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Abstract: Groundwater level plays an important role in triggering landslides. In this paper, Distinct
Element Method is used to investigate the impact of groundwater table fluctuation on the stability of
jointed rock slopes. For this purpose, 110 cases including different number of joint sets, joint friction
angles, joint spacings, and joint angles are considered and the influence of changing groundwater
level on the stability of a jointed rock slope is investigated through a series of parametric studies.
This study shows that the factor of safety for slopes can decrease significantly with increasing the
groundwater level, and the impact is more significant on slopes with steeper joints. Furthermore,
as the spacing of the joints decreases, the impact decreases. However, as the joint spacing increases,
the groundwater table should rise to a higher elevation to be able to have an impact. Moreover, the
impact on the factor of safety is similar for different joint friction angles when the groundwater level
elevation is high. This study provides a better understanding of the impact of groundwater table
fluctuation on the stability of jointed rock slopes.

Keywords: landslide; jointed rock slope; groundwater table; slope stability analysis; distinct element
method

1. Introduction

Landslides, as one of the most well-known and frequent hazards on Earth, can cause
loss of life, serious destruction of infrastructure and severe damage to property [1–3]. There-
fore, prediction of landslides and reliable slope design in geotechnical, civil and mining
projects can not only improve safety but also avoid unexpected significant costs due to
slope failure [4]. There are different methods for slope stability analysis: Limit Equilibrium
Method [5–7]. Limit Analysis Method [8–10]; Numerical Modeling Method [11–13]. Numer-
ical methods used to analyze slopes are usually the Finite Difference Method (FDM) [14,15],
Finite Element Method (FEM) [16], Discrete Element Method [17] and Distinct Element
Method [18,19] (both known as DEM), Discontinuous Deformation Analysis (DDA) [20,21]
and Discrete Fracture Network (DFN) [22]. DEM, DDA and DFN are the most suitable
methods for stability analysis of jointed rock slopes because they simulate the discontinuum
behavior of rock masses by considering rock blocks and discontinuities [23–29].

The groundwater level has a significant effect on slope stability and landslide develop-
ment [30–33] and the groundwater table could fluctuate because of the influence of rainfall
infiltration, pumping, tides, and other reasons ([34,35]). Therefore, it is essential to have a
good understanding of how groundwater table fluctuations affect the stability of slopes.

Although there are many papers on the effect of groundwater on slope stability, to
date there is no parametric study published on investigating the impact of groundwater
table fluctuation on the stability of jointed rock slopes. For instance, Beyabanaki et al. [36]
investigated the impact of groundwater table position, soil strength properties and rain-
fall on instability in relation to earthquake-triggered landslides. Ray et al. [37] studied
the effects of unsaturated zone soil moisture and groundwater table on slope instability.
Song et al. [38,39] investigated the influence of a rapid water drawdown on the seismic
response characteristics of reservoir rock slopes. Xue et al. [40] investigated the stability
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analysis of loess slopes with a rising groundwater level. Sun et al. [41] studied the in-
fluence of water–rock interaction on the stability of Schist Slopes. Finally, Xu et al. [42]
studied the influence of reservoir water level variations on the stability of slopes near the
reservoir banks. However, no parametric study of joint parameters was carried out in
these investigations.

In this paper, Distinct Element Method is used to investigate the impact of groundwater
table fluctuation on the stability of jointed rock slopes through a series of parametric studies.
For this purpose, different number of joint sets, joint friction angles, joint spacings, and
joint angles are considered and the effect of changing groundwater level on the stability of
a jointed rock slope is studied.

2. Distinct Element Method

Rock masses are represented as assemblies of discrete blocks in DEM. Joints are
considered as interfaces between distinct blocks. A series of calculations that trace the
movements of the blocks, caused by applied loads or body forces, are performed to obtain
the contact forces and displacements at the interfaces of a stressed assembly of blocks. The
DEM calculations are based on application of a force displacement law in order to find
contact forces from known displacements, at all contacts, and Newton’s second law in
order to find the motion of the blocks resulting from the known forces acting on them, at all
blocks. If the blocks are not rigid, motion is calculated at the grid-points of the triangular
finite-strain elements within the blocks [43].

