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Abstract: The objective of this study is to develop data-driven predictive models for peak rotation
and factor of safety for tipping-over failure of rocking shallow foundations during earthquake loading
using multiple nonlinear machine learning (ML) algorithms and a supervised learning technique.
Centrifuge and shaking table experimental results on rocking foundations have been used for the
development of k-nearest neighbors regression (KNN), support vector regression (SVR), and random
forest regression (RFR) models. The input features to ML models include critical contact area ratio of
foundation; slenderness ratio and rocking coefficient of rocking system; peak ground acceleration
and Arias intensity of earthquake motion; and a categorical binary feature that separates sandy soil
foundations from clayey soil foundations. Based on repeated k-fold cross validation tests of models,
we found that the overall average mean absolute percentage errors (MAPE) in predictions of all
three nonlinear ML models varied between 0.46 and 0.60, outperforming a baseline multivariate
linear regression ML model with corresponding MAPE of 0.68 to 0.75. The input feature importance
analysis reveals that the peak rotation and tipping-over stability of rocking foundations are more
sensitive to ground motion demand parameters than to rocking foundation capacity parameters or
type of soil.

Keywords: rocking foundations; earthquake engineering; soil-structure interaction; tipping-over
stability; machine learning

1. Introduction

Recent research findings have demonstrated that properly designed rocking shallow
foundations possess many desirable characteristics by effectively acting as geotechnical
seismic isolation mechanisms. The mobilization of bearing capacity and yielding of soil
during rocking forms a plastic-hinge or a fuse-like mechanism in foundation soil that in
turn dissipates seismic energy and reduces the seismic force and flexural drift demands
transmitted to the structures e.g., [1–7]. ASCE/SEI Standard 41-13 includes some provisions
and recommendations for rocking behavior of shallow foundations in seismic evaluation
and retrofitting of existing buildings [8], and rationales and justifications highlighting the
benefits of including rocking foundations in seismic design have also been published [9–11].
Despite a growing body of knowledge and mounting experimental evidences, foundation
rocking is still perceived as an unreliable geotechnical seismic isolation mechanism for
improving the seismic performance of structures. The possibility of excessive rotation and
settlement of foundation, possible tipping-over failure of structure, and the challenges
associated with accurately predicting the performance of rocking foundations amid uncer-
tainties in soil properties and earthquake loading are among primary concerns that hinder
the use of foundation rocking as a designed mechanism for reducing seismic force and
ductility demands transmitted to structures [12–15].

The development and availability of well-documented, large, experimental databases
in the recent past has encouraged the application of machine learning (ML) algorithms in
predictive modeling in many fields [16,17]. Models based on machine learning algorithms
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have the ability to learn directly from experimental data and generalize experimental
behavior, and hence can be used in combination with physics-based theoretical models as
complementary measures in practical applications. In the recent past, the application of
machine learning algorithms and models in geotechnical engineering has seen an expo-
nential increase [18]. Of the 783 research articles on the application of machine learning
algorithms in geotechnical engineering published in last 35 years, about 70% of the articles
were published within the last 10 years [18]. Artificial neural networks, support vector
machines, decision trees, and logistic regression have been used to predict compressive
strength and shear strength of soils, slope stability, bearing capacity and settlement of
foundations, and liquefaction potential of soils [19–24].

The objective of this study is to develop data-driven predictive models for peak rota-
tion and factor of safety for tipping-over failure of structures supported by rocking shallow
foundations during earthquake loading using multiple machine learning (ML) algorithms
and a supervised learning technique. Data from a globally available rocking foundations
database, consisting of dynamic base shaking experiments conducted on centrifuges and
shaking tables, were used for training and testing of machine learning models. Three nonlin-
ear machine learning algorithms are considered in this study: distance-weighted k-nearest
neighbors regression (KNN), support vector regression (SVR), and decision tree-based
random forest regression (RFR). The input features to the machine learning algorithms
included critical contact area ratio of foundation (related to the factor of safety for bearing
capacity during rocking); slenderness ratio and rocking coefficient of rocking system; peak
ground acceleration and Arias intensity of earthquake motion; and a categorical binary
feature that separates sandy soil foundations from clayey soil foundations.

Two performance parameters of rocking systems were considered as prediction vari-
ables: (i) peak rotation of foundation during rocking and (ii) factor of safety for tipping-over
failure of structure, defined as the critical rotation that would cause tipping-over failure
divided by the peak rotation of foundation. A randomly split pair of training and testing
datasets was used for initial evaluation and hyperparameter turning of ML models. In
addition, multiple random training datasets were used to evaluate the importance of input
features (their suitability and relative significance for the problem considered) using a
RFR model. A repeated k-fold cross validation technique, reshuffling the entire dataset,
was then used to further evaluate the performance of the models in terms of bias and
variance using the mean absolute error (MAE) and mean absolute percentage error (MAPE)
of their predictions. The three nonlinear machine learning model performances were also
compared with a multivariate linear regression (MLR) model, a linear parametric machine
learning model developed as a baseline model for comparison.

Previous studies related to the application of machine learning algorithms for perfor-
mance prediction of rocking foundations considered seismic energy dissipation, permanent
settlement, and acceleration amplification ratio (acceleration transmitted to the structure)
as performance (or prediction) parameters [25,26]. The novelty and originality of the
present study include the following: (i) this is the first study that applies machine learning
algorithms to develop data-driven predictive models for rocking-induced peak rotation
and factor of safety for tipping-over failure of rocking foundations and (ii) the present
study develops a new ensemble machine learning model for rocking foundations, namely,
a random forest model consisting of multiple decision trees.

