetic energy EC

EC =
1
2

Mv2 =

δu∫
0

(WT − T) δu (10)
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where M is the mass of the segment, WT and T are the moduli of vectors WT and T,
respectively, and v is the speed of displacement. T is equal to the product of τF and the
contact area A at the base shear zone. Therefore, the previous Equation (10) can be written as

1
2

Mv2 = A
δu∫
0

(τF0 − τF) δu (11)

And the kinetic energy per unit of mobilized volume eC, taking into account Figure 4b,
can be expressed as

eC =
1
2

ρ v2 =
1

zF cos β

τF0 − τF1

2
δu1 (12)

Introducing Equations (7)–(9), the coefficient FRI can be defined as

FRI =
v2/g

δu1
=

[
tan ϕ′0 − tan ϕ′1

tan β
+

(
1−

tan ϕ′0
tan β

)(
1− c′1

c′0

)]
sin β (13)

4. Discussion

As the mobilization progresses, Equation (12) indicates that the kinetic energy of the
system associated with δu1 is proportional to the shaded area in Figure 4b. The mechanical
energy stored in the base shear zone transforms into kinetic energy as the mobilization
progresses and τF decreases. The tendency to gain kinetic energy is defined by Equation (13),
in which the dimensionless term (v2/g)/δu1 can be understood as the relation between the
kinetic energy per unit mass that is reached in δu1 (when all the reduction in soil strength
has taken place) and displacement δu1 after the mechanical energy of the shaded area
has been dissipated. Therefore, the efficiency of the system to gain kinetic energy as the
strength decreases can be understood as a failure risk index FRI.

For any given slope, the higher β with respect to ϕ′0 (increasing 1—tanϕ′0/tanβ in
the horizontal axis in Figure 5), the greater the tendency to gain kinetic energy, increasing
FRI. FRI also increases with decreasing c′1 with respect to c′0 (second number in the legend,
c′1/c′0, Figure 5). Furthermore, the greater the difference between ϕ′0 and ϕ′1 (represented
by the first number in the legend, (tanϕ′0—tanϕ′1)/tanβ, Figure 5), the more kinetic energy
is gained. As expected, the higher the slope angle and the lower the final strength, the
greater the kinetic energy gained for the same initial strength ϕ′0.
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Figure 5. FRI/sinβ as a function of (1−tanϕ′0/tanβ) for values of the term (tanϕ′0−tanϕ′1)/tanβ

of 0.4 and 0.3 (the first number in the legend) and for values of term c′1/c′0 of 0.2, 0.4 and 0.6 (the
second number in the legend).

It is not so straightforward to predict the effect of different ϕ′0 values on the energy
when the soil reaches its final strength. Figure 6 compares the FRI values as a function of
ϕ′0 obtained with β of 38◦ and 28◦ and ϕ′1 of 5◦ and 20◦ while taking c′1 as the 40% of c′0.
As expected, fixing ϕ′1, FRI increases with increasing β for any ϕ′0. Moreover, fixing β, FRI
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increases with decreasing ϕ′1. However, for any given β and ϕ′1 values, FRI increases with
ϕ′0: the higher the soil strength before failure, the greater the kinetic energy of the soil after
reaching its ultimate strength. As noted above, the soil dissipates the stored mechanical
energy (shaded area in Figure 4b) when reaching its ultimate strength. The higher the soil
strength before initiating the failure mechanism, the larger the shaded area. Therefore, the
base shear zone will have more energy stored, and the kinetic energy gained when reaching
the ultimate strength will be greater.
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It should be noted that as Equation (7) indicates, assuming a certain cohesion and bulk
density, the greater ϕ′0, the greater zF. This is shown in Figure 7, in which the dimensionless
depth of the failure ρgzF/c′0 is represented. As noted above, for mobilization to begin,
the wetting front must reach zF. For a given initial water content profile, the probability
that the wetting front reaches a certain depth is related to the probability of a rainfall
event of enough duration for it to occur. For a greater zF value, such a rainfall event is
less likely. Therefore, it may be questionable to compare the value of FRI for different
values of ϕ′0 (Figure 6) since it involves comparing processes of different probabilities P of
occurrence. The comparison would be more consistent if this probability were introduced
in the calculation of FRI, analyzing, for instance, the value of P(FRI). However, such an
analysis is beyond the scope of this paper. This study aims to analyze not the damage that
a landslide could cause, characterized by P(FRI), but rather how vulnerable a slope is to the
mobilization derived from a decrease in ϕ′. Then, FRI can be considered a good indicator
of this vulnerability.
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5. Conclusions

The analysis of the mobilization of a partially saturated infinite slope was presented.
Initial dry conditions were assumed, and a Mohr-Coulomb failure model was adopted.
Based on the symmetry of the slope, the stress state of the translational block that defines
the analyzed failure mechanism was derived. The application of the Work-Energy Theorem
made it possible to obtain an estimate of the speed of the block when the soil strength ca-
pacity is reduced to its ultimate value. A failure risk index was defined from the expression
of that speed. In addition, an energy analysis was carried out, which illustrates an aspect of
practical interest: the kinetic energy of the sliding system is greater for more resistant soils
when that ultimate strength is reached.
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