The calculation for DEM is presented below. For more information, see [43].

Fn := Fn − kn∆un (1)

Fs := Fs − ks∆us (2)

Fi = ∑ Fc
i (3)

M = ∑ eijxiFj (4)

Fe
i =

∫
σijnjds (5)

Fi = Fe
i + Fc

i (6)

Fi = Fi/m (7)

t := t + ∆t (8)

where,

Fn = Normal force;
Fs = Shear force;
Kn = Normal stiffness;
Ks = Shear stiffness;
∆un= Normal displacement increment;
∆us= Shear displacement increment;
Fi = Resultant of all external forces;
Fc

i = Contact force;
eij = Strain;
M = Total moment acting on the block;
m = Mass;
xi = Coordinates of block centroid;
σij = Zone stress tensor;
nj = Unit outward normal;
t = Time;
∆t = Time step.
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For this study, a DEM software called Universal Distinct Element Code (UDEC) [43] is
used. In UDEC, a fully coupled mechanical-hydraulic analysis is performed so that fracture
conductivity is dependent on mechanical deformation and, conversely, joint fluid pressures
affect the mechanical computations. The calculation for the fully coupled mechanical-
hydraulic analysis in UDEC is presented below. For more information, see [43].

Fi = pniL (9)

Q = −kja3 ∆p
L

(10)

a = ao + ∆a (11)

∆p =
kw

V

{
∑ Q∆t − ∆V

}
(12)

where,

p = Pressure;
kw = Bulk modulus of fluid;
a = Contact hydraulic aperture;
ao = Joint aperture at zero normal stress;
∆a = Joint normal displacement;
kj = Joint permeability factor;
∆p = Pressure change;
L = Length assigned to contact between domains;
V = average of old and new volume;
∆V = Mechanical volume change;
Q = Flow rate;
ΣQ = Flow into node.

3. Methodology and Modeling

The geometry shown in Figure 1 is considered, in order to perform an investigation
on the impact of groundwater table fluctuation on the stability of jointed rock slopes using
DEM. The crest of the slope is at Elevation +10.0 m and the toe of the slope is at Elevation
0.0 m.
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In this study, the groundwater level is raised to elevations of 1 m, 2 m, . . . , 10 m above
the slope toe. The groundwater level at the right-hand side is raised to different elevations
but the groundwater level on the left-hand side is maintained at the level of the slope
toe and a steady-state flow analysis is performed in each case. The vertical boundaries of
the model at the right-hand side (i.e., Elevations –5.0 to +10.0) and at the left-hand side
of the slope base (i.e., Elevations −5.0 to 0.0) permit only vertical displacements. The
bottom boundary is fixed in both vertical and horizontal directions and the top surface
is unrestrained.

The properties of the rock blocks (intact rock) and rock joints considered in the model-
ing are presented in Tables 1 and 2, respectively. The density of groundwater is assumed to
be 1000 kg/m3. Although the rock joint cohesion is not zero in reality, it is assumed that
the discontinuities are cohesionless to be on the safe side in this study.

Table 1. Rock block properties.

Property Unit Value

Density Kg/m3 2500
Bulk Modulus GPa 16.7
Shear Modulus GPa 10.0
Internal Friction Angle ◦ 60
Cohesion MPa 100

Table 2. Rock joint properties.

Property Unit Value

Normal Stiffness GPa/m 10
Shear Stiffness GPa/m 10
Friction Angle ◦ 26, 36, 46
Cohesion MPa 0
Permeability Factor MPa−1 s−1 1 × 108

Residual Hydraulic Aperture m 2 × 10−4

Aperture at Zero Normal Stress m 5 × 10−4

In sub-sections below, different number of joint sets, joint friction angles, joint spacings,
and joint angles are considered. Table 3 summarizes all the cases considered in this
parametric study.

Table 3. Summary of cases considered in parametric study.

