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Abstract: Several studies have been reported in published literature on analytical solutions for a
laterally loaded pile installed in a homogeneous single soil layer. However, piles are rarely installed
in an ideal homogeneous single soil layer. The present study describes a new continuum-based
analysis or energy-based approach for predicting the pile displacement responses subjected to static
lateral loads and moments considering the soil non-linearity. This analytical analysis treats the pile
as an elastic Euler–Bernoulli beam and the soil as a three-dimensional (3D) continuum in which the
non-linear elastic properties are described by a modulus degradation relationship. The principle of
virtual work was applied to the energy equation of a pile–soil system in order to obtain the governing
differential equation for the pile and soil displacements. An iterative procedure was adopted to solve
the equations numerically using a finite difference method (FDM). The pile displacement response
was obtained using the software MATLAB R2021a, and the results from the energy-based method
were compared with those obtained from the field test data as well as the finite element analysis (FEA)
based on the software ANSYS Workbench 2021R1. The present study investigated the effect of explicit
incorporation of soil properties and layering through a parametric study in order to understand the
importance of predicting appropriate pile displacement responses in a linear elastic soil system. The
responses indicated that the effect of soil layers and their thicknesses, pile properties and the variation
in soil moduli have a direct impact on the displacements of piles subjected to lateral loading. Hence,
a proper emphasis has to be given to account for the soil non-linearity. Considering the effect of soil
non-linearity, it is observed that the results obtained from the energy-based method agreed well with
the field measured values and those obtained from the FEA. The results indicated a difference of
approximately less than 7% between the proposed method and the FEA. The approach presented
in this study can be further extended to piles embedded in multi-layered soil strata subjected to the
combined action of axial loads, lateral loads and moments. Furthermore, the same approach can be
extended to study the response of the soil to group piles.

Keywords: piles; multi-layered soil; soil constitutive model; lateral load; pile displacement; varia-
tional energy method; MATLAB R2021a; ANSYS Workbench 2021R1

1. Introduction

The growing importance to analyze the structures, such as high-rise buildings, bridges,
offshore platforms, etc., resting on pile foundations and acted upon by various horizonal
forces (wind, wave, currents and seismic events) has led to various analysis methods
over time. An extensive literature review has been conducted by the authors Moussa and
Christou [1] who summarized and grouped the various analysis methods of laterally loaded
single pile under static loading into four categories: (a) ultimate limit state method (ULS);
(b) subgrade reaction approach; (c) finite element method (FEM); and (d) continuum method.
Several researchers developed different types of the ultimate limit state (ULS) methods,
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such as the Blum method [2], Brinch Hansen’s method [3] and Brom’s method [4–6], which
aim at obtaining the maximum lateral loads that are supported by the piles. However,
the major limitation for the ULS methods is their unrealistic approach to the pile–soil
interaction problem, as the mathematical formulations of such methods consider only
the pile lateral displacements (no soil deformations). The different types of methods in
the subgrade reaction approach developed and studied by several researchers over time
include Winkler’s approach [7–18], the P–y curve method [19–38] and the strain wedge
(SW) models [39]. These methods have been used to calculate the allowable lateral pile
deflection assuming that the soil is represented by a series of linear or non-linear springs.
Although the soil idealization in Winkler’s hypothesis based on linear independent springs
overestimates the soil continuity, shear coupling between the springs and the effect of
strength characteristics of the piles on the subgrade reaction, the method is still used
because of its simplicity and acceptable results, but it is not recommended to be used
when the soil profile is highly non-linear. The p–y curves, on the other hand, are back
calculated from empirical test results; therefore, they are highly dependent on the empirical
test environment and the variation in soil and pile properties. Hence, it is critical to select
the most appropriate p–y curve in the analysis of laterally loaded piles to obtain accurate
and realistic results. Furthermore, a review for the applicability of the selected p–y curve is
crucial, since they require both the p and y values from the field. The ability to consider the
3D nature of the problem, the soil continuity as well as the soil–pile interaction makes the
use of the SW method very appealing to the practicing engineers. Conversely, the two main
limitations of this method are: (a) few empirical data were used to develop the stress–strain
relationship, and (b) the determination of strain wedge depth and the value of the subgrade
reaction modulus below the strain wedge is not a simple task. The finite element method
(FEM) is a numerical technique that is based on the concept of the continuum approach
developed by various researchers [40–53] to represent the complexity of the loading and
the soil boundary conditions. The advancement in the computational power of high-speed
computers facilitated the use of FEM in the analysis of laterally loaded piles. However,
the limitation lies in its time-consuming nature and also points to the need to validate
the finite element model prior to using the results for the design. Finally, the continuum
approach is used to obtain the allowable lateral displacement by idealization of the soil
as a linear/non-linear elastic infinite stratum. The boundary element method (BEM) and
simplified continuum models are the two different mediums used to solve such models.
The BEM was implemented in several studies by Refs. [54–63]. The simplified continuum
models were further categorized as (i) energy and variational calculus method [64–71]
and (ii) modified Reissner models [72–78]. In general, the continuum methods involve
complex mathematical formulations to model the continuity of the soil, its non-linearity
and the boundary conditions, and require the need to determine a suitable soil modulus. In
addition, the complexity of a 3D continuum often requires the use of numerical methods,
such as the boundary integral/element method, the FEM and the finite difference method
(FDM) [68].

Most studies on laterally loaded piles do not account for layering within the soil
medium [79,80]. In the p–y method of analysis, soil heterogeneity with depth is approx-
imately considered by assuming different p–y curves with depth [13]. Variation of soil
properties with depth has been approximately considered in the continuum approach as
well by assuming (typically) a linear variation of soil modulus with depth [58,62,63,66].
Most solutions that have been used to predict the deformation of a pile under different
loads treat the soil as a linear elastic material in order to simplify the calculations. However,
in reality, the behavior of soil is highly non-linear, and soil stiffness depends on the stress
and strain levels. Therefore, it is highly important to consider the effect of soil non-linearity
in multi-layered soil strata.

The present study is based on an energy-based approach (simplified continuum
model) to study the displacement profile of a laterally loaded pile in multi-layered soil
strata considering soil non-linear elastic behavior. The pile head is subjected to a static force
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and/or moment with the pile being free at the head and fixed at the tip. Soil moduli (λ
and G) are not treated as constants but assumed to vary in radial, circumference and depth
directions according to the strain and stress levels. A simple power law from the published
literature is adopted, which accounts for the soil non-linear behavior by the degradation
of the soil modulus (G) with strain. The pile displacement response is obtained using the
software MATLAB R2021a. The present study is based on the FDM, since it yields results
faster when compared to the FEM. The results from the energy-based method are compared
with those from the field test data as well as the FEA based on the software ANSYS
Workbench 2021R1. The results from the energy-based method are in good agreement with
both the field test data and the FEA. The present approach is a continuation of the work
performed on axially loaded piles by Arvan and Arockiasamy [81].

2. Problem Definition

A pile subjected to lateral loading can be modeled as a Euler–Bernoulli beam, especially
for long and slender piles in which the pile shear deformation can be neglected for large
slenderness ratios of L/D > 10 [82]. A laterally loaded pile in an isotropic non-linear elastic
multi-layered soil medium is shown in Figure 1. This study considers a pile of length L
with circular cross section of radius rp. The pile is embedded in n horizontal soil layers, and
the pile head is subjected to a horizontal force F0 accompanied with a bending moment M0.
The horizontal soil layers extend to infinity in the radial direction, and the bottom nth layer
extends to infinity in the vertical direction.
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Figure 1. Laterally loaded pile in layered non-linear elastic medium.

