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Abstract: Gypseous soils are capable of presenting ground construction challenges to civil and
geotechnical engineers due to their unpredictable deformation characteristics. These undesirable
responses are sometimes caused by environmental changes in moisture content due to temperature
variations, fluctuation of underground water table, surface water, and gypsum content. Hence, the
adoption of effective and economical means of stabilising gypseous soils is imperative. This study’s
focus is on the early age strength and microstructural characteristics of gypseous soils treated with
lime and GGBS. Treated and untreated gypseous soils with 5%, 15%, and 25% gypsum content
were subjected to wet–dry cycles while investigating unconfined compressive strength (UCS), water
absorption, pH, microstructural changes, and swell. The analysis of the results shows that at zero
cycle, the UCS of the untreated gypseous soils increases from 0.62 to 0.79 MPa and swell decreases
from 69 to 23%, respectively, as gypsum content increases. However, upon subjection to wet–dry
cycles, the UCS reduced from 0.16 to 0.08 MPa at the end of the sixth cycle due to dissolution
of gypsum within the soil pores which reduced the strength. The result also shows that gypsum
content increases water absorption and reduces the pH of the untreated gypseous soils because of
the neutral pH of gypsum. Furthermore, lime-GGBS-treated gypseous soils maintained a higher pH
after six wet–dry cycles compared to untreated gypseous soils due to the high pH of lime and the
increase in calcium content which improved bonding. In addition, microstructural analysis using
SEM indicated early age precipitation of cementitious compounds (CSH) for increasing strength of
lime-GGBS-treated gypseous soils compared to untreated gypseous soils.
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1. Introduction

Calcium-based additives such as cement, and lime have been widely used in improv-
ing many problematic ground conditions the world over. Conditions such as swelling due
to expansive soil behaviours and low shear strengths of weak clays have been successfully
improved to meet engineering requirements by the addition of cement and lime as reported
in the literature [1–10]. However, gypseous soils have been reported as presenting unique
difficulties in engineering applications due to their susceptibility to collapse during water
ingress. The fine and lightweight characteristics of the soil particles and low frictional
resistance of unsaturated gypseous soils are worsened in the presence of water, leading to
sudden instability [11]. In arid regions where these soils are predominant, loses resulting
from the failures of such soils are reported in billions of dollars. Gypseous soils can be
classified based on gypsum content according to Table 1.
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Table 1. Gypseous soil classification [12].

Gypsum Content (%) Classification

0–0.3 Non-gypseous

0.3–3 Very lightly gypseous

3–10 Slightly gypseous

10–25 Moderately gypseous

25–50 Highly gypseous

To mitigate the collapsibility of gypseous soils, several additives have been studied.
However, the traditional stabilisation methods using ordinary Portland cement (OPC)
and lime alone have not been completely satisfactory. In OPC-treated gypseous soils, the
formation of hydrated calcium aluminate sulphate (ettringite) Ca6Al2(SO4)3(OH)12·26H2O
within interparticle surfaces causes swelling and subsequent cracking of the treated soils
with adverse effects on the overlying facilities [13–21]. It is therefore desirable to mitigate
this effect by using binder combinations which would limit the supply of calcium hydrox-
ide, the major driver of the formation of ettringite. The use of more silica-alumina-based
treatment such as alkaline activation of silica-alumina precursors is perhaps one method of
improving the interparticle bonds and reducing swell potential of treated gypseous soils.
The study by [22] investigated the application of carbide slag-activated GGBS on the engi-
neering characteristics of gypseous soil, and found that the initial formation of ettringite
and synthesis of geopolymeric chains reduced the Ca(OH)2 concentration. This resulted to
a reduction in further formation of ettringite development within the matrix of the treated
gypseous soils thereby leading to a decrease in swell potential when compared to treatment
with OPC. The findings align with previous works by [23–34]. Furthermore, in line with
improving swelling of gypseous soils, the experimental study by [25] employed several ad-
ditives in the treatment of high sulphate-bearing soils including polymers, pulverised fuel
ash (PFA), enzymes, and acid salts and reported that the combination of lime and GGBS
proved more effective and economical in reducing swell and improving the strength of the
treated samples. Additionally, [26] used a combination of lime and PFA to improve the me-
chanical properties of gypseous soils. The lime was used to compensate for the low calcium
oxide (CaO) content of the PFA for adequate formation of strength giving compounds such
as calcium silicate hydrates (CSH) and calcium aluminate hydrates (CAH). In another study,
acrylate polymer liquid was utilised to improve the compressibility of treated gypseous soil
due to increased cohesion caused by coating of soil particles by the acrylate liquid [11]. The
addition of ammonium sulphates (NH4)2SO4 and potassium chlorides (KCl) has also been
reported to improve the compressibility and collapse potential of gypseous soils [27]. The
method of grouting has been utilised in stabilising different problematics soils including
loose materials such as gypseous soils. The isolation and waterproofing effects of grout on
gypseous soils was highlighted by [28,29] and is an advantage as protection of the solid
grains significantly alleviates the rate of leaching of gypsum within the soil and improves
the interparticle bonds. The study by [30] also explored nanotechnology based materials
as additive in enhancing the performance of stabilised clays. In the United Kingdom,
the combination of GGBS and lime have also been reported to yield improvements in
strength while reducing the swell potential of lime-GGBS-treated sulphate soils [13,31–33].
Cement blended with up to 80% GGBS and 10% lime is known to inhibit sulphate-induced
heave even in the presence of ettringite [34,35]. This resistance appears to be the result of
modifications of the morphology of ettringite when GGBS was used as reported by [36].
Other field applications of GGBS in stabilising sulphate-bearing soils in the UK as reported
by [35] include the Baddersley Colliery stabilisation which utilised GGBS and OPC in
stabilising 140,000 m2 of sulphate and sulphide-bearing clays, Silverstone Racetrack stabili-
sation which utilised GGBS and quick lime in stabilising 55,000 m2 of sulphate-bearing
clays, stabilisation of 10,000 m2 of sulphate-bearing clay using GGBS and lime at Hud-
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dersfield to mention a few. It is also important to recall that an additional concern for
stabilised gypseous soils is the formation of ettringite in cement and lime stabilised soils.
Additionally, in road subgrade and subbase applications, it is imperative to understand
the early-age performance of treated gypseous soil. In the present study, the effects of
lime and GGBS treatment on the early age characteristics of moderately gypseous clays
subjected to cyclic wetting and drying is investigated. The early age wet and dry cycles of
lime and GGBS-treated gypseous soils was studied in other to evaluate the performance of
treated gypseous soils under changing environmental conditions characterised by changing
moisture contents.