Case No. Varying Joint
Parameter Joint Sets Joint Angle (◦) Joint Spacing (m) Joint Friction

Angle (◦)

Groundwater
Level Elevation

(m)

1–20 Number of Joint Sets
J1, J2 J1: 15, J2: 78 J1: 2, J2: 1.5 26 1, 2, . . . , 10
J1, J2, J3 J1: 0, J2: 15, J3: 78 J1: 3, J2: 2, J3: 1.5 26 1, 2, . . . , 10

21–50 Joint Friction Angle
J1, J2, J3 J1: 0, J2: 15, J3: 78 J1: 3, J2: 2, J3: 1.5 26 1, 2, . . . , 10
J1, J2, J3 J1: 0, J2: 15, J3: 78 J1: 3, J2: 2, J3: 1.5 36 1, 2, . . . , 10
J1, J2, J3 J1: 0, J2: 15, J3: 78 J1: 3, J2: 2, J3: 1.5 46 1, 2, . . . , 10

51–80 Joint Spacing
J1, J2, J3 J1: 0, J2: 15, J3: 78 J1: 6, J2: 4, J3: 2 26 1, 2, . . . , 10
J1, J2, J3 J1: 0, J2: 15, J3: 78 J1: 1.5, J2: 1, J3: 0.75 26 1, 2, . . . , 10
J1, J2, J3 J1: 0, J2: 15, J3: 78 J1: 1, J2: 0.5, J3: 0.38 26 1, 2, . . . , 10

81–110 Joint Angle
J1, J2, J3 J1: 0, J2: 15, J3: 57 J1: 3, J2: 2, J3: 1.5 37 1, 2, . . . , 10
J1, J2, J3 J1: 0, J2: 15, J3: 65 J1: 3, J2: 2, J3: 1.5 37 1, 2, . . . , 10
J1, J2, J3 J1: 0, J2: 15, J3: 81 J1: 3, J2: 2, J3: 1.5 37 1, 2, . . . , 10
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3.1. Number of Joint Sets

Figure 2 shows two different number of joint sets including two (J1 and J2) and
three joint sets (J1, J2, and J3), which are considered in this parametric study.
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Figure 2. Configuration of models with different number of joint sets: (a) Two joint sets; (b) Three
joint sets.

To investigate the impact of groundwater table fluctuation on stability of jointed rock
slopes considering different number of joint sets, it is assumed that joint friction angle is
26◦ and different joint angles and spacings are considered, as presented in Table 3 as cases
1–20.

3.2. Joint Friction Angle

The friction angles considered in this study are 26◦, 36◦, 46◦ with three joint sets (J1, J2,
and J3) and joint angles and spacings of J1: 0◦, J2: 15◦, J3: 78◦ and J1: 3 m, J2: 2 m, J3: 1.5 m,
respectively, (cases 21–50 in Table 3).

3.3. Joint Spacing

As shown in Figure 3, three joint sets with spacings of (1) J1: 6.0 m, J2: 4.0 m, J3: 2.0
m, (2) J1: 1.5 m, J2: 1.0 m, J3: 0.75 m, and (3) J1: 1.0 m, J2: 0.5 m, J3: 0.38 m are considered.
For these cases, joint angles of J1: 0◦, J2: 15◦, J3: 78◦with a joint friction angle of 26◦ are
considered, as presented in Table 3, cases 51–80.
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(b) J1: 1.5 m, J2: 1.0 m, J3: 0.75 m; (c) J1: 1.0 m, J2: 0.5 m, J3: 0.38 m.

3.4. Joint Angle

Different sets of joint angles including (1) J1: 0◦, J2: 15◦, J3: 57◦, (2) J1: 0◦, J2: 15◦,
J3: 65◦, and (3) J1: 0◦, J2: 15◦, J3: 81◦are considered in this study, as shown in Figure 4. For
these cases, a joint friction angle of 37◦ and joint spacings of and J1: 3 m, J2: 2 m, J3: 1.5 m
are considered as presented in Table 3 as cases 81–110.
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Figure 4. Configuration of models with different joint angles: (a) J1: 0◦, J2: 15◦, J3: 57◦; (b) J1: 0◦,
J2: 15◦, J3: 65◦; (c) J1: 0◦, J2: 15◦, J3: 81◦.