2. Background: Tipping-Over Stability of Rocking Shallow Foundations

Figure 1 shows the schematic of a rocking structure supported by a shallow foundation
and the forces (vertical load (V), horizontal load (H) and moment (M)) and displacements
(settlement (s), sliding (u) and rotation (θ)) acting at the soil–footing interface during rock-
ing. The peak rotation of rocking foundation (θpeak) is defined as the absolute maximum
rotation experienced by the foundation during earthquake shaking, which is also the same
as the peak rotation of the structure, as the footing and structure are rigidly connected.
Gajan and Kayser (2019) [15], for example, using parametric studies of numerical simula-
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tions, demonstrated that the peak rotation of a rocking foundation is strongly correlated to
maximum acceleration of base shaking (amax). The magnitude of rocking-induced rotation
of the structure also depends on the slenderness ratio of the rocking system (h/B, where h
is the effective height of the structure and B is the width of the footing in the direction of
rocking), as h/B predominantly controls the applied moment-to-shear ratio at the footing–
soil interface [27]. The other parameters that affect the peak rotation of rocking foundation
include critical contact area ratio, rocking coefficient, Arias intensity of earthquake motion,
and type of soil [7].
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Figure 1. Schematic illustration of a relatively rigid structure rocking on soil and the resulting forces
and displacements at soil–foundation interface.

Figure 2a presents the variation of peak rotation of foundation (θpeak) with peak
ground acceleration (amax) of earthquake motion for three different clusters of slenderness
ratio (h/B) of rocking systems (two sets on sand and one set on clay foundations). It should
be noted that for all rocking systems presented in Figure 2 and in this paper, the slenderness
ratio (h/B) is greater than 1.0 (i.e., all systems considered are rocking-dominated systems
as opposed to sliding-dominated systems). The experimental results presented in Figure 2
were extracted from 140 centrifuge and shaking table experiments on rocking foundations
available in a publicly available database (described further in Section 3.1). As can be seen
from Figure 2a, in general, and as expected, θpeak increases as amax increases; however,
there is scatter in the data. Similarly, though the data are scattered, in general, for a
given amax, higher slenderness ratio structure–footing systems rotate more than their lower
counterparts, indicating the ability of slender structures to rock more than relatively shorter
structures. Figure 2a also shows that rocking systems on clayey soils rotate more than those
on sandy soils with the same range of slenderness ratios (1.0 < h/B < 2.0). This behavior
is consistent with the clayey soil foundations’ ability to dissipate more seismic energy
compared to sandy soils for a given shaking intensity [7].

Figure 2b presents the variation of peak rotation of foundation (θpeak) with Arias
intensity (Ia) of earthquake motion for the same data and the same group of rocking
foundations (same as in Figure 2a). In addition to the amplitude of shaking acceleration, Ia
also includes the effects of frequency content and duration of shaking, and hence it is not
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a redundant input feature to correlate and predict peak rotation of rocking foundations.
The data in both Figure 2a,b, in general, show similar trends, although the scatter in data
is slightly higher in Figure 2b. As can be seen from Figure 2b, as Ia increases, the peak
rotation of rocking foundation increases, and for a given Ia, peak rotation increases with
increasing h/B ratio. It turns out that Ia is the second most important feature after amax in
predicting the peak rotation of rocking foundations (presented in Section 5.3: Significance
of input features).
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Figure 2. Variation of peak rotation of rocking foundation with (a) peak ground acceleration and
(b) Arias intensity of ground motion for rocking structure–foundation system with different slen-
derness ratios (h/B) (Note: (i) data obtained from 140 centrifuge and shaking table experiments,
(ii) (h/B) > 1.0 for all experiments, and (iii) both figures share the same legend).

Figure 3 shows the schematic of a lumped mass–column–foundation representation
of a relatively rigid structure rocking on supporting soil, illustrating the initial (red) and
rotated (blue) positions of the structure and footing during rocking. Critical rotation of a
rocking structure (θcrit) can be defined as the magnitude of rotation that would possibly
cause tipping-over failure of the structure–foundation system during earthquake. Using
static equilibrium conditions on the verge of tipping-over failure, the maximum horizontal
displacement at the center of gravity of the structure (∆crit) during earthquake shaking that
would cause tipping-over failure can be obtained by,

∆crit =
B − Bc

2
(1)

where Bc is the critical contact width of the footing with the soil (in the direction of shaking)
that is required to support applied vertical load (Bc is defined and is correlated to the
bearing capacity of a square or rectangular foundation in Section 3.2). The critical rotation
(θcrit) can then be defined as,

θcrit = tan−1
[

∆crit

h

]
(2)

In order to quantify the stability of rocking systems against tipping-over failure during
shaking, a factor of safety for tipping over (FSTO) can be defined by comparing the peak
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rotation with the critical rotation of the rocking system. On the verge of static (limiting)
equilibrium during rocking, the factor of safety for tipping-over failure is defined as,

FSTO =
θcrit

θpeak
(3)
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Figure 3. Illustration of a lumped mass–column–footing representation of a rocking system showing
the critical rotation (θcrit), critical lateral displacement (∆crit), and bearing pressure distribution (qult)
along critical contact width (Bc) of the footing on the verge of tipping-over failure.

Figure 4a presents the variation of factor safety for tipping over (FSTO) with peak
ground acceleration (amax) of the earthquake ground motion for different clusters of slen-
derness ratio (h/B) of the structure–footing systems (the same groups of experiments
presented in Figure 2). Figure 4b presents the same dataset with Arias intensity of ground
motion (Ia) on the x-axis. It can be seen from Figure 4 that FSTO is as high as 400 during
shaking for relatively smaller intensity earthquakes and at least 2.0 or greater for higher
intensity earthquakes. As expected, FSTO decreases as amax and Ia increase, and for a given
amax or Ia, FSTO decreases as h/B increases. Though there is scatter in the data, none of
the FSTO values approach 1.0 (critical FSTO on the verge of tipping-over failure). This is
consistent with the experimentally observed behavior that none of the structure–footing
systems used in any of these 140 experiments tipped over during shaking. Data also show
that the tipping-over stability of rocking foundations is higher on clayey soils compared to
sandy soil foundations. This behavior is also consistent with the previous research findings.
Sharma and Deng (2019) [28], based on field experiments of rocking foundations on clayey
soils, concluded that rocking systems on clay exhibited a re-centering ability that is better
than on sand.
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Figure 4. Variation of factor of safety for tipping over (FSTO = θcrit/θpeak) with (a) peak ground
acceleration and (b) Arias intensity of ground motion for rocking structure–foundation systems with
different slenderness ratios (h/B).