2. Materials and Methods

The materials used in this study consisted of Kaolin clay, bentonite, lime, and ground
granulated blast furnace slag (GGBS). In the first instance, artificially synthesised soil
(Soil 1), consisting of 50% kaolin clay and 50% bentonite was mixed thoroughly for about
15–20 min in a laboratory soil mixer, and by hand-mixing to ensure a homogenous com-
position. The grain size distribution of selected materials and the oxide compositions are
presented in Figure 1a and Table 2, respectively.

To conduct a precise laboratory study, representative samples of soil 1 were mixed
with 5%, 15% and 25% of gypsum by weight of dry soil, and hereafter referred to as
gypseous soils (soil 2, soil 3 and soil 4) with varying gypsum contents. The gypseous soils
were treated with a combination of 4% lime and 8% GGBS, and the amount of water added
to soil–gypsum-binder system was determined based on the optimum moisture content
of the soil–gypsum-binder system with an additional amount of water to accommodate
for the binders used based on research and experience [31]. The 4% lime used has been
previously obtained as the optimum lime content (OLC) from author’s previous work
following the procedure outlined in [37], see Figure 1b. The OLC has been defined as the
minimum lime content required to cause reduction in plasticity and swell potential of a
reactive soil, and for the initiation of mid- to long-term pozzolanic reactions [35,38].

Further thorough mixing of the materials with water was carried out for about
10–15 min to prevent the development of ‘hot spots’ and non-uniformly migrated ions as
well as improving the chances of uniform ettringite nucleation site distribution [18]. Sam-
ples of the treated gypseous soils were cured in open air for 7 days to allow for sufficient
early age strength development. Thereafter, representative treated samples were subjected
to wet–dry cycles for up to 6-cycles. During the wet–dry cycles, samples were soaked in
water for up to 48 h and oven dried for 24 h at 60 ◦C before testing.

Table 2. Chemical composition of soil and binders.

Oxide
Kaolinite Bentonite Gypsum Lime GGBS

(%) (%) (%) (%) (%)