4. Results

The simulation results obtained from the UDEC modeling for different groundwa-
ter levels, number of joint sets, joint friction angles, joint spacings, and joint angles are
presented below.

4.1. Effect of Number of Joint Sets

The factors of safety for different number of joint sets (cases 1–20) when the ground-
water level elevation varies from 1 m to 10 m are presented in Figure 5. Increasing the
groundwater level elevation decreases the factor of safety for all the cases, as expected.
However, increasing the groundwater level elevation up to 3 m and 4 m does not affect the
factor of safety for the cases with two and three joint sets, respectively.
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4.2. Effect of Joint Friction Angles

Figure 6 shows the factors of safety for cases 21–50 (i.e., joint friction angles of 26◦, 36◦,
and 46◦) when the groundwater level elevation varies from 1 m to 10 m.
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It is evident that as the joint friction angle decreases, the calculated factor of safety
decreases, and increasing the groundwater level elevation decreases the factor of safety for
all the three cases. However, increasing the groundwater level elevation up to 4 m, 4 m,
and 3 m does not influence the factor of safety for the cases with friction angles of 26◦, 36◦,
and 46◦, respectively. For the joint friction angles of 26◦, increasing the groundwater level
elevation to 10 m causes a landslide.

4.3. Effect of Joint Spacings

The factors of safety for three different sets of joint spacings, cases 51–80, when the
groundwater level elevation varies from 1 m to 10 m are presented in Figure 7. The results
show that increasing the groundwater level to an elevation higher than 5 m, 2 m, and 3 m
decreases the factor of safety for the cases with joint spacings of (1) J1: 6.0 m, J2: 4.0 m,
J3: 2.0 m, (2) J1: 1.5 m, J2: 1.0 m, J3: 0.75 m; (3) J1: 1.0 m, J2: 0.5 m, J3: 0.38 m, respectively. As
the groundwater level elevation increases, the predicted failure surface of the initial stage
of potential failure decreases and at high groundwater levels, a small-scale failure occurs
at the toe of the slope which cause an initial stage of landslide occurs on the slope. For
factors of safety less than 1.0, the lower factor of safety means that more robust stabilization
measures are needed to prevent a landslide, although the predicted failure surface of the
initial stage of failure is smaller.
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4.4. Effect of Joint Angles

Figure 8 shows the factors of safety for three different sets of joint angles (i.e., cases
81–110) when the groundwater level elevation varies from 1 m to 10 m. Moreover,
Figures 9–11 show the velocity vectors and contours of total displacement indicating fail-
ure surfaces of the initial stage of potential failure. In these figures, the velocity vector
shows the direction of rock block potential movement, and the greater velocity vectors and
displacement contours indicate the initial stage of potential failure surface in each case.
For the factors of safety equal to or higher than 1.0, the slope is stable, but for the factors
of safety less than 1.0, the slope is unstable, and a landslide is expected to initiate with a
failure surface, including the rock blocks with higher velocities and displacements.
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(b) Groundwater level elevation at 6 m; (c) Groundwater level elevation at 8 m; (d) Groundwater
level elevation at 10 m.
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Figure 10. Slope with joint angles of J1: 0◦, J2: 15◦, J3: 65◦: (a) Groundwater level elevation at 4 m;
(b) Groundwater level elevation at 6 m; (c) Groundwater level elevation at 8 m; (d) Groundwater
level elevation at 10 m.
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Figure 11. Slope with joint angles of J1: 0◦, J2: 15◦, J3: 81◦: (a) Groundwater level elevation at 4 m;
(b) Groundwater level elevation at 6 m; (c) Groundwater level elevation at 8 m; (d) Groundwater
level elevation at 10 m.
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It is evident that as the joint angle of the third joint set increases, increasing the
groundwater level elevation has more impacts on the factor of safety.