3. Experimental Data and Input Features
3.1. Experimental Data

The data and results obtained from five series of centrifuge experiments [2,29–31] and four
series of shaking table experiments [32–35] on rocking foundations (altogether 140 individual
base-shaking experiments) were utilized in this study. Details of these experiments, including
types of soils, types of foundations and structures, types of ground motions, number of
shaking events, raw data, and metadata, are available in a database (https://datacenterhub.
org/deedsdv/publications/view/529, accessed on 1 August 2022) [5]. The soils used in
the experiments can be categorized as competent soils: dry Nevada sand of relative density
40% to 80%, dry Longstone sand of relative density 45% to 90%, and consolidated saturated
clay of undrained shear strength 50 kPa to 70 kPa. The foundations used in the experiments
were either square or rectangular spread footing shallow foundations and the types of
structures used included relatively rigid shear walls and single-degree-of-freedom-type
columns supporting a rigid mass at top. It should be noted that nonlinear structures,
including flexible beams and columns and multi-degree-of-freedom structures with higher
mode effects, were not included in this study. The effects of key rocking system parameters
(e.g., critical contact area ratio and rocking coefficient) and earthquake demand parameters
(e.g., peak ground acceleration and Arias intensity of ground motion) on the performance
of rocking foundations (e.g., peak rotation and permanent settlement), derived from the
results obtained from this database, are published in Soundararajan and Gajan (2020) [36]
and Gajan et al. (2021) [7].

3.2. Input Features

In order to predict θpeak and FSTO of rocking foundations during shaking using
machine learning algorithms, six input features (input parameters) were chosen and are
described briefly in the following sections. Further justification for the selection of input
features is presented in Section 5.3: Significance of input features.

(i) Critical contact area ratio (A/Ac): A/Ac is, conceptually, a factor of safety for
rocking foundation with respect to vertical loading (where A is the total base area of the
footing and Ac is the minimum footing contact area with the soil required to support the
applied vertical load (V)) [2]. As illustrated in Figure 3, the contact width of the footing
with soil (in the direction of shaking) changes during rocking and the critical contact width
of the footing (Bc = Ac/L, where L is the dimension of the footing perpendicular to shaking)

https://datacenterhub.org/deedsdv/publications/view/529
https://datacenterhub.org/deedsdv/publications/view/529
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determines the ultimate bearing capacity (qult) when the contact width reaches Bc. It should
be noted that A/Ac = B/Bc for rectangular and square footings with shaking direction
parallel to the plan dimension B of the footing. As qult depends on the size and shape of
the actual footing–soil critical contact area, an iterative procedure can be used to determine
Bc and A/Ac using Equation (4) [2,30].

A
Ac

=
qult B.L

V
(4)

(ii) Slenderness ratio of rocking system (h/B): It has been shown that the performance
of rocking foundations, in general, depends on the applied moment-to-shear ratio (M/H)
at the footing–soil interface due to the coupling between vertical, horizontal and moment
loading [27]. The M/H ratio can be approximated to the h/B ratio of the rocking system,
where h is the height of center of gravity of the rocking system from the base center point
of the footing, as in Equation (5) [27],

h
B
≈ M

H.B
(5)

The expectation is that the more slender the rocking system (higher h/B and M/H
ratios), the higher the tendency to rock, hence results in relatively greater values for θpeak
and possibly smaller values for FSTO.

(iii) Rocking coefficient (Cr): Ignoring the passive resistance of soil in front of a shallow
foundation, it has been shown that the ultimate moment capacity of a rocking foundation
(Mult) is correlated to A/Ac, V and B, as given by Equation (6) [2].

Mult =
V.B

2
·
[

1 − Ac

A

]
(6)

Cr, is the ratio of the Mult of the foundation to the weight (V) of the structure normal-
ized by the effective height (h) of the structure, as in Equation (7) [30].

Cr =
B

2.h
·
[

1 − Ac

A

]
(7)

It should be noted that Cr combines the effects of soil properties and foundation geom-
etry (through A/Ac) with the slenderness ratio (h/B) of the rocking system. For rectangular
and square footings, combining Equations (1), (2) and (7) results in the following simplified
expression for critical rotation of rocking foundations in terms of rocking coefficient,

θcrit = tan−1[Cr] (8)

Using meta-analysis of experimental data from multiple studies, Gajan et al. (2021) [7]
have shown that many performance parameters of rocking foundations, including peak
rotation and factor of safety for tipping-over, depend mainly on A/Ac, h/B, and Cr of the
rocking system.

(iv) Peak ground acceleration (amax): amax is the absolute maximum horizontal acceler-
ation of the earthquake ground motion. As the peak rotation (θpeak) of a rocking system is
instantaneous (due to the reversing nature of the seismic shaking and the self-centering
characteristic of rocking shallow foundations) and most likely caused by the maximum ac-
celeration spike, amax was chosen as the key input feature representing the seismic demand.
In addition, amax is one of the dominant indicators of the severity of the earthquake motion
and θpeak is expected to increase, up to a certain limit, as amax increases.

(v) Arias intensity of ground motion (Ia): Ia is calculated using numerical integration
in the time domain via Equation (9) [37],
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Ia =
π

2.g

tfin∫
0

[a(t)]2dt (9)

where g is the gravitational acceleration, a(t) is the horizontal ground shaking acceleration
time history, and tfin is the duration of earthquake ground motion. Ia includes the combined
effects of amplitude, duration, frequency content, and number of cycles of earthquake
loading. As the rotational stiffness of rocking foundation typically degrades with number
of cycles and duration of loading [1,2], θpeak and FSTO of rocking foundation are expected
to depend on Ia.

(vi) Type of soil: A binary parameter called “Type” was used to separate sandy
soil foundations from clayey soil foundations (i.e., Type takes the value of either 0 or 1).
Experimental results presented in Figures 2 and 4 show that θpeak and FSTO depend on the
type of soil, to some extent.