The terms H1, H2, H3 . . . Hn−1 denote the vertical height from the ground surface to
the bottom of any layer i. Therefore, the thickness of any layer i is Hi–Hi−1 with H0 = 0.
Due to the axisymmetric problem behavior, a system of cylindrical coordinates (r-θ-z) is
chosen, with the origin coinciding with the center of the pile cross section at the pile head,
and the z axis coinciding with the pile axis. The pile head is considered to be free, and the
tip of the pile is clamped. Another important assumption to be noted is that there is no



Geotechnics 2022, 2 573

slippage or separation between the pile and the surrounding soil and between soil layers.
The stresses and the displacement within a soil continuum are shown below in Figure 2a,b.
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2.1. Soil Non-Linearity

Soil behaves as a linear elastic material at an extremely low range of strain, and the
shear modulus starts degrading at a strain as low as 10−5. Since the soil particles constantly
change their position during the application of a load, the resistance offered by the soil mass
against deformation also changes; this results in the change in the value of soil modulus
with an increase in strain. A non-linear stress–strain curve can be incorporated in an elastic
analysis by properly estimating the secant modulus for a given level of strain (or stress).
Soil non-linearity is taken into the account by estimating the decay of soil stiffness with
strain [71,82,83].
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The variation of the shear stress with strain can be described using two parameters, A
and n, which were obtained experimentally using a pressuremeter test, as shown in the
equation below:

q = A
(
εq
)n (1)

where q represents the equivalent shear stress, εq is the deviator shear strain. Atkinson [84]
shows that the decay curves of soil stiffness with strain can be divided into three regions,
as shown in Figure 4. The first region in Figure 4 represents the very small strain where
the stiffness G0 is constant; the second region comprising small strains starts from ε0 until
ε = 0.1%, and the third region exceeds ε = 0.1%, indicative of large strains.
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In the second region, the stiffness decays rapidly, and in the third region, with large
strain levels, the stiffness is the smallest, which concludes that soil stiffness is high at small
strain and decreases with large strain [84]. Figure 5 shows the degradation of soil stiffness
with increasing strains for different clay types.

Geotechnics 2022, 2, FOR PEER REVIEW  5 
 

 

The variation of the shear stress with strain can be described using two parameters, 
A and n, which were obtained experimentally using a pressuremeter test, as shown in the 
equation below: 𝑞 = 𝐴 𝜀  (1)

where q represents the equivalent shear stress, εq is the deviator shear strain. Atkinson 
[84] shows that the decay curves of soil stiffness with strain can be divided into three 
regions, as shown in Figure 4. The first region in Figure 4 represents the very small strain 
where the stiffness G0 is constant; the second region comprising small strains starts from 
ε0 until ε = 0.1%, and the third region exceeds ε = 0.1%, indicative of large strains. 

 
Figure 4. The variation of normalizing shear secant with logarithmic strain εq or normalized dis-
placement (adapted from Atkinson [84]). 

In the second region, the stiffness decays rapidly, and in the third region, with large 
strain levels, the stiffness is the smallest, which concludes that soil stiffness is high at small 
strain and decreases with large strain [84]. Figure 5 shows the degradation of soil stiffness 
with increasing strains for different clay types. 

 
Figure 5. Degradation of tangent with deviatoric strain (adapted from Dasari [85]). Figure 5. Degradation of tangent with deviatoric strain (adapted from Dasari [85]).



Geotechnics 2022, 2 575

The present study is based on a non-linear elastic model developed by Osman et al. [86],
which assumes the decay of soil stiffness with strain using a power law to describe the
stress–strain behavior of soil [87,88]:

G = G0

(
εq

εq0

)n
(2)

G = a εn
q (3)

where a = G0
εn

q0
is a constant determined empirically; n describes soil non-linearity, which

is equal to (−0.5), according to the experimental data analyzed by Osman et al. [86]

(Figure 6). εq =

√
2
9

[
(εrr − εθθ)

2 + (εθθ − εzz)
2 + (εzz − εrr)

2
]
+ 4

3
(
ε2

rθ + ε2
θz + ε2

zr
)

repre-

sents the deviatoric strain; and εq0 is the maximum deviatoric strain with linear elastic
behavior, which is equal to 10−5. Soil stiffness G is estimated by calculating the strain at
each location followed by the power law.
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2.2. Basic Assumptions

For a laterally loaded pile, the displacement at any point within the continuum
(Figure 2) can be expressed as a product of three separable functions, each accounting for
one of the dimensions [64,89].

ur = u(z) φr(r) cosθ (4a)

uθ = −u(z) φθ(r) sinθ (4b)

uz = 0 (4c)

where u(z) is a displacement function (with a dimension of length) varying with depth z,
representing the deflection of the pile axis; ur, uθ and uz are the soil displacements in the
direction r, θ and z; φr(r) and φθ(r) are dimensionless soil displacement functions varying
with the radial coordinate r, and θ is measured from a vertical reference section (r = r0) that
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contains the applied force vector F0 (Figure 2). The above functions are set as φr(r) = 1 and
φθ(r) = 1 at r = r0 (i.e., at the pile–soil interface) and φr(r) = 0 and φθ(r) = 0 at r = ∞. Such an
assumption ensures the decrease in the displacement (owing to pile deflection) within the
soil mass with increasing radial distance from the pile. Thus, φr and φθ vary between 1 at
the pile–soil interface to 0 at an infinite radial distance from the pile [82,83,90,91]. It is also
reasonable to assume that the vertical displacement of the pile owing to the lateral load
and moment is negligible, and this justifies Equation (4c).

2.3. Governing Differential Equation

In the derivation of the governing differential equations that can capture the non-
linear soil response, the soil within each layer is assumed to be elastic and isotropic but
heterogeneous (with respect to r and θ but not with respect to z), with no sliding or
separation between the soil layers or between the pile and the soil. By solving the equations
(valid for elastic, heterogeneous soil) for different magnitudes of load (with appropriate
values and variations of soil modulus), the analysis can trace the non-linear progression of
pile deflection (due to soil non-linearity) with increasing applied load.

The total potential energy of the pile–soil system, including both the internal and
external potential energies, is given by

Π = 1
2 Ep Ip

∫ L
0

(
d2u
dz2

)2
dz +

∫ ∞
0

∫ 2π
0

∫ ∞
rp

1
2 σij εij r dr dθ dz

+
∫ ∞

L

∫ 2π
0

∫ rp
0

1
2 σij εij r dr dθ dz− Fou|z=0 + Mo

du
dz

∣∣∣
z=0

(5)

where u is the lateral pile deflection, and σij, εij are the stress and strain tensors in
the soil (Figure 2). The first integral represents the internal potential energy of the pile.
The second and third integrals represent the internal potential energy of the continuum.
The remaining two terms represent the external potential energy. Soil non-linearity is
considered by varying the soil elastic parameters (G and λ) at each discretized nodal
point in the soil domain. The stress–strain and strain–displacement relationships at any
given nodal point in the soil medium are idealized by the following relationships. The
stress–strain relationship is expressed as

σrr
σθθ

σzz
τrθ

τrz
τθz

 =



λ + 2G λ λ 0 0 0
λ λ + 2G λ 0 0 0
λ λ λ + 2G 0 0 0
0 0 0 G 0 0
0 0 0 0 G 0
0 0 0 0 0 G





εrr
εθθ

εzz
γrθ

γrz
γθz

 (6)

where G and λ are the elastic constants of the soil. The strain–displacement relationship is
given by



εrr
εθθ

εzz

γrθ

γrz

γθz


=



− ∂ur
∂r

− ur
r −

1
r

∂uθ
∂θ

− ∂uz
∂z

− 1
r

∂ur
∂θ −

∂uθ
∂r + uθ

r

− ∂uz
∂r −

∂ur
∂z

− 1
r

∂uz
∂θ −

∂uθ
∂z


=



−u(z) dφr(r)
dr cos θ

−u(z) φr(r)−φθ(r)
r cos θ

u(z)
{

φr(r)−φθ(r)
r + dφθ(r)

dr

}
sin θ

− du(z)
dz φr(r) cos θ

du(z)
dz φθ(r) sin θ


(7)
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Combining Equations (6) and (7) gives the strain energy density within any layer:

1
2 σijεij =

1
2

[
(λ + 2G)u2

(
dφr
dr

)2
cos2 θ + 2λu2 dφr

dr
φr−φθ

r cos2 θ

+(λ + 2G)u2 (φr−φθ)
2

r2 cos2 θ + Gu2 (φr−φθ)
2

r2 + Gu2
(

dφθ
dr

)2
sin2 θ

+2Gu2 φr−φθ
r

dφθ
dr sin2 θ + G

(
du
dz

)2
φ2

r cos2 θ + G
(

du
dz

)2
φ2

θ sin2 θ

] (8)

The equilibrium equations are obtained using the principle of minimum potential
energy, according to which δΠ = 0. Substituting Equation (8) into Equation (5) and applying
δΠ = 0, we obtain