5. Discussion

Tables 4–7 present the change in the factor of safety for different number of joint sets,
joint friction angles, joint spacings, and joint angles, respectively, with respect to the case
that the groundwater level elevation is located at 1.0 m. The results show that the variation
of the groundwater level impacts the factor of safety so that increasing the groundwater
level elevation decreases the factor of safety, as expected. In most cases, the slope is stable
when the groundwater level is low, but when the groundwater table rises to higher levels,
an obvious failure surface can be observed at the toe of the slope. The reason is that
the failure of the slope occurs when the water pressure in the joints increases so that the
effective normal stress in the joints decreases and water exerts hydrostatic pressure in rock
joints and reduces the contact pressure and reduces the shear strength.

Table 4. Change in Factor of Safety (FS) For Different Number of Joint Sets with Respect to Case of
Groundwater Level Elevation Located at 1.0 m.

Number of
Joint Sets

Groundwater
Level El. (m) Change in FS (%) Number of

Joint Sets
Groundwater
Level El. (m) Change in FS (%)

2 2 0.00 3 2 0.00
2 3 0.00 3 3 0.00
2 4 −0.62 3 4 0.00
2 5 −2.47 3 5 −2.00
2 6 −3.09 3 6 −8.00
2 7 −16.05 3 7 −18.67
2 8 −25.31 3 8 −28.00
2 9 −30.86 3 9 −34.00
2 10 −38.89 3 10 −43.33

Table 5. Change in Factor of Safety (FS) For Different Joint Friction Angles with Respect to Case of
Groundwater Level Elevation Located at 1.0 m.

Joint
Friction
Angle

Groundwater
Level El. (m)

Change in
FS (%)

Joint
Friction
Angle

Groundwater
Level El. (m)

Change in
FS (%)

Joint
Friction
Angle

Groundwater
Level El. (m)

Change in
FS (%)

26◦ 2 0.00 36◦ 2 0.00 46◦ 2 0.00
26◦ 3 0.00 36◦ 3 0.00 46◦ 3 0.00
26◦ 4 0.00 36◦ 4 0.00 46◦ 4 −5.00
26◦ 5 −2.00 36◦ 5 −1.79 46◦ 5 −5.94
26◦ 6 −8.00 36◦ 6 −10.31 46◦ 6 −8.13
26◦ 7 −18.67 36◦ 7 −18.39 46◦ 7 −19.06
26◦ 8 −28.00 36◦ 8 −27.35 46◦ 8 −28.13
26◦ 9 −34.00 36◦ 9 −34.08 46◦ 9 −35.00
26◦ 10 −43.33 36◦ 10 −43.50 46◦ 10 −43.75

Table 6. Change in Factor of Safety (FS) For Different Joint Spacings with Respect to Case of Ground-
water Level Elevation Located at 1.0 m.

Joint
Spacing (m)

Groundwater
Level El. (m)

Change in
FS (%)

Joint
Spacing (m)

Groundwater
Level El. (m)

Change in
FS (%)

Joint
Spacing (m)

Groundwater
Level El. (m)

Change in
FS (%)

J1
=

6
m

,J
2

=
4

m
,

J3
=2

m

2 0.00

J1
=

1.
5

m
,J

2
=

1
m

,
J3

=
0.

75
m

2 0.00

J1
=

1
m

,J
2

=
0.

5
m

,
J3

=
0.

38
m

2 −0.82
3 0.00 3 −2.16 3 −0.82
4 0.00 4 −2.16 4 −0.82
5 0.00 5 −2.16 5 −0.82
6 −3.87 6 −4.32 6 −3.28
7 −4.52 7 −12.95 7 −4.10
8 −22.58 8 −17.27 8 −9.02
9 −35.48 9 −29.50 9 −18.85
10 −40.65 10 −40.29 10 −36.89
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Table 7. Change in Factor of Safety (FS) For Different Joint Angles with Respect to Case of Ground-
water Level Elevation Located at 1.0 m.