All the input feature parameters were calculated for 140 individual experiments from
the above-mentioned database and presented in Soundararajan and Gajan (2020) [36]
and Gajan et al. (2021) [7], and hence not repeated in this paper. Figure 5 presents the
probability distributions (in terms of frequency of occurrence in experiments) of four major
input features (A/Ac, Cr, amax, and Ia) along with their mean and coefficient of variation
(COV). The input features presented in Figure 5 were lumped into five groups (intervals)
in order to plot the frequency plots (however, their individual values were used in the
development of machine learning models). As can be seen from Figure 5, the experimental
data and results utilized in the development of the machine learning models in this study
cover a wide range of rocking system capacity parameters and earthquake ground motion
demand parameters. It should be noted that the variation (numerical range) in θpeak,
FSTO, and Ia is relatively high (Figures 2, 4 and 5). For this reason, these three parameters
were transformed to logarithmic values (base 10) before the training and testing phases
of the machine learning models. In addition, in order to make reliable predictions using
models developed by different machine learning algorithms, all the input feature data were
normalized so that each input feature value varied between 0.0 and 1.0.
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Figure 5. Probability distributions (frequency of occurrence in experimental data instances) of four of
the six input features used in the development of machine learning models.
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4. Machine Learning Algorithms
4.1. K-Nearest Neighbors Regression (KNN)

The inductive bias of the KNN algorithm is based on the assumption that when input
data points are plotted as vectors in multi-dimensional input feature space, the data points
that lie closer together share similar properties (i.e., similar output or prediction values). If
there are hidden relationships between multiple input features and the prediction variable,
the KNN model is able to learn those relationships through the training data. In this
study, the Euclidean distance measure in n-dimensional space was used to calculate the
distance between two data instances (n = 6 in this study; one for each input feature). In
KNN, the entire training data are stored in the model during the training phase. When
a test data instance is fed as input, the KNN algorithm runs through the entire training
dataset and finds k number of training instances that are closer to the test instance. The
distance-weighted KNN regression model weighs the output values by the inverse of their
distance from the test data point to its nearest neighbors and produces an output that is the
weighted average of the output values of the nearest neighbors (i.e., closer neighbors of a
test data point will have a greater influence on the output than neighbors that are further
away). The optimum value of k of KNN model was found to be in between 3 and 5 for the
problem considered and k = 3 was used for all cases presented in this paper, except in the
hyperparameter tuning phase of the models (presented later).

4.2. Support Vector Regression (SVR)

The objective of original support vector machine (SVM) algorithm for classification
is to find a hyperplane in an n-dimensional input space that distinctly separates the data
points. The margin (ε) is the distance from the hyperplane to the closest data point (support
vector) in n-dimensional space. The major difference between SVM and SVR is that whereas
the SVM classification algorithm tries to fit the largest possible margin between different
classes while limiting margin violations of data points, the SVR algorithm tries to fit as
many training data instances as possible within the margin while limiting margin violations
of data points. The inductive bias of the SVR algorithm is that it assumes that the data
points that have distinct characteristics tend to be separated by wide margins. The major
parameter of SVR algorithm is the kernel function that is used to map (transform) the data
instances (input data) into n-dimensional space. The radial basis function (RBF) kernel was
used in this study as it is the most widely used kernel in SVR and it has the flexibility of
dealing with nonlinear data [16]. Since complex, nonlinear data cannot be accommodated
perfectly by a hyperplane and a margin, wiggle room was allowed for the margin. A
hyperparameter called the cost parameter or penalty parameter (C) defines the magnitude
of this wiggle room across all dimensions in input space. The optimum value of C of
the SVR model was found to be 20 for the problem considered and C = 20 (with ε = 0.1)
was used for all cases presented in this paper, except in the hyperparameter tuning phase
(discussed further in the hyperparameter tuning section).

4.3. Random Forest Regression (RFR)

The decision tree regression (DTR) algorithm uses a supervised learning technique
to build a tree-like data structure by employing a top-down, greedy search through the
space of possible branches using information gain as a measure of reduction in uncertainty
in training data. The inductive bias of the DTR algorithm is that the trees that place high
information gain attributes close to the root are preferred over those that do not (shorter
trees are preferred over longer trees). A random forest regression (RFR) model is an
ensemble model that fits multiple base DTR models, each on random subsets of the original
training dataset and using random input features, and then aggregates their individual
predictions on the testing dataset by averaging to form a final prediction. The major
hyperparameter of the DTR model is the maximum depth of the tree, and the optimum
value for the maximum depth of the tree was found to be 6 for the data analyzed (presented
later). In the RFR model, each individual base DTR model may have a higher bias than
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if it were trained on the original training dataset, but introduction of randomness and
aggregation reduces both bias and variance. In other words, the introduction of randomness
in input training data (random subset of training data, random input features, and random
size individual trees) reduces the uncertainty in final predictions on test data. For optimum
performance of the RFR model, the maximum number of random input features to consider
when considering a split is limited to 2 (a hyperparameter) (randomly chosen 2 features
out of total 6 features) and the optimum value for the number of trees in the ensemble was
found to be 100 (described further in the hyperparameter tuning section).

5. Results and Discussion

The initial evaluation of machine learning models using a randomly selected pair of
training and testing datasets is presented first and it is followed by the results of hyperpa-
rameter tuning of the models, input feature importance analysis using multiple random
training datasets, and repeated k-fold cross validation tests of the models using multiple
random splits of training and testing datasets. The metrics used to evaluate the perfor-
mance of machine learning models developed in this study include mean absolute error
(MAE) and mean absolute percentage error (MAPE), and they are defined as,

MAE =
1
n

n

∑
i=1

(∣∣∣∼yi − yi

∣∣∣) (10)

MAPE =
1
n

n

∑
i=1

(∣∣∣∣∣
∼
yi − yi

yi

∣∣∣∣∣
)

(11)

where y is the actual output value (experimental data), ỹ is the predicted output value,
and the subscript “i” runs from 1 up to the number of predictions (n). As the experimental
data considered covers a significant range of values with scatter (Figures 2 and 4), MAE
and MAPE are preferred and chosen over the commonly used root mean square error
measure in machine learning models. In addition, while MAE measures the error in terms
of the absolute values of output parameter, MAPE is independent of the absolute values
and units of the output parameter (by normalization). For the purpose of comparisons,
a multivariate linear regression (MLR) model was also developed using the same input
features and supervised learning technique. Since the MLR model is a linear, parametric
model, it was used as the baseline model for comparison of performances of different
machine learning models. All the machine learning models in this study were developed
using the implementations of the algorithms available in “scikit-learn” library of modules
in Python (https://scikit-learn.org/stable/, accessed on 1 August 2022).