δΠ =
∫ L

0 Ep Ip
d2u
dz2 δ

(
d2u
dz2

)
dz

+
∫ ∞

0

∫ ∞
rp

∫ 2π
0

[
(λ + 2G)uδu

(
dφr
dr

)2
cos2θ + (λ + 2G)u2cos2θ

(
dφr
dr

)
δ
(

dφr
dr

)
+2λuδucos2θ

dφr
dr

(φr−φθ)
r + λu2cos2θ 1

r (φr − φθ)δ
(

dφr
dr

)
+ λu2cos2θ 1

r
dφr
dr δφr

−λ u2cos2θ 1
r

dφr
dr δφθ + (λ + 2G) u δu cos2θ 1

r2 (φr − φθ)
2 + (λ + 2G)u2cos2θ 1

r2 (φr − φθ)δφr

−(λ + 2G)u2cos2θ 1
r2 (φr − φθ)δφθ + G u δu sin2θ 1

r2 (φr − φθ)
2 + 2G u δu sin2θ 1

r
dφθ
dr (φr

−φθ) + Gu2 sin2θ 1
r2 (φr − φθ)δφr − G u2sin2θ 1

r2 (φr − φθ)δφθ + G u2 sin2θ 1
r

dφθ
dr δφr

− G u2 sin2θ 1
r

dφθ
dr δφθ + Gu δu sin2θ

(
dφθ
dr

)2

+G u2sin2θ
dφθ
dr δ

(
dφθ
dr

)
+ G u2sin2θ 1

r (φr − φθ)δ
(

dφθ
dr

)
+ G du

dz δ
(

du
dz

)
φ2

r cos2θ

+G
(

du
dz

)2
cos2θ φr δφr + G du

dz δ
(

du
dz

)
φ2

θ sin2 θ + G
(

du
dz

)2
sin2θφθ δφθ

]
rdθdrdz

+πr2
p
∫ ∞

L G du
dz δ

(
du
dz

)
dz− Foδu|z=0 + Moδ

(
du
dz

)∣∣∣
z=0

= 0

(9)

The variations δu, δφr and δφθ are functions of u(z), φr (r) and φθ (r) and are indepen-
dent. To obtain the pile governing equation, from Equation (9), all terms associated with
δu, δ(du/dz) will be collected. Furthermore, the terms that are related to δφr and δφθ will be
collected to obtain the governing equation of the soil.

2.4. Output Parameters

(i) Pile Displacement

The governing equation of piles can be obtained by collecting the terms associated
with δu and δ(du/dz) for (0 ≤ z ≤ L) from Equation (9) and then equating the summation to
zero.

∫ L
0 Ep Ip

d2u
dz2 δ

(
d2u
dz2

)
dz +πr2

p
∫ ∞

L G du
dz δ

(
du
dz

)
dz

+
∫ ∞

0

∫ ∞
rp

∫ 2π
0

[
(λ + 2G) u δu

(
dφr
dr

)2
cos2θ + 2λ u δu cos2θ

dφr
dr

(φr−φθ)
r

+Gu δu sin2θ
(

dφθ
dr

)2
+ G du

dz δ
(

du
dz

)
φ2

r cos2θ + G du
dz δ

(
du
dz

)
φ2

θsin2θ

+G u δu sin2θ 1
r2 (φr − φθ)

2 + (λ + 2G) u δu cos2θ 1
r2 (φr − φθ)

2
]

rdθdrdz− Foδu|z=0

+Moδ
(

du
dz

)∣∣∣
z=0

= 0

(10)

The governing equation becomes

Ep Ip
d4u
dz4 − C

d2u
dz2 + ku = 0 (11)
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where

C =
∫ ∞

rp

∫ 2π

0
Gsi(φ

2
r cos2 θ + φ2

θ sin2 θ)rdθ (12)

where i denotes the number of the layer from the surface to the length of the pile

Cs =
∫ ∞

rp

∫ 2π

0
Gsj(φ

2
r cos2 θ + φ2

θ sin2 θ)rdθ (13)

and where j represents the layer number from pile length to infinity

k =
∫ ∞

rp

∫ 2π
0 ((λ + G)

(
dφr
dr

)2
cos2 θ + 2λ 1

r
dφr
dr (φr − φθ)cos2θ + (λ + G)

(φr−φθ)
2

r2 cos2θ + G (φr−φθ)
2

r2 sin2θ

+2G (φr−φθ)
r

dφθ
dr sin2θ + G

(
dφθ
dr

)2
sin2θ) rdθdr

(14)

The fourth-order differential Equation (11) can be solved using a central finite differ-
ence scheme, represented as

Ep Ip

(
ui−2 − 4ui−1 + 6ui − 4ui+1 + ui+2

∆z4

)
− C

(
−ui−1 + ui+1

∆z

)
+ kui = 0 (15)

where i denotes the ith node in z direction, and ∆z is the distance between two nodes. At
each point in the soil domain, λ and G were calculated (Figure 3).

(ii) Soil Displacement

Similar to the pile governing equation, the soil governing equation can be formulated
by considering the variations of φr(r) and φθ(r). Collecting the terms associated with φr and
φθ over the domain r0 ≤ r ≤∞ and equating the summation to zero yields∫ ∞

0

∫ ∞
rp

∫ 2π
0 [(λ + 2G)u2 cos2 θ

(
dφr
dr

)
δ
(

dφr
dr

)
+ Gu2 sin2 θ 1

r

(
dφθ
dr

)
δφr + λu2 cos2 θ

(φr−φθ)
r δ

(
dφr
dr

)
+λu2 cos2 θ 1

r

(
dφr
dr

)
δφr + Gu2 sin2 θ 1

r2 (φr − φθ)δφr + (λ + 2G)u2 cos2 θ 1
r2 (φr − φθ) δφr

+G cos2 θ
(

du
dz

)2
φrδφr] rdrdθdz = 0

(16)

∫ ∞
0

∫ ∞
rp

∫ 2π
0 [−Gu2 sin2 θ

(
dφθ
dr

)
δφθ − λu2 cos2 θ 1

r

(
dφr
dr

)
δφθ − Gu2 sin2 θ 1

r2 (φr − φθ)δφθ

−(λ + 2G)u2 cos2 θ 1
r2 (φr − φθ) δφθ

+Gu2 sin2 θ
(

dφθ
dr

)
δ
(

dφθ
dr

)
+ Gu2 sin2 θ

(φr−φθ)
r δ

(
dφθ
dr

)
+ G sin2 θ

(
du
dz

)2
φθδφθ ] rdrdθdz

= 0

(17)

Simplifying Equations (16) and (17) gives∫ ∞
rp
(ms1

(
dφr
dr

)
δ
(

dφr
dr

)
+ ms3

1
r

(
dφr
dr

)
δφr + ms3

(φr−φθ)
r δ

(
dφr
dr

)
+ ms1

1
r2 (φr − φθ) δφr + ms2

1
r2 (φr

−φθ) δφr + ms2
1
r

(
dφθ
dr

)
δφr + ns1φrδφr) dr = 0

(18)

∫ ∞
p (−ms2

(
dφθ
dr

)
δ
(

dφθ
dr

)
−ms3

1
r

(
dφr
dr

)
δφθ −ms2

1
r2 (φr − φθ) δφθ −ms1

1
r2 (φr − φθ) δφθ

+ms2

(
dφθ
dr

)
δ
(

dφθ
dr

)
+ ms2

(φr−φθ)
r δ

(
dφθ
dr

)
ns2φθδφθ) dr = 0

(19)

where ns1, ns2, ms1, ms2 and ms3 for homogeneous and non-homogeneous soil comprising
multi-layer soil summations with i representing the number of layers and n being the last
layer number are given below

ms1(r) =
∫ ∞

0

∫ 2π

0
(λs + 2Gs)u2 cos2 θ rdθdz =

n

∑
i=n

∫ Hi

Hi−1

∫ 2π

0
(λsi + 2Gsi)u2

i cos2 θ rdθdz (20a)

ms2(r) =
∫ ∞

0

∫ 2π

0
Gsu2 sin2 θ rdθdz =

n

∑
i=n

∫ Hi

Hi−1

∫ 2π

0
Gsiu2

i sin2 θ rdθdz (20b)
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ms3(r) =
∫ ∞