Joint Angle Groundwater
Level El. (m)

Change in
FS (%) Joint Angle Groundwater

Level El. (m)
Change in

FS (%) Joint Angle Groundwater
Level El. (m)

Change in
FS (%)

J1
=

0◦
,J

2
=

15
◦ ,

J3
=

57
◦ 2 0.00

J1
=

0◦
,J

2
=

15
◦ ,

J3
=

65
◦ 2 0.00

J1
=

0◦
,J

2
=

15
◦ ,

J3
=

81
◦ 2 −0.39

3 0.00 3 0.00 3 −0.39
4 0.00 4 0.00 4 −1.54
5 0.00 5 −3.82 5 −5.02
6 −2.33 6 −4.46 6 −18.15
7 −3.10 7 −5.10 7 −23.94
8 −5.43 8 −9.55 8 −34.36
9 −6.98 9 −12.10 9 −40.54
10 −9.30 10 −15.92 10 −49.81

Demonstrated in Table 6, there is 0% change in the factor of safety for the first set of
joint spacing (i.e., J1 = 6 m, J2 = 4 m, J3 = 2 m) when the groundwater level elevation is
below 6 m. The reason is that due to very large joint spacings in this case, the rock slope
consists of very big (and heavy) blocks so that a high groundwater pressure is required to
overcome the strength and to affect (i.e., decrease) the factor of safety.

The results obtained from the DEM modeling show that the maximum decrease in
the factor of safety is similar for different joint friction angles when the groundwater level
is high, so that the change in the factor of safety varies between −43.3% and −43.8% for
joint friction angles of 26◦, 36◦, and 46◦, respectively, when the groundwater level is at the
ground surface.

Additionally, based on the results obtained from the numerical modeling, as the
spacing of the joints decreases, the impact of increasing groundwater level elevation on
the factor of safety decreases when the groundwater level is high. However, as the joint
spacing increases, the groundwater level should get to a higher elevation to be able to
impact the factor of safety, so that increasing the groundwater level elevation up to 5 m,
2 m, and 1 m does not affect the factor of safety for the cases with the joint spacings of
(1) J1 = 6 m, J2 = 4 m, J3 = 2 m, (2) J1 = 1.5 m, J2 = 1 m, J3 = 0.75 m, and (3) J1 = 1 m,
J2 = 0.5 m, J3 = 0.38 m, respectively.

Finally, it can be seen from the results that as the joint angles increase, increasing the
groundwater level elevation decreases the factor of safety more, so that it causes −9.3%,
−15.9% and −49.8% change in the factor of safety for the angles of the third joint set of 57◦,
65◦, and 81◦, respectively, when the groundwater level is at the ground surface. In addition,
the results show that groundwater table fluctuation has more impact on the factor of safety
of the slopes with steeper joints, so that increasing the groundwater level elevation up to
5 m, 4 m, and 1 m does not affect the factor of safety for the cases with the joint angles of
57◦, 65◦, and 81◦, respectively.

6. Conclusions

In this parametric study, different number of joint sets, joint friction angles, joint
spacings, and joint angles are considered to obtain a better understanding of the impact of
groundwater table fluctuation on the stability of jointed rock slopes. Based on the results
obtained from the DEM modeling, the following conclusions are drawn:

(1) The factor of safety can decrease significantly when the groundwater level increases (up
to nearly 50% with a 9 m increase in groundwater level), which can cause a landslide.

(2) The impact of groundwater table fluctuation on the factor of safety is similar for
different joint friction angles when the groundwater level elevation is high.

(3) As the spacing of the joints decreases, the impact of increasing groundwater level
elevation on the factor of safety decreases. However, as the joint spacing increases,
the groundwater level should rise to a higher elevation to be able to impact the factor
of safety.
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(4) Groundwater table fluctuation has more impact on the factor of safety for the slopes
with steeper joints.

Based on the above-mentioned conclusions and, for the sake of caution, it is rec-
ommended that geotechnical, civil, and mining engineers consider the highest possible
groundwater level for slope stability analysis and the design of slope stabilization measures
to prevent landslides in jointed rock slopes due to groundwater table fluctuation.
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