5.1. Initial Evaluation of Models

Altogether 140 experimental data (instances) were extracted from the above-mentioned
database and are split into two groups for the purpose of initial training (supervised
learning) and testing of machine learning models. A 70–30% split was used to randomly
create the training dataset (98 instances) and testing dataset (42 instances) using the train-
test-split function available in “scikit-learn” library of modules in Python. The 70–30% split
is similar to the rule of thumb methods commonly used in supervised machine learning.
Note that the random-state variable in this function was kept constant for this splitting
of data for initial training and testing of all the models (i) to ensure consistency between
different machine learning models and (ii) to ensure repeatability of results. Figure 6a
presents this split of data in θpeak versus amax space, while Figure 6b presents the same split
of data in FSTO versus amax space. This train–test split was created randomly, and as a result,
both training and testing sets of data cover a wide range of values for all the parameters
considered reasonably well. The machine learning models were first trained independently
using the training dataset and then tested using the testing dataset. It should be noted that
as the total number of data instances (140) is relatively small, a separate validation set was

https://scikit-learn.org/stable/
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not used in this study; instead, hyperparameter tuning was carried out using multiple runs
of the training dataset (presented in Section 5.2).
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Figure 6. Initial split of experimental data for training and testing of machine learning models
(70–30% split) showing the variations of (a) peak rotation and (b) factor of safety for tipping over
with peak ground acceleration.

The variations in predicted peak rotation (θpeak) with the corresponding experimental
θpeak values on top of 1:1 prediction-to-experiment comparison lines during the testing
phase are presented in Figure 7 for four ML models: (a) KNN, (b) SVR, (c) DTR, and (d) RFR.
Also included in Figure 7 are the testing MAPE values of the predictions of each model.
Note that the values of hyperparameters for all the models are kept at their optimum values
(obtained from the hyperparameter tuning phase, described in the next section): k = 3 in
KNN model, C = 20 and ε = 0.1 in SVR model, maximum depth of tree = 6 in DTR model,
and number of trees = 100 and maximum number of random input features used in each
tree = 2 in RFR model. As can be seen from Figure 7, the KNN model outperforms the other
three models in terms of the MAPE of prediction (0.33) during the initial testing phase,
and it is followed by the SVR model (MAPE = 0.4). The DTR model (a single decision
tree) results in a MAPE of 0.48 during testing phase; however, when 100 decision trees
are combined as a random forest in the RFR model, the accuracy of the model improves
slightly (MAPE = 0.44). To investigate the variance in individual predictions of the models,
the standard deviations of the absolute percentage error (APE) in model predictions were
also calculated. The standard deviations of the APE in predictions of θpeak of KNN, SVR,
DTR, and RFR models are 0.23, 0.38, 0.42, and 0.31, respectively. This indicates that in terms
of variance in predictions of θpeak, KNN is still the best out of the four models, and that the
RFR model is better than both SVR and DTR in terms of variance in predictions.

Figure 8 presents the comparisons of different model predictions during the testing
phase with experimental results for factor of safety for tipping over (FSTO) in the same
format as in Figure 7. The hyperparameters used for all four ML models are the same as
above (the same as the ones used for the prediction of θpeak). For the prediction of FSTO, the
SVR model turned out to be the best model during this initial testing phase (MAPE = 0.47).
The KNN model (MAPE = 0.6) seems to have more deviations in predictions and is unable
to compete with the SVR model. However, as can be seen from Figure 8, the performance
of the KNN model is still better than the DTR model in terms of accuracy of predictions. As
in the case with θpeak, by combining 100 decision trees together as an ensemble model, the
RFR model was able to improve the accuracy (MAPE = 0.64) while reducing the variance in
predictions of FSTO compared to the DTR model. The standard deviations of the absolute
percentage errors (APE) in predictions of the FSTO of the KNN, SVR, DTR, and RFR models
are 0.84, 0.48, 1.04, and 0.82, respectively. This indicates that in terms of variance in
predictions of FSTO, SVR is still the best out of the four models, and that the performance
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of the KNN and RFR models are relatively similar or comparable to each other and better
than the DTR model in terms of variance in predictions. Note that, for all four machine
learning models, the MAPE values and variance in the predictions of FSTO (Figure 8) are
consistently higher than those of θpeak (Figure 7).
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Figure 7. Comparisons of machine learning model predictions with experimental results for peak
rotation of rocking foundation during initial testing phase of models: (a) KNN model (with k = 3),
(b) SVR model (with C = 20 and ε = 0.1), (c) DTR model (with maximum depth of tree = 6), and
(d) RFR model (with number of trees = 100).