0

∫ 2π

0
λsu2 cos2 θ rdθdz =

n

∑
i=n

∫ Hi

Hi−1

∫ 2π

0
λsiu2

i cos2 θ rdθdz (20c)

ns1(r) =
∫ ∞

0

∫ 2π

0
Gs

(
du
dz

)2
cos2 θ rdθdz =

n

∑
i=n

∫ Hi

Hi−1

∫ 2π

0
Gsi

(
dui
dz

)2
cos2 θ rdθdz (20d)

ns1(r) =
∫ ∞

0

∫ 2π

0
Gs

(
du
dz

)2
sin2 θ rdθdz =

n

∑
i=n

∫ Hi

Hi−1

∫ 2π

0
Gsi

(
dui
dz

)2
sin2 θ rdθdz (20e)

Equations (18) and (19) can be simplified further using integration by parts of the
terms that consist of δ((dφr)/dr) and δ((dφθ)/dr), respectively. The governing equation is
then obtained by dividing the resulting equations of (18) by (−ms1) and (19) by (−ms2).

d2φr
dr2 + 1

ms1

dms1
dr

dφr
dr −

{
1
r2

ms1+ms2+ms3
ms1

− 1
r

1
ms1

dms3
dr + ns1

ms1

}
φr

= ms2+ms3
ms1

1
r

dφθ
dr −

{
1
r2

ms1+ms2+ms3
ms1

− 1
r

1
ms1

dms3
dr

}
φθ

(21)

d2φθ

dr2 +
1

ms2

dms2

dr
dφθ

dr
−
{

1
r2

ms1

ms2
+

1
r

1
ms2

dms2

dr
+

ns2

ms2

}
φθ =

ms2 + ms3

ms2

1
r

dφr

dr
−
{

1
r2

ms1

ms2
+

1
r

1
ms2

dms2

dr

}
φr (22)

Considering the soil boundary conditions φr = 1 at r = r0; φr = 0 at
r → ∞; φθ = 1 at r = r0; and φθ = 0 at r → ∞, the governing differential equations of
soil can be rewritten as

d2φr

dr2 + y1
dφr

dr
− y2φr = y3

dφθ

dr
− y4φθ (23)

d2φθ

dr2 + y5
dφθ

dr
− y6φθ = −y7

dφr

dr
− y8φr (24)

where
y1 =

1
ms1

dms1

dr
(25a)

y2 =
1
r2

ms1 + ms2 + ms3

ms1
− 1

r
1

ms1

dms3

dr
+

ns1

ms1
(25b)

y3 =
1
r

ms2 + ms3

ms1
(25c)

y4 =
1
r2

ms1 + ms2 + ms3

ms1
− 1

r
1

ms1

dms3

dr
(25d)

y5 =
1

ms2

dms2

dr
(25e)

y6 =
1
r2

ms1

ms2
+

1
r

1
ms2

dms2

dr
+

ns2

ms2
(25f)

y7 =
1
r

ms2 + ms3

ms2
(25g)

y8 =
1
r2

ms1

ms2
+

1
r

1
ms2

dms2

dr
(25h)

All the equations mentioned in this study are solved using the software MATLAB 2021a.

3. Iterative Solution Methodology

The pile displacement Equation (11) can be solved when the soil parameters k and
C are known. However, these parameters are dependent on the unknown dimensionless
soil functions, φr and φθ , which can be estimated by calculating y1, y2, y3, y4, y5, y6,
y7 and y8. Soil deformation is calculated in radial and circumference directions, then
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calculated in the depth direction. To obtain the soil displacement, the initial numbers of
these values, y1, y2, y3, y4, y5, y6, y7 and y8, must be assumed. Then, they are inserted into
Equations (23) and (24), from which the soil parameters k and C are obtained as a result of
the pile displacement. New values of y1, y2, y3, y4, y5, y6, y7 and y8 can then be inserted into
Equations (23) and (24) to evaluate φr and φθ , which are then inserted into Equation (11) to
obtain the pile displacement u, so an iteration technique is needed to satisfy the condition
γold−γnew

γold
< 0.001. Figure 7 shows the flow chart of the iterative solution procedure.
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4. Results
4.1. Effect of Explicit Incorporation of Soil Characteristics and Layering

The present study investigated the effect of explicit incorporation of soil properties and
layering in order to understand the importance of predicting appropriate pile displacement
responses in a linear elastic soil system. Two different types of piles with varying soil
properties and layers were considered. Table 1 shows the pile and soil details considered
for the analyses.
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Table 1. Pile and soil properties for understanding the effect of explicit incorporation.

S. No. Pile Properties Heights of Soil Layers, Hi (m) Shear Moduli, G0 (MPa) Poisson’s Ratio (v)

Short Pile

Case 1

L = 10 m
rp = 0.5 m

Ep = 25 × 106 kN/m2

F0 = 1000 kN

Homogeneous soil layer G02/G01 = 1
G01 = 25

0.25
Case 2 Two-layer soil system, H1 = 2 m G02/G01 = 2

G01 = 25; G02 = 50

Case 3 Two-layer soil system, H1 = 2 m G02/G01 = 4
G01 = 25; G02 = 100

Case 4 Two-layer soil system, H1 = 2 m G02/G01 = 0.5
G01 = 50; G02 = 25

Long Pile

Case 1

L = 20 m
rp = 0.25 m

Ep = 25 × 106 kN/m2

F0 = 1000 kN

Homogeneous soil layer G01 = G02 = G03 = G04
G01 = 10

0.25
Case 2 Four-layer soil system, H1 = 1 m;

H2 = 3 m; H3 = 5 m

G01 = 0.5G02 = 0.25G03 =
0.125G04

G01 = 10; G02 = 20; G03 = 40;
G04 = 80

Case 3 Four-layer soil system, H1 = 1 m;
H2 = 3 m; H3 = 5 m

G01 = 0.25G02 = 0.25G03 =
0.125G04

G01 = 10; G02 = 40; G03 = 40;
G04 = 80

Figures 8 and 9 show the pile displacement responses along the depth z for all the
cases of the two different pile types discussed above (Table 1).
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Figure 9. Effect of explicit incorporation of soil characteristics and layering (four-layer soil system)
for the 20 m long pile.

The responses indicated that the effect of soil layers and their thicknesses, pile prop-
erties and the variation in soil moduli have a direct impact on the displacements of piles
subjected to lateral loading. Hence, a proper emphasis has to be given to account for soil
non-linearity. The present study is capable enough in predicting accurate pile responses
considering proper characterization of soil deposits and explicit accounting for different
layers, as it utilizes 3D interactions between the pile and the soil deposits considering the
effect of soil non-linearity.

4.2. Accuracy of the Model Considering Soil Non-Linearity

(a) Energy-based Method versus FEA

The present analytical study is compared with the results of a 3D FEA in order to
verify its accuracy and computational efficiency. The FEA analyses were performed using
the software ANSYS Workbench 2021R1, which substantially reproduced the realistic
behavior of the pile–soil system. ANSYS SOLID65 eight-node elements (three translational
degrees of freedom) were used for both the pile and soil. Appropriate separation was set
up between both the bodies in order to ensure that there is no slippage/separation. The
soil–pile interface was set manually using the contact tool in which the pile was the “target”
surface and the soil a “contact” surface. The soil medium was extended to about 30 times
the pile diameter in both the horizontal and radial directions. The top surface of the soil
medium was at the same level with the pile head and extended to a finite direction. The
boundary conditions for the pile were set to being free at the head and fixed at the tip in
order to replicate the response obtained by the energy-based assumptions. For the soil, the
model included roller supports on the sides and a fixed support at the bottom. Figure 10
shows the initial input properties for the pile and soil and their boundary conditions.
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Figure 10. Input of (a) pile–soil system properties and (b) boundary conditions in FEA software
ANSYS 2021R1.

A concentrated force and/or moment was applied to the pile head that varied in
several fixed increments. The soil non-linear elastic relationship is defined using Equation
(2). The same curve generated for the variation of the secant shear modulus of soil with
strain (Equation (2) is given as an input in the material definition section of the FEA
software. A directional deformation function was used to record the load-displacement
responses for the different load levels. The discretized finite element model consisted of a
linear explicit coarse mesh with 5908 nodes and 3855 elements. A mesh representation of
the pile–soil model is shown in Figure 11.
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Figure 11. The discretized FEM (a) A mesh representation of the FEM and (b) A wireframe represen-
tation of the FEM (ANSYS 2021R1).

Figure 12a,b show the pile head displacements obtained for the applied forces and
moments, respectively. The results were compared for the soil conditions modeled as a
linear elastic and a non-linear elastic material. The results obtained by the present analytical
study (energy-based method) agree reasonably well with the FEA with a difference of
approximately less than 7%. For an applied lateral force at the pile head, the non-linear
elastic response shows a slight underestimation until an applied force of about 400 kN.