SiO2 49 57.1 10.93 1 34.1

Al2O3 36 17.79 2.88 0.3 13

Fe2O3 0.75 4.64 1.16 0.5 0.51

CaO 0.06 3.98 26.32 94 39

MgO 0.3 3.68 - 2 9.5

K2O 1.85 0.9 0.83 - 0.5

TiO2 0.02 0.77 0.15 - 1.3

Na2O 0.1 3.27 0.18 - 0.3

SO3 - 0.11 34.70 - 0.3

Mn2O3 - 0.06 - 1.2 0.7

LOI 12 7.85 19.80 - 1.9
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Figure 1. (a,b). Analysis of material grain size and determination of OLC: (a) material grain size; (b) optimum lime content. 
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A total of 112 samples were prepared for UCS while 8 samples were prepared for swell 
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gypseous soils were tested for UCS, expansion, pH after each cycle of wetting and drying 
period, as shown in Figure 2. The UCS test was conducted in accordance with [39] on the 
compacted treated gypseous soils at the end of each wet–dry cycle. To account for any 
possible swell on the compacted treated gypseous samples, the free swell oedometer test 
was carried out on the cured samples in line with [40]. Image analysis using the scanning 
electron micrograph (SEM) was conducted on treated soil with 5% gypsum content to 
provide a description of the mechanism of change in the fabric of the samples of natural 
and treated gypseous soils. Small-sized chunks derived from selected originally com-
pacted and cured samples were used to obtain the micrographs. To ensure that the sur-
faces of the samples were sufficiently conductive electrically before SEM measurements, 
a Polaron SC7640 sputter coater was used to coat the samples with gold, and thereafter, 
the micrographs (SEM) were collected using the ZEISS EVO equipment. 
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Figure 2. (a–c). Laboratory tests on samples of gypseous soil: (a) laboratory pH testing; (b) selected samples after wet–dry 
cycle; (c) sample during UCS test. 
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Figure 1. (a,b). Analysis of material grain size and determination of OLC: (a) material grain size; (b) optimum lime content.

Experimental Testing

Prior to the unconfined compressive strength test, samples were compacted in a
105 mm diameter by 115 mm height steel mould, extruded and cured under water for
7 days. A total of 112 samples were prepared for UCS while 8 samples were prepared for
swell test making a total of 120 samples utilised for the experimental programme. The
treated gypseous soils were tested for UCS, expansion, pH after each cycle of wetting
and drying period, as shown in Figure 2. The UCS test was conducted in accordance
with [39] on the compacted treated gypseous soils at the end of each wet–dry cycle. To
account for any possible swell on the compacted treated gypseous samples, the free swell
oedometer test was carried out on the cured samples in line with [40]. Image analysis using
the scanning electron micrograph (SEM) was conducted on treated soil with 5% gypsum
content to provide a description of the mechanism of change in the fabric of the samples of
natural and treated gypseous soils. Small-sized chunks derived from selected originally
compacted and cured samples were used to obtain the micrographs. To ensure that the
surfaces of the samples were sufficiently conductive electrically before SEM measurements,
a Polaron SC7640 sputter coater was used to coat the samples with gold, and thereafter, the
micrographs (SEM) were collected using the ZEISS EVO equipment.
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Figure 2. (a–c). Laboratory tests on samples of gypseous soil: (a) laboratory pH testing; (b) selected samples after wet–dry
cycle; (c) sample during UCS test.
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3. Discussion of Results
3.1. Cyclic UCS

The cyclic UCS refers to the unconfined compressive strength of the untreated and
treated gypseous soils under wetting and drying cycles. The results plotted in Figure 3
show the cyclic UCS of both the untreated and treated gypseous soils under the influence of
wet–dry cycles. Firstly, it was observed that the initial UCS of the untreated gypseous soils
at zero cycles, increased with increasing gypsum content. This increase in UCS followed
increase in gypsum content of the gypseous soils. The initial increase in the UCS with
increasing gypsum content can be attributed to more calcium availability within the matrix
of the gypseous soil as gypsum content increases in the presence of water thereby leading to
early age strength development [41–43]. However, upon subjecting the untreated samples
to repeated cycles of wetting and drying, the strength of the untreated gypseous soils
decreased from 0.79 to 0.08 MPa in order of increasing gypsum content at the end of
the sixth cycle. The reduction in UCS was due to the development of desiccation cracks
initiated attributed to the dissolution of gypsum from the pores of the gypseous soil under
repeated wet–dry cycles which subsequently leads to increase in the volume shrinkage of
the untreated soils with further cycles of wetting and drying [44]. It was also observed that
the untreated soils with higher gypsum content experienced more profound reduction in
UCS than untreated soils with lower gypseous content. This result aligns with the finding
s of [34,45–47].
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Figure 3. Cyclic UCS and wetting–drying cycles. (a) Untreated gypseous soil, (b) Treated gypseous soil.