It should be noted that after the initial training phase of the ML models, in order to
check the applicability of the models to represent the training data and to quantify what
the models learned from the training data, all the machine learning models were first tested
using the same training dataset (i.e., how well the models predict the same data that are
used to train the models; referred to as training error). Another reason for this exercise
was to make sure that the models did not overfit the training data, by comparing the
testing error with the training error. Figure 9 presents an all-error comparison for different
scenarios to compare and contrast the performance of different machine learning models
based on the MAPE in the prediction of θpeak and FSTO in initial training and testing phases
of the models. Also included in Figure 9 are the MAPE values of a multivariate linear
regression (MLR) machine learning model developed as a baseline model using the same
input features and the same training and testing datasets. MLR is a linear, parametric model,
where a hyperplane is used to model the relationship between the output and multiple
input variables. Based on the MAPE values of the models on training and testing data, it is
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apparent that all four nonlinear nonparametric machine learning models developed in this
study (KNN, SVR, DTR, and RFR) perform better than the baseline MLR model. Among
the four nonparametric models, KNN, SVR and RFR models perform better than DTR
model in terms of accuracy of predictions (lower testing MAPE values). For all models, the
testing MAPE values are greater than those in the training phase. This trend is a typical
characteristic of machine learning models, especially when the size of the data is relatively
small. This also confirms that the ML models developed in this study do not overfit the
training data. The repeated k-fold cross validation test results (based on complete random
shuffling and splitting of data) are presented later (Section 5.4) to complement this error
comparison.
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Figure 8. Comparisons of machine learning model predictions with experimental results for factor of
safety for tipping over of rocking foundations during initial testing phase of models: (a) KNN model
(with k = 3), (b) SVR model (with C = 20 and ε = 0.1), (c) DTR model (with maximum depth = 6),
(d) RFR model (with number of trees = 100).

5.2. Hyperparameter Tuning of Models

For each ML model, the key hyperparameters were tuned by minimizing the MAPE
values obtained during the initial testing phase of models (testing error). Hyperparameter
tuning was carried out (i) to investigate the sensitivity of model predictions to their hy-
perparameters, (ii) to determine the optimum values of these parameters for the problem
considered and data analyzed, and (iii) to ensure that the models neither overfit nor under-
fit the training data. It should be noted that the hyperparameter tuning was carried out
separately for the predictions of θpeak and FSTO. The number of nearest neighbors (k), the
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cost or penalty parameter (C), the maximum depth of the tree, and the number of trees in
random forest were varied for the KNN, SVR, DTR, and RFR models, respectively, and
the corresponding MAPE values of predictions were calculated. The variations of testing
MAPE values in the predictions of θpeak and FSTO with the corresponding hyperparameters
are presented in Figure 10 for all four nonlinear ML models.
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Figure 9. Comparison of model performances in terms of mean absolute percentage error (MAPE) in
predictions during initial training and testing phases of machine learning models: (a) peak rotation
and (b) factor of safety for tipping over (Note: both figures share the same legend).
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Figure 10. Results of hyperparameter tuning of machine learning models: variation of mean absolute
percentage error (MAPE) during initial testing phase of the models with (a) number of nearest
neighbors (k) in KNN model, (b) the value of penalty parameter “C” in SVR model, (c) maximum
depth of tree in DTR model, and (d) number of trees in RFR model (Note: all four figures share the
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For both θpeak and FSTO, the testing MAPE of the KNN model first decreases as the
number of nearest neighbors considered (k) increases and then increases as k increases
further (Figure 10a). This is a typical behavior of the KNN algorithm when tested with
previously unseen test data. The minimum MAPE during testing was obtained when k was
equal to 3 for θpeak and when k was in between 3 and 5 for FSTO. Based on this observation
and to be consistent, k = 3 was taken as the optimum value for KNN algorithm for both
θpeak and FSTO. Any value smaller than the optimum for k would overfit the training data
and any value greater than the optimum for k would underfit the training data. Similar to
the KNN model, the MAPE during the testing phase of SVR model first decreases and then
increases as C increases (Figure 10b). It should be noted that the value of the margin (ε) in
SVR model was kept at 0.1 for all cases. Neither a very small value for C (underfitting the
training data) nor a very high value for C (overfitting the training data) is preferred. For
both θpeak and FSTO, the optimum value of C was found to be 20.

Similar to the concept in the KNN and SVR models, for the DTR model (Figure 10c),
neither a very shallow tree (underfitting the training data) nor a very deep tree (overfitting
the training data) is preferred and an optimum value for maximum depth of the tree is
needed. Based on the trend shown in Figure 10c, the optimum value for the maximum
depth of tree of DTR model was chosen to be 6 for both θpeak and FSTO. For the RFR
model, as can be seen from Figure 10d, the testing MAPE decreases as the number of trees
in the random forest increases, indicating that the accuracy of the model increases with
the number of trees (this is more apparent for the prediction of θpeak). It should be noted
that the maximum number of random features to be considered was kept at 2 and the
maximum depth of individual trees was kept at 6 for all trees in the random forest. After
about 100 trees in the forest, the MAPE of the RFR model does not seem to decrease further,
indicating that the optimum number of trees required is around 100.

5.3. Significance of Input Features

The implementation of the RFR model in the “scikit-learn” library of modules in
Python has a function called “feature-importances” that outputs the relative importance of
each input feature. This function measures a feature’s importance by looking at how much
the tree nodes that use that feature reduce uncertainty in data on average (across all trees
in the forest) [16,17]. The function computes this score for each feature after training, then
it normalizes the results so that the sum of all feature importance values is equal to 1.0.

To investigate the significance of input features, twenty different RFR models were
developed for both θpeak and FSTO by randomly selecting different sets of training data
each time (by changing the random state variable), and the feature importance values were
obtained for each random forest. The average values of the feature importance (as boxes)
along with their standard deviations (as error bars) are presented in Figure 11a,b for the
prediction of θpeak and FSTO respectively. As can be seen from Figure 11, the effects of
different input features on both performance parameters (peak rotation and factor of safety
for tipping over) are remarkably similar and consistent, verifying the inter-relationship
between the two performance parameters. As expected and consistent with the previously
published experimental results [7], earthquake ground motion intensity parameters (amax
and Ia) have the most influence (30% to 35%) on both performance parameters. Three
rocking foundation capacity parameters considered in this study as input features (A/Ac,
h/B, and Cr) have quantitatively similar influence (about 10% each) on both performance
parameters. The type of soil alone (sand or clay) does not have considerable influence on
the performance parameters (less than or around 5% feature importance). These results and
observations suggest that the earthquake ground motion intensity parameters contribute
more to model predictions than the rocking system capacity parameters and type of soil
(in other words, the peak rotation and tipping-over stability of rocking foundations are
more sensitive to earthquake demand parameters than the properties of soil, foundation,
and structure). The type of soil may be considered as a redundant input feature for the
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problem considered here; however, it should be noted that the shear strength of soil is
already included in A/Ac and Cr through bearing capacity of soil.