Another advantage of the present study is its computational efficiency over the FEA.
Table 2 depicts the computational speed of the present energy-based approach solved
using MATLAB Scripts and the FEA using ANSYS 2021R1 for the problems solved with a
computer Intel Core i7-9750H CPU @ 2.60 GHz and 16 GB RAM. It is also important to note
that the time taken to design a specific model in the FEA software is not defined in the table,
which adds an additional advantage for the developed ready-to-use MATLAB Scripts.

Table 2. The computational speed of the present energy-based approach and the FEA.

Problems 3D FEA (Seconds) Energy-Based Method
(Seconds)

12 (a) 4343 169
12 (b) 4389 178

The pile–soil problem analyzed above is now compared against different values for
Poisson’s ratio to the 3D FEA to confirm the accuracy of the present study, considering the
non-linear elastic constitutive relationship given by Equation (2). Figure 13a,b show the
results obtained for pile head lateral displacements for two different values of Poisson’s
ratio (v = 0.2 and v = 0.49). Such values of Poisson’s ratios were chosen, as they are the
most adopted values of the previous studies [82,83,90–92]. It is evident from the figures
that the present study produces responses, which are in good agreement with the FEA.
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Figure 13. Pile head lateral displacements for two different values of Poisson’s ratio v = 0.2 and
v = 0.49 with (a) an applied lateral force at the pile head and (b) an applied moment at the pile head.

Figure 14a–g show the soil and pile responses obtained using the present energy-based
method and the FEA. Figure 14a,b show the responses of a laterally loaded pile in terms
of pile head displacements with respect to the depth and the magnitude of applied forces.
The input soil and pile properties are shown in the figures themselves. The results are
compared to the 3D FEA and indicate that the present energy-based method is capable of
producing responses quite close to the FEA. Figure 14c–g show the soil responses for the
analyzed laterally loaded pile. Figure 14c–e represent the normalized radial (ur/rp) and
tangential (uθ/rp) displacements along θ = 0◦ (Figure 14c), θ = 45◦ (Figure 14d) and θ = 90◦

(Figure 14e). Figure 14f shows the response of the dimensionless displacement functions
φr and φθ along θ = 45◦ to further demonstrate the accuracy of the present energy-based
method with the FEA. Figure 14g shows the response of the variation of the secant shear
modulus (G/G0) along the radial direction for θ = 0◦, 45◦ and 90◦. Figure 15a–g show the
pile and soil responses for the same problem analyzed but with an applied moment at the
pile head. The present study produces both the soil and pile responses accurately when
compared with the FEA.
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Figure 14. Pile and soil responses obtained from the present analysis and 3D FE analysis using Equa-
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Equation (2) for an applied force at the pile head (a) pile embedment depth versus the pile head
displacement, (b) applied force versus pile head displacement, (c) normalized radial soil displacement
along θ = 0◦ at z = 0 m, (d) normalized radial and tangential soil displacement along θ = 45◦ at z = 0 m,
(e) normalized tangential soil displacement along θ = 90◦ at z = 0 m, (f) normalized radial and tangential
soil displacement functions φr and φθ along θ = 45◦ at z = 0 m and (g) graphical representation of the
normalized secant shear modulus versus normalized radial distance along θ = 0◦, 45◦ and 90◦ at z = 0 m
at the end of the final load increment.
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Figure 15. Pile and soil responses obtained from the present analysis and 3D FE analysis using
Equation (2) for an applied moment at the pile head (a) pile embedment depth versus the pile
head displacement, (b) applied moment versus pile head displacement, (c) normalized radial soil
displacement along θ = 0◦ at z = 0 m, (d) normalized radial and tangential soil displacement along
θ = 45◦ at z = 0 m, (e) normalized tangential soil displacement along θ = 90◦ at z = 0 m, (f) normalized
radial and tangential soil displacement functions φr and φθ along θ = 45◦ at z = 0 m and (g) graphical
representation of the normalized secant shear modulus versus normalized radial distance along
θ = 0◦, 45◦ and 90◦ at z = 0 m at the end of the final load increment.

(b) Energy-based method versus the published numerical analysis and FEA

“A Numerical Study into Lateral Cyclic Nonlinear Soil-Pile Response”: Allotey and
ElNaggar [92].

A numerical analysis of lateral cyclic non-linear soil–pile response was carried out by
Allotey and El Naggar [92] using a beam on non-linear Winkler foundation model (BNWF
dynamic model), where the model was compression dominant, used to model the pile–soil
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interaction. This model was produced to predict the response of pile for four main parts:
the backbone curve, the standard reload curve, the general unload curve and the direct
reload curve. Allotey and El Naggar [92] simulated a reinforced concrete pile of length
12 m and diameter 0.6 m embedded in a single stratum consisting of uniform medium-stiff
clay with an undrained shear strength of 50 KPa and unit weight of 19 kN/m2. The pile
head was laterally loaded with 25 uniform two-way loading cycles with an amplitude of
213 kN and a pile-yield moment of 636 kNm. This study is compared to Case C of the paper,
which assumed full connection between the pile and the soil. A FEA was also conducted
using the software ANSYS Workbench 2021R1 for the soil–pile problem, as discussed above.
A static structural analysis was chosen, and the input data for the pile characteristics, soil
characteristics and soil non-linearity were taken from Allotey and El Naggar [92]. The
soil block’s length was chosen as 25 times the pile diameter (25D), which was fixed at the
bottom and free on the surroundings. The discretized FEM had a fine mesh of 9194 nodes
and 1845 elements. The directional deformation along the x axis was used to calculate the
displacements of pile head for the respective force applied.

Figure 16 shows the comparison of load-deflection responses obtained from the pub-
lished numerical analyses, energy-based solution and the FEA.
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Figure 16. Pile head deflection with respective lateral loads.

The result from the FEA underestimates the pile displacements by about 10% for the
load values up to 70 kN. However, there is a good agreement in the results from the back-
bone curve of Allotey and El Naggar [92], FEA and the proposed energy-based solution.

(c) Energy-based method versus the field test data

“Soil Modulus for Laterally Loaded Piles”: McClelland and Focht [19].

The present study makes a comparison of the proposed energy-based method with the pile
load test data obtained by McClelland and Focht [19]. This study further compares the
results to those proposed by several other researchers [63,64,90]. The pile was embedded
in a normally consolidated clay, and the pile details included a pile length of 23 m and
a radius of 0.305 m. The pile was subjected to both lateral force and moment of 300 kN
and −265 kNm, respectively. The elastic modulus of the pile was given by Ref. [63] as
68.42 × 106 kN/m2. The details of the soil strata are shown in Table 3.
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Table 3. Soil details at the test site investigated by McClelland and Focht [19] (adapted from Basu [90]).

Depth (m) Extent of Soil Layers (m) Shear Modulus, G0 (MPa) Poisson’s Ratio, ν

2 0 to −4 1.6 0.3
6 −4 to −8 4.8 0.3
10 −8 to −12 8 0.3

17.5 −12 to greater depth 14 0.3

The results of the present study show the pile deflection profile closely matches the
field data, as shown in Figure 17.
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The present study considers soil non-linearity, which is more representative of the
actual soil behavior, substantiated by the available published field data. The pile deflections
considering soil non-linearity appear to be within the bounds of linear elastic soil analyses.

5. Discussion and Conclusions

The beam-on-non-linear-foundation approach (p–y method) has been used extensively
to understand the pile-displacement responses. This approach has the limitation of repre-
senting the surrounding soil using non-linear springs requiring realistic user-specified soil
characteristics of the p–y curves, which do not represent the three-dimensional pile–soil
interaction. Several researchers have studied the pile responses using numerical methods,
including BEM, FEM and FDM. Although the FEM using appropriate soil constitutive
relationship, elements and domains for the soil and pile gives realistic results, the method
requires enormous computation time, and the resources required for such an analysis stand
out as a major limitation. This gives rise to the need for a more efficient method, which
has both the strength of a rigorous three-dimensional non-linear approach for the pile–soil
interaction and potentials for obtaining a faster computational effort. The present study
utilizes an analytical solution based on an energy method (discretized continuum approach)
to predict pile–soil displacements, where the soil is assumed to be non-linear elastic (soil
parameters vary in radial, tangential and vertical directions). The analysis was conducted
on a laterally loaded pile embedded in multi-layered soil. The governing equations for
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pile and soil were obtained by applying the variational principle to the potential energy,
which are then solved using the software MATLAB R2021a. Comparisons were made
with the published field data and the FEA. It is observed that the energy-based method
presented in this study is in good agreement with the field data when compared to the
linear elastic solution that does not consider soil non-linearity. The developed analytical
model incorporating the Euler–Bernoulli beam theory proved to be an effective way in
estimating the load-displacement responses of piles embedded in multi-layered non-linear
elastic soil strata. The non-linear elastic constitutive relationship, which described the
variation of secant shear modulus with strain through a power law, showed reasonably
accurate predictions when compared to the published field test data and the FEA. The
results indicated a difference of approximately less than 7% between the proposed method
and the FEA. The study illustrates the superior advantage of the fast solutions obtained by
the energy-based method over the FEA.