Therefore, it can be said that the gypseous soils with lower gypsum content performed
better at the end of the 6th cycle, as shown in Figure 3. On the other hand, the UCS of the
treated gypseous soils increased with the addition of 4% lime and 8% GGBS. The increase in
strength of the treated soil is due to stronger bonding of soil particles due to more available
calcium, alumina, and silica contents for faster development of bonds within the matrix
of the treated soil. As shown in Table 2 above, the GGBS utilised is characterised by 39%
and 34% calcium oxide and silicate content, respectively. This relatively high availability
of CSH improves the strength of stabilised clays. More so, the addition of lime reduced
the diffused double layer of water within the lime-GGBS-treated gypseous soil matrix
which also improved the strength at the end of the 6th cycle. The increase in UCS from
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the lime and GGBS treatment was as expected and agrees with other studies by [35,36].
Comparing the strength of the treated and untreated gypseous soils it is obvious that the
addition of 4% lime and 8% GGBS improved the UCS of the treated samples by 431%. This,
therefore, implies higher resistance of the treated lime-GGBS gypseous soils to the effects
of shrinkage-induced cracking under wet–dry cycles as evidenced on the dense particle
packing and reduced voids at the microstructural scale.

3.2. Water Absorption of the Untreated and Treated Soils

The water absorption of the untreated and treated gypseous soils was investigated,
and the results show that the rate of water ingress was influenced by the gypsum content
of the gypseous soils. For the untreated soils, the water absorption was observed to reduce
initially when subjected to cyclic wetting and drying before increasing at the end of the 6th cycle,
as shown in Figure 4. The initial reduction in water absorption is due to the restructuring of
the soil matrix because of the removal of water from the pores, as also observed by [48–52].
At the initial wet–dry cycle, the untreated gypseous soils showed lower water absorption
due to reduced void spaces induced by shrinkage. However, as the wetting and drying
continued, the dissolution of the gypsum particles within the soil matrix increased the
porosity of the untreated gypseous soils over that of the untreated non-gypseous (soil
1). Culminating in higher water content of 32% for soil 2, 36% and 35% for soil 3 and
soil 4, respectively, at the end of the 6th wet–dry cycle, as shown in Figure 4. For soil 1,
the development of the macro cracks was observed at the 5th cycle, and this was slower
when compared to that of the untreated gypseous soil (soil 2 with 5% gypsum) which had
desiccation cracks occurring at the 4th cycle. For the untreated soil 3 and 4, the desiccation
cracks occurred at the 3rd and 4th cycles for the gypseous soils with 15% and 25% gypsum
content, respectively, as shown in Figure 4a.
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On the other hand, the water absorption of the treated gypseous soils plotted against
the wet–dry cycles is shown in Figure 4b. The treatment of the gypseous soils with 4% lime
and 8% GGBS reduced the water absorption of the treated gypseous soils. This improved
water absorption can be attributed to cementation and bonding of soil particle, which
resulted in reduced porosity and increased resistance to tension cracks under wet–dry
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cycle conditions. It is important to note that the reduction in water absorption followed
increasing gypsum content from 23%, 21%, 20%, and 12% in the order of reducing gypsum
content and can be linked to higher cementation. Higher gypsum content in the presence
of 4% lime and 8% GGBS with contribution of CaO from gypsum makes more CSH
available and increased bonding, which improves resistance to tensile stresses and crack
development under wet–dry cycles. This improvement in water absorption agrees with
the study by [53].

3.3. Effects of Gypsum Content and pH

The pH of treated soils is an important parameter influencing the rate of pozzolanic
activities in the soil because sufficient alkalinity enhances the development of strength
yielding compounds and enables higher cation exchange with early strength gain. The
untreated control sample (Soil 1) shows slightly high alkalinity with a pH of 8.2 due to the
bentonite content. The results of the pH test of the gypseous soils plotted in Figure 5 show
that the pH decreased with increasing gypsum content due to the neutrality of gypsum.
Before subjecting the untreated gypseous soils to wet–dry cycles, the pH of soil 1 was 8.18,
while that of soil 2 was 7.2. Soil 3 and soil 4 had an initial pH of 6.89 and 6.86, respectively.
Upon subjecting the samples to wet–dry cycles, the pH of the gypseous soils was observed
to reduce with increasing gypsum content and wet–dry cycles, as shown in Figure 5. The
reduction in alkalinity can be linked to the dissolution of the gypsum within the matrix of
the gypseous soils following repeated wetting and drying. However, for the treated soils,
treating with 4% lime and 8% GGBS increased the pH of the soils due to the high alkalinity
of the lime. Additionally, the increased alkalinity was observed to be approximately
constant (7–8) during wet–dry cycles. There was no significant reduction in the pH, as
shown in Figure 6a–f. The improved alkalinity by the addition of 4% lime and 8% GGBS
contributes simultaneously to increased SiO2 and CaO supply and supports continuous
development of cementitious products, which contributed to improved interparticle bonds
and subsequent resistance to desiccation cracks as reported in [34].

3.4. Microstructural Characteristics

The morphological transformation of the treated soils using the combination of gyp-
sum, lime and GGBS on the kaolin–bentonite mixtures can be seen in the micrograph