Geotechnics 2022, 2, FOR PEER REVIEW  16 
 

 

for the prediction of θpeak and FSTO respectively. As can be seen from Figure 11, the effects 
of different input features on both performance parameters (peak rotation and factor of 
safety for tipping over) are remarkably similar and consistent, verifying the inter-relation-
ship between the two performance parameters. As expected and consistent with the pre-
viously published experimental results [7], earthquake ground motion intensity parame-
ters (amax and Ia) have the most influence (30% to 35%) on both performance parameters. 
Three rocking foundation capacity parameters considered in this study as input features 
(A/Ac, h/B, and Cr) have quantitatively similar influence (about 10% each) on both perfor-
mance parameters. The type of soil alone (sand or clay) does not have considerable influ-
ence on the performance parameters (less than or around 5% feature importance). These 
results and observations suggest that the earthquake ground motion intensity parameters 
contribute more to model predictions than the rocking system capacity parameters and 
type of soil (in other words, the peak rotation and tipping-over stability of rocking foun-
dations are more sensitive to earthquake demand parameters than the properties of soil, 
foundation, and structure). The type of soil may be considered as a redundant input fea-
ture for the problem considered here; however, it should be noted that the shear strength 
of soil is already included in A/Ac and Cr through bearing capacity of soil.  

 
Figure 11. Results of mean (shown as boxes) and standard deviation (shown as error bars) of nor-
malized feature importance scores for the prediction of (a) peak rotation and (b) factor safety for 
tipping over obtained from multiple RFR models. 

5.4. Repeated K-Fold cross Validation Tests of Models 
The k-fold cross validation test is a technique for evaluating the performance of ma-

chine learning models on multiple, different train–test splits of dataset. It provides a meas-
ure of how good the model performance is both in terms of accuracy and variance. In k-
fold cross validation, the entire dataset is randomly split into k number of subsets called 
folds, and the ML model is first trained using (k − 1) folds of data and is tested using the 
remaining fold. This process is repeated k times, picking a different testing fold every 
time. A single run of k-fold cross validation (a single value for k) may result in noisy re-
sults for model error (MAE and MAPE) and hence multiple runs are carried out by vary-
ing k (number of folds) and by using random sampling each time. In this study, the com-
plete dataset was randomly shuffled and split into different groups of train–test sets for k 
= 5 and 7. On top of this, for each of the 5-fold and 7-fold cross validations, the process 
was repeated three times (number of repeats = 3) with different randomization of the data 
in each repetition (repeated k-fold cross validation). With this setup, for each model, the 
repeated 5-fold and repeated 7-fold cross validation tests yielded 15 and 21 values, respec-
tively, for k-fold testing of MAE and MAPE. 

Figure 12 presents the results of MAPE of predictions of peak rotation in (a) repeated 
5-fold cross validation tests and (b) repeated 7-fold cross validation tests for three 

Input features

A/Ac h/B Cr Type a_max I_a

Fe
at

ur
e 

im
po

rt
an

ce

0.0

0.1

0.2

0.3

0.4

Input features

A/Ac h/B Cr Type a_max I_a

(a) Peak rotation (b) FS for tipping-over

Figure 11. Results of mean (shown as boxes) and standard deviation (shown as error bars) of
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5.4. Repeated K-Fold cross Validation Tests of Models

The k-fold cross validation test is a technique for evaluating the performance of
machine learning models on multiple, different train–test splits of dataset. It provides a
measure of how good the model performance is both in terms of accuracy and variance.
In k-fold cross validation, the entire dataset is randomly split into k number of subsets
called folds, and the ML model is first trained using (k − 1) folds of data and is tested
using the remaining fold. This process is repeated k times, picking a different testing fold
every time. A single run of k-fold cross validation (a single value for k) may result in
noisy results for model error (MAE and MAPE) and hence multiple runs are carried out by
varying k (number of folds) and by using random sampling each time. In this study, the
complete dataset was randomly shuffled and split into different groups of train–test sets for
k = 5 and 7. On top of this, for each of the 5-fold and 7-fold cross validations, the process
was repeated three times (number of repeats = 3) with different randomization of the
data in each repetition (repeated k-fold cross validation). With this setup, for each model,
the repeated 5-fold and repeated 7-fold cross validation tests yielded 15 and 21 values,
respectively, for k-fold testing of MAE and MAPE.

Figure 12 presents the results of MAPE of predictions of peak rotation in (a) repeated
5-fold cross validation tests and (b) repeated 7-fold cross validation tests for three nonlinear
ML models (KNN, SVR, and RFR) along with the linear, baseline MLR model. In each case,
the results obtained for testing MAPE are plotted in the form of boxplots. For each ML
model, the boxplot plots the average of MAPE (triangles), median of MAPE (the horizontal
line inside the box), 25th and 75th percentile values of MAPE (bottom and top edges of the
box), and the 10th and 90th percentile values of MAPE (bottom and top horizontal lines
outside the box). As can be seen from Figure 12a,b, for all four ML models, the average
values of MAPE in repeated 5-fold and 7-fold cross validation tests are remarkably close
to each other (0.75 and 0.76 for MLR, 0.48 and 0.48 for KNN, 0.46 and 0.46 for SVR, and
0.53 and 0.51 for RFR), highlighting the overall consistency of all ML models developed in
this study. The average MAPE values of all three nonlinear ML models (0.46 to 0.53) are
smaller than that of the baseline MLR model (0.75). The average total variance in MAPE
(the average of the difference between two extreme values of MAPE in 5-fold and 7-fold
cross validation) of the KNN, SVR, and RFR models are 0.2, 0.3 and 0.32, respectively (the
corresponding variance value of MLR is 0.46). In general, lower average MAPE (more
accurate) and lower variance in MAPE (less sensitive to differences in training dataset)
are preferred. Based on these results and observations, it can be concluded that for the
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prediction of peak rotation of rocking foundations, the three nonlinear models developed in
this study perform much better than the linear MLR model, and that among the nonlinear
models, the performance of the KNN model is slightly better than the other two.
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Figure 12. Boxplots of mean absolute percentage errors (MAPE) in the predictions of peak rotation of
machine leaning models (k-fold testing error): (a) repeated 5-fold cross validation and (b) repeated
7-fold cross validation (Note: boxplots plot the median, 10th, 25th, 50th, 75th, and 90th percentiles of
data along with the mean values (green triangles)).