6. Future Work

• The proposed analytical models of the present study are subjected to static loads and
can be extended to the effect of dynamic loading.

• In the present study, the load-displacement responses of single piles were considered.
However, the deformation responses of group piles are larger than the displacement
of isolated single piles. Hence, the present work needs to be extended to understand
the group action of the piles when subjected to several external loads.

Author Contributions: Conceptualization, P.A.A.; methodology, P.A.A.; resources, P.A.A.; data
curation, P.A.A.; writing—original draft preparation, P.A.A.; writing—review and editing, P.A.A. and
M.A.; visualization, P.A.A.; supervision, M.A. All authors have read and agreed to the published
version of the manuscript.

Funding: The authors acknowledge the support received from the Florida Department of Transporta-
tion Grant: DOT-RFP-20-9069-CA, Gangals Foundation Inc. for providing the senior author with
International Post Graduate Engineering Scholarship and Florida Atlantic University for providing
the senior author with the Presidential Fellowship to successfully finish this study.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Moussa, A.; Christou, P. The evolution of analysis methods for laterally loaded piles through time. In International Congress and

Exhibition “Sustainable Civil Infrastructures: Innovative Infrastructure Geotechnology”; Springer: Cham, Switzerland, 2017; pp. 65–94.
2. Blum, H. Wirtschaftliche dalbenformen und deren berechnung. Bautechnik 1932, 10, 50–55.
3. Hansen, J.B.; Christensen, N.H. The Ultimate Resistance of Rigid Piles against Transversal Forces; Geoteknisk Institute: Copen-

hagen, Denmarrk, 1961.
4. Broms, B.B. Lateral resistance of piles in cohesionless soils. J. Soil Mech. Found. Div. 1964, 90, 123–158. [CrossRef]
5. Broms, B.B. Lateral Resistance of Piles in Cohesive Soils. J. Soil Mech. Found. Div. 1964, 90, 27–63. [CrossRef]
6. Broms, B.B. Design of Laterally Loaded Piles. J. Soil Mech. Found. Div. 1965, 91, 79–99. [CrossRef]
7. Winkler, E. Die Lehre von der Elastizit at und Festigkeit; Domimicus: Prague, Czech Republic, 1867.
8. Biot, M. Bending of an infinite beam on an elastic foundation. Z. Angew. Maih. Mech. 1937, 4, 165–184. [CrossRef]
9. Hetenyi, M. Beams on Elastic Foundation; The University of Michigan Press: Ann Arbor, MI, USA, 1946.
10. Barber, E. Discussion to Paper by SM Gleser; ASTM, STP: West Conshohocken, PA, USA, 1953; Volume 154, pp. 96–99.
11. Terzaghi, K. Evalution of conefficients of subgrade reaction. Geotechnique 1955, 5, 297–326. [CrossRef]
12. Reese, L.C.; Matlock, H. Nondimensional solutions for laterally loaded piles with soil modulus assumed proportional to depth. In

Proceedings of the VIII Texas Conference on Soil Mechanics and Foundation Engineering, University of Texas, Austin, TX, USA,
14–15 September 1956.

13. Matlock, H.; Reese, L.C. Generalized Solutions for Laterally Loaded Piles. J. Soil Mech. Found. Div. 1960, 86, 63–92. [CrossRef]
14. Poulos, G.; Davis, H. Pile Foundation Analysis and Design; John Wiley & Sons, Inc.: New York, NY, USA, 1980.

http://doi.org/10.1061/JSFEAQ.0000614
http://doi.org/10.1061/JSFEAQ.0000611
http://doi.org/10.1061/JSFEAQ.0000751
http://doi.org/10.1115/1.4008739
http://doi.org/10.1680/geot.1955.5.4.297
http://doi.org/10.1061/JSFEAQ.0000303


Geotechnics 2022, 2 596

15. Prakash, S.; Sharma, H.D. Pile Foundations in Engineering Practice; Wiley: Hoboken, NJ, USA, 1990.
16. Vesic, A. Beams on elastic subgrade and the Winkler’s hypothesis. In Proceedings of the 5th International Conference on Soil

Mechanics and Foundation Engineering, Paris, France, 17–22 July 1961; Volume 1, pp. 845–850.
17. Bowles, J.E. Foundation Analysis and Design, 5th ed.; McGraw-Hill: New York, NY, USA, 1996.
18. Carter, D.P. A Non-Linear Soil Model for Predicting Lateral Pile Response. Ph.D. Dissertation, University of Auckland, Auckland,

New Zealand, 1984.
19. McClelland, B.; Focht, J.A. Soil Modulus for Laterally Loaded Piles. Trans. Am. Soc. Civ. Eng. 1958, 123, 1049–1063. [CrossRef]
20. Matlock, H. Correlations for design of laterally loaded piles in soft clay. In Offshore Technology in Civil Engineering’s Hall of Fame

Papers from the Early Years; ASCE: Reston, VA, USA, 1970; pp. 77–94.
21. Reese, L.C.; Cox, W.R.; Koop, F.D. Analysis of laterally loaded piles in sand. In Offshore Technology in Civil Engineering Hall of Fame

Papers from the Early Years; ASCE: Reston, VA, USA, 1974; pp. 95–105.
22. Reese, L.C.; Cox, W.R.; Koop, F.D. Field testing and analysis of laterally loaded piles in stiff clay. In Proceedings of the VII Annual

Offshore Technology Conference, Houston, TX, USA, 5–8 May 1975; pp. 672–690.
23. Lee, P.Y.; Gilbert, L.W. Behavior of laterally loaded pile in very soft clay. In Proceedings of the Offshore Technology Conference,

Houston, TX, USA, 2 May 1979.
24. Stevens, J.; Audibert, J. Re-examination of py curve formulations. In Proceedings of the Offshore Technology Conference,

Houston, TX, USA, 2 May 1979.
25. Georgiadis, M. Development of p-y curves for layered soils. In Geotechnical Practice in Offshore Engineering; ASCE: Reston,

VA, USA, 1983; pp. 536–545.
26. Reese, L.C. Handbook on Design of Piles and Drilled Shafts under Lateral Load; FHWA Report FHWA-IP-84/11; US DOT: Washington,

DC, USA, 1984; 360p.
27. Reese, L.C.; Wang, S. T LPILE PLUS Computer Program Documentation; Ensoft Inc.: Austin, TX, USA, 1989.
28. Reese, L.C. Analysis of Laterally Loaded Piles in Weak Rock. J. Geotech. Geoenviron. Eng. 1997, 123, 1010–1017. [CrossRef]
29. Chong, W.; Haque, A.; Ranjith, P.; Shahinuzzaman, A. Effect of joints on p–y behaviour of laterally loaded piles socketed into

mudstone. Int. J. Rock Mech. Min. Sci. 2011, 48, 372–379. [CrossRef]
30. Zhang, L.; McVay, M.C.; Lai, P.W. Centrifuge modelling of laterally loaded single battered piles in sands. Can. Geotech. J. 1999, 36,

1074–1084. [CrossRef]
31. Mokwa, R.L.; Duncan, J.M.; Helmers, M.J. Development of py curves for partly saturated silts and clays. In New Technological and

Design Developments in Deep Foundations; Geotechnical Special Publication; Geo-Denver: Denver, CO, USA, 2000; pp. 224–239.
32. Rollins, K.M.; Gerber, T.M.; Lane, J.D.; Ashford, S.A. Lateral Resistance of a Full-Scale Pile Group in Liquefied Sand. J. Geotech.

Geoenviron. Eng. 2005, 131, 115–125. [CrossRef]
33. Chang, B.J.; Hutchinson, T.C. Experimental Evaluation of p-y Curves Considering Development of Liquefaction. J. Geotech.

Geoenviron. Eng. 2013, 139, 577–586. [CrossRef]
34. Yang, Z.; Li, Q.; Horazdovsky, J.; Hulsey, J.; Marx, E. Analysis of laterally loaded piles in frozen soils. In State of the Art and

Practice in Geotechnical Engineering (GeoCongress2012); Geotechnical Special Publication no. 225; ASCE: Reston, VA, USA, 2012;
pp. 215–224.

35. Suleiman, M.T.; Ni, L.; Helm, J.D.; Raich, A. Soil-Pile Interaction for a Small Diameter Pile Embedded in Granular Soil Subjected
to Passive Loading. J. Geotech. Geoenviron. Eng. 2014, 140, 04014002. [CrossRef]

36. Thieken, K.; Achmus, M.; Lemke, K. A new static p-y approach for piles with arbitrary dimensions in sand. Geotechnik 2015, 38,
267–288. [CrossRef]

37. Zhu, B.; Sun, Y.X.; Chen, R.P.; Guo, W.D.; Yang, Y.Y. Experimental and Analytical Models of Laterally Loaded Rigid Monopiles
with Hardening p–y Curves. J. Waterw. Port Coast. Ocean Eng. 2015, 141, 04015007. [CrossRef]

38. Lin, C.; Han, J.; Bennett, C.; Parsons, R.L. Analysis of laterally loaded piles in soft clay considering scour-hole dimensions. Ocean
Eng. 2016, 111, 461–470. [CrossRef]

39. Norris, G. Theoretically based BEF laterally loaded pile analysis. In Proceedings of the 3rd International Conference on Numerical
Methods in Offshore Piling, Nantes, France, 21–22 May 1986; pp. 361–386.

40. Desai, C.; Appel, G. 3-D analysis of laterally loaded structures. In Proceedings of the 2nd International Conference on Numerical
Methods in Geomechanics, Blacksburg, VA, USA, 20 June 1976; pp. 405–418.

41. Faruque, M.; Desai, C. 3-D material and geometric nonlinear analysis of piles. In Proceedings of the Second International
Conference on Numerical Methods in Offshore Pilling, Austin, TX, USA, 29–30 April 1982; pp. 553–575.

42. Brown, D.; Kumar, M. PY curves for laterally loaded piles derived from three-dimensional finite element model. Numerical models
in geomechanics. In Proceedings of the 3rd International Symposium Held in Niagara Falls (Numog III), Niagara, ON, Canada,
8–11 May 1989; Elsevier Applied Science Publishers Limited: Amsterdam, The Netherlands, 1989.

43. Brown, D.A.; Shie, C.-F. Three dimensional finite element model of laterally loaded piles. Comput. Geotech. 1990, 10, 59–79.
[CrossRef]

44. Brown, D.A.; Shie, C.-F. Some numerical experiments with a three dimensional finite element model of a laterally loaded pile.
Comput. Geotech. 1991, 12, 149–162. [CrossRef]

45. Trochanis, A.M.; Bielak, J.; Christiano, P. Three-dimensional nonlinear study of piles. J. Geotech. Eng. 1991, 117, 429–447. [CrossRef]

http://doi.org/10.1061/TACEAT.0007599
http://doi.org/10.1061/(ASCE)1090-0241(1997)123:11(1010)
http://doi.org/10.1016/j.ijrmms.2011.01.001
http://doi.org/10.1139/t99-072
http://doi.org/10.1061/(ASCE)1090-0241(2005)131:1(115)
http://doi.org/10.1061/(ASCE)GT.1943-5606.0000802
http://doi.org/10.1061/(ASCE)GT.1943-5606.0001081
http://doi.org/10.1002/gete.201400036
http://doi.org/10.1061/(ASCE)WW.1943-5460.0000310
http://doi.org/10.1016/j.oceaneng.2015.11.029
http://doi.org/10.1016/0266-352X(90)90008-J
http://doi.org/10.1016/0266-352X(91)90004-Y
http://doi.org/10.1061/(ASCE)0733-9410(1991)117:3(429)


Geotechnics 2022, 2 597

46. Yang, Z.; Jeremi, B. Numerical analysis of pile behaviour under lateral loads in layered elastic–plastic soils. Int. J. Numer. Anal.
Methods Geomech. 2002, 26, 1385–1406. [CrossRef]

47. Yang, Z.; Jeremi, B. Study of soil layering effects on lateral loading behavior of piles. J. Geotech. Geoenviron. Eng. 2005, 131,
762–770. [CrossRef]

48. Ahmadi, M.M.; Ahmari, S. Finite-element modelling of laterally loaded piles in clay. Proc. Inst. Civ. Eng.-Geotech. Eng. 2009, 162,
151–163. [CrossRef]

49. Peng, J.-R.; Rouainia, M.; Clarke, B. Finite element analysis of laterally loaded fin piles. Comput. Struct. 2010, 88, 1239–1247.
[CrossRef]

50. Mardfekri, M.; Gardoni, P.; Roesset, J.M. Modeling Laterally Loaded Single Piles Accounting for Nonlinear Soil-Pile Interactions.
J. Eng. 2013, 2013, 243179. [CrossRef]

51. Tuladhar, R.; Mutsuyoshi, H.; Mäki, T. Numerical modelling and full-scale testing of concrete piles under lateral loading. Aust. J.
Struct. Eng. 2013, 14, 229–242. [CrossRef]

52. Kampitsis, A.E.; Giannakos, S.; Gerolymos, N.; Sapountzakis, E.J. Soil–pile interaction considering structural yielding: Numerical
modeling and experimental validation. Eng. Struct. 2015, 99, 319–333. [CrossRef]

53. Khodair, Y.; Abdel-Mohti, A. Numerical Analysis of Pile–Soil Interaction under Axial and Lateral Loads. Int. J. Concr. Struct.
Mater. 2014, 8, 239–249. [CrossRef]

54. Douglas, D.J.; Davis, E.H. The Movement of Buried Footings due to Moment and Horizontal Load and the Movement of Anchor
Plates. Geotechnique 1964, 14, 115–132. [CrossRef]

55. Spillers, W.R.; Stoll, R.D. Lateral response of piles. J. Soil Mech. Found. Div. 1964, 90, 1–10. [CrossRef]
56. Poulos, H.G. Behavior of laterally loaded piles: I-single piles. J. Soil Mech. Found. Div. 1971, 97, 711–731. [CrossRef]
57. Poulos, H.G. Behavior of laterally loaded piles: II-pile groups. J. Soil Mech. Found. Div. 1971, 97, 733–751. [CrossRef]
58. Poulos, H.G. Analysis of piles in soil undergoing lateral movement. J. Soil Mech. Found. Div. 1973, 99, 391–406. [CrossRef]
59. Banerjee, P.K.; Davis, T.G. The behaviour of axially and laterally loaded single piles embedded in non-homogeneous soils.

Geotechnique 1978, 28, 309–326. [CrossRef]
60. Davies, T.; Budhu, M. Non-linear analysis of laterally loaded piles in heavily overconsolidated clays. Geotechnique 1986, 36,

527–538. [CrossRef]
61. Budhu, M.; Davies, T.G. Nonlinear analysis of laterality loaded piles in cohesionless soils. Can. Geotech. J. 1987, 24, 289–296.

[CrossRef]
62. Budhu, M.; Davies, T.G. Analysis of Laterally Loaded Piles in Soft Clays. J. Geotech. Eng. 1988, 114, 21–39. [CrossRef]
63. Randolph, M.F. The response of flexible piles to lateral loading. Geotechnique 1981, 31, 247–259. [CrossRef]
64. Sun, K. Laterally Loaded Piles in Elastic Media. J. Geotech. Eng. 1994, 120, 1324–1344. [CrossRef]
65. Vallabhan, C.V.G.; Das, Y.C. Parametric Study of Beams on Elastic Foundations. J. Eng. Mech. 1988, 114, 2072–2082. [CrossRef]
66. Zhang, L.; Ernst, H.; Einstein, H.H. Nonlinear Analysis of Laterally LoadedRock-Socketed Shafts. J. Geotech. Geoenviron. Eng.

2000, 126, 955–968. [CrossRef]
67. Guo, W.D.; Lee, F.H. Load transfer approach for laterally loaded piles. Int. J. Numer. Anal. Methods Geomech. 2001, 25, 1101–1129.