Figure 13 presents the results of MAPE of predictions of factor of safety for tipping
over in (a) repeated 5-fold cross validation test and (b) repeated 7-fold cross validation tests
for three nonlinear ML models along with the baseline MLR model. The observed trends in
Figure 13 (for FSTO) are similar to those of in Figure 12 (for θpeak), except that the average
and variance of MAPE in model predictions are slightly higher for FSTO. Similar to the
prediction of θpeak, for all four ML models, the average values of MAPE in repeated 5-fold
and 7-fold cross validation tests are remarkably close to each other for the prediction of
FSTO as well (0.67 and 0.68 for MLR, 0.61 and 0.61 for KNN, 0.51 and 0.49 for SVR, and
0.55 and 0.54 for RFR). As in the case with peak rotation, the average MAPE values of
all three nonlinear ML models for the prediction of FSTO (0.49 to 0.61) are smaller than
that of baseline MLR model (0.67). The average total variance in MAPE of KNN, SVR,
and RFR models are 0.55, 0.37, and 0.38, respectively. Based on these observations, it can
be concluded that for the prediction of FSTO of rocking foundations, the three nonlinear
models developed in this study perform better than the linear MLR model, and that among
the nonlinear models, the performance of the SVR model is better than the other two.

Figure 14 presents the results of MAE of predictions of peak rotation in (a) repeated
5-fold cross validation tests and (b) repeated 7-fold cross validation tests for three nonlinear
ML models along with the baseline MLR model. A similar trend is observed for MAE of
predictions of different models (similar to the trend observed for MAPE of predictions of
peak rotation presented in Figure 12): the performance of all three nonlinear ML models in
terms of the average and variance of MAE of their predictions of θpeak are better than that of
the linear MLR model. The average MAE values of the three nonlinear ML models for peak
rotation is around 0.007, indicating that the rocking-induced peak rotation can be predicted
with an average accuracy of 0.007 radians (0.4 degrees). This error limit corresponds to a
lateral displacement (at effective height of structure) that is approximately equal to 0.7% of
the effective height of the structure.
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Figure 13. Boxplots of mean absolute percentage errors (MAPE) in the predictions of factor of safety
for tipping-over of machine leaning models (k-fold testing error): (a) repeated 5-fold cross validation
and (b) repeated 7-fold cross validation.
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Figure 14. Boxplots of mean absolute errors (MAE) in predictions of peak rotations of machine
learning models (k-fold testing error): (a) repeated 5-fold cross validation and (b) repeated 7-fold
cross validation.

6. Summary and Conclusions

Three nonlinear machine learning algorithms (KNN, SVR, and RFR) were used to
develop data-driven, predictive models for peak rotation (θpeak) and factor of safety for
tipping-over failure (FSTO) of rocking foundations during seismic loading using a super-
vised learning technique. The input features to the machine learning algorithms included
critical contact area ratio of foundation (A/Ac); slenderness ratio (h/B) and rocking coef-
ficient (Cr) of rocking system; peak ground acceleration (amax) and Arias intensity (Ia) of
earthquake ground motion; and a categorical binary feature that separates sandy soil foun-
dations from clayey soil foundations. The models were trained and tested using centrifuge
and shaking table experimental results on rocking foundations and the performances of
the models were compared with one another and with a baseline MLR model in terms of
accuracy and variance of their predictions using MAPE and MAE. In addition to initial
evaluation of the models using a 70–30% train–test split of data instances, hyperparameter
tuning of models, input feature importance analysis, and repeated 5-fold and 7-fold cross
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validation tests of the models using random sampling were also carried out. Based on the
results presented in this paper, the following major conclusions are derived.

• Based on the results obtained from repeated k-fold cross validation tests of ML models,
the three nonlinear ML models developed in this study (KNN, SVR, and RFR) outper-
form the baseline linear MLR model in terms of accuracy and variance in predictions
of θpeak and FSTO of rocking foundations.

• The overall average MAPE values of the three nonlinear models in the predictions
of θpeak are in between 0.46 and 0.53, while the corresponding MAPE value of the
baseline MLR model is around 0.75. Similarly, the overall average MAPE values of the
three nonlinear models in the predictions of FSTO are in between 0.5 and 0.6, while the
corresponding MAPE value of the baseline MLR model is around 0.68.

• Based on the overall average and variance of MAPE of predictions in repeated k-fold
cross validation tests, it can be concluded that for the prediction of θpeak, the KNN
model performs slightly better than the other two nonlinear ML models, whereas
for the prediction of FSTO, the SVR model performance is better than the other two
nonlinear ML models.

• The overall average MAE values in predictions of all three nonlinear ML models
are around 0.007, indicating that the peak rotation of rocking foundations during
seismic loading can be predicted with an average accuracy of 0.4 degrees. This error
limit corresponds to a lateral displacement (at effective height of structure) that is
approximately equal to 0.7% of the effective height of the structure.

• Based on the feature importance values obtained from multiple RFR models, it can
be concluded that the chosen input features capture θpeak and FSTO of rocking foun-
dations satisfactorily, and that these performance parameters are more sensitive to
ground motion demand parameters than to rocking system capacity parameters or
type of soil.

• Hyperparameter tuning of the ML models was used to obtain the optimum values
of the hyperparameters, and the results show that the ML models developed in this
study neither underfit nor overfit the training data.

• The data-driven predictive models developed in this study can be used in combination
with other mechanics-based models to complement each other in modeling of rocking
foundations in practical applications. One such approach would be theory-guided
data science, an emerging field that combines physics/mechanics with machine
learning [38].
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