[CrossRef]
68. Basu, D.; Salgado, R. Elastic analysis of laterally loaded pile in multi-layered soil. Geomech. Geoeng. Int. J. 2007, 2, 183–196.

[CrossRef]
69. Shen, W.; Teh, C. Analysis of laterally loaded pile groups using a variational approach. Geotechnique 2002, 52, 201–208. [CrossRef]
70. Yang, K.; Liang, R. A 3D FEM model for laterally loaded drilled shafts in rock. In Proceedings of the GeoCongress 2006:

Geotechnical Engineering in the Information Technology Age, Atlanta, GA, USA, 26 February–1 March 2006; pp. 1–6.
71. Hashem-ali, S. Analytical Methods for Predicting Load-Displacement Behavior of Piles. Ph.D. Thesis, Durham University,

Durham, UK, 2014.
72. Reissner, E. A Note on Deflections of Plates on a Viscoelastic Foundation. J. Appl. Mech. 1958, 25, 144–145. [CrossRef]
73. Horvath, J.S. Modulus of Subgrade Reaction: New Perspective. J. Geotech. Eng. 1983, 109, 1591–1596. [CrossRef]
74. Horvath, J.S. Simplified elastic continuum applied to the laterally loaded pile problem—part 1: Theory. In Laterally Loaded Deep

Foundations: Analysis and Performance, STP 835; Mosley, E.T., Thompson, C.D., Eds.; American Society for Testing and Materials:
Philadelphia, PA, USA, 1984; pp. 112–121.

75. Colasanti, R.J.; Horvath, J.S. Practical Subgrade Model for Improved Soil-Structure Interaction Analysis: Software Implementation.
Pract. Period. Struct. Des. Constr. 2010, 15, 278–286. [CrossRef]

76. Horvath, J.S.; Colasanti, R.J. Practical Subgrade Model for Improved Soil-Structure Interaction Analysis: Model Development. Int.
J. Geomech. 2011, 11, 59–64. [CrossRef]

77. Kerr, A.D. Elastic and Viscoelastic Foundation Models. J. Appl. Mech. 1964, 31, 491–498. [CrossRef]
78. Kerr, A.D. A study of a new foundation model. Acta Mech. 1965, 1, 135–147. [CrossRef]
79. Yuan, B.; Li, Z.; Zhao, Z.; Ni, H.; Su, Z.; Li, Z. Experimental study of displacement field of layered soils surrounding laterally

loaded pile based on transparent soil. J. Soils Sediments 2021, 21, 3072–3083. [CrossRef]
80. Yuan, B.; Li, Z.; Chen, W.; Zhao, J.; Lv, J.; Song, J.; Cao, X. Influence of Groundwater Depth on Pile–Soil Mechanical Properties and

Fractal Characteristics under Cyclic Loading. Fractal Fract. 2022, 6, 198. [CrossRef]

http://doi.org/10.1002/nag.250
http://doi.org/10.1061/(ASCE)1090-0241(2005)131:6(762)
http://doi.org/10.1680/geng.2009.162.3.151
http://doi.org/10.1016/j.compstruc.2010.07.002
http://doi.org/10.1155/2013/243179
http://doi.org/10.7158/S12-022.2013.14.3
http://doi.org/10.1016/j.engstruct.2015.05.004
http://doi.org/10.1007/s40069-014-0075-2
http://doi.org/10.1680/geot.1964.14.2.115
http://doi.org/10.1061/JSFEAQ.0000672
http://doi.org/10.1061/JSFEAQ.0001592
http://doi.org/10.1061/JSFEAQ.0001593
http://doi.org/10.1061/JSFEAQ.0001879
http://doi.org/10.1680/geot.1978.28.3.309
http://doi.org/10.1680/geot.1986.36.4.527
http://doi.org/10.1139/t87-034
http://doi.org/10.1061/(ASCE)0733-9410(1988)114:1(21)
http://doi.org/10.1680/geot.1981.31.2.247
http://doi.org/10.1061/(ASCE)0733-9410(1994)120:8(1324)
http://doi.org/10.1061/(ASCE)0733-9399(1988)114:12(2072)
http://doi.org/10.1061/(ASCE)1090-0241(2000)126:11(955)
http://doi.org/10.1002/nag.169
http://doi.org/10.1080/17486020701401007
http://doi.org/10.1680/geot.2002.52.3.201
http://doi.org/10.1115/1.4011704
http://doi.org/10.1061/(ASCE)0733-9410(1983)109:12(1591)
http://doi.org/10.1061/(ASCE)SC.1943-5576.0000060
http://doi.org/10.1061/(ASCE)GM.1943-5622.0000070
http://doi.org/10.1115/1.3629667
http://doi.org/10.1007/BF01174308
http://doi.org/10.1007/s11368-021-03004-y
http://doi.org/10.3390/fractalfract6040198


Geotechnics 2022, 2 598

81. Arvan, P.A.; Arockiasamy, M. Energy-Based Approach: Analysis of a Vertically Loaded Pile in Multi-Layered Non-Linear Soil
Strata. Geotechnics 2022, 2, 549–569. [CrossRef]

82. Gupta, B.K.; Basu, D. Applicability of Timoshenko, Euler–Bernoulli and rigid beam theories in analysis of laterally loaded
monopiles and piles. Géotechnique 2018, 68, 772–785. [CrossRef]

83. Basu, D.; Salgado, R.; Prezzi, M. Analysis of laterally loaded piles in multilayered soil deposits. In FHWA/IN/JTRP-2008/23. Joint
Transportation Research Program, Indiana; Department of Transportation and Purdue University: West Lafayette, IN, USA, 2008.
[CrossRef]

84. Atkinson, J.H. Non-linear soil stiffness in routine design. Géotechnique 2000, 50, 487–508. [CrossRef]
85. Dasari, G.R. Modelling the Variation of Soil Stiffness during Sequential Construction. Ph.D. Thesis, University of Cambridge,

Cambridge, UK, 1996.
86. Osman, A.S.; White, D.J.; Britto, A.M.; Bolton, M.D. Simple prediction of the undrained displacement of a circular surface

foundation on non-linear soil. Géotechnique 2007, 57, 729–737. [CrossRef]
87. Gunn, M.J. The prediction of surface settlement profiles due to tunnelling. In Predictive Soil Mechanics, Proceedings of the Wroth

Memorial Symposium held at St Catherine’s College, Oxford, UK, 27–29 July 1992; Thomas Telford Publishing: London, UK, 1992;
pp. 304–316.

88. Bolton, M.D.; Whittle, R.W. A non-linear elastic/perfectly plastic analysis for plane strain undrained expansion tests. Géotechnique
1999, 49, 133–141. [CrossRef]

89. Vlasov, V.Z.; Leont’ev, N.N. Beams, Plates and Shells on Elastic Foundations; Israel Program for Scientific Translations: Jerusalem,
Israel, 1966.

90. Basu, D.; Salgado, R.; Prezzi, M. A continuum-based model for analysis of laterally loaded piles in layered soils. Géotechnique
2009, 59, 127–140. [CrossRef]

91. Basu, D.; Salgado, R.; Prezzi, M. A new framework for analysis of laterally loaded piles. J. Geo-Eng. Sci. 2013, 1, 53–67. [CrossRef]
92. Allotey, N.; El Naggar, H. A numerical study into lateral cyclic nonlinear soil- pile response. Can. Geotech. J. 2008, 45, 1268–1281.

[CrossRef]

http://doi.org/10.3390/geotechnics2030027
http://doi.org/10.1680/jgeot.16.P.244
http://doi.org/10.5703/1288284313454
http://doi.org/10.1680/geot.2000.50.5.487
http://doi.org/10.1680/geot.2007.57.9.729
http://doi.org/10.1680/geot.1999.49.1.133
http://doi.org/10.1680/geot.2007.00011
http://doi.org/10.3233/JGS-13007
http://doi.org/10.1139/T08-050

	Introduction 
	Problem Definition 
	Soil Non-Linearity 
	Basic Assumptions 
	Governing Differential Equation 
	Output Parameters 

	Iterative Solution Methodology 
	Results 
	Effect of Explicit Incorporation of Soil Characteristics and Layering 
	Accuracy of the Model Considering Soil Non-Linearity 

	Discussion and Conclusions 
	Future Work 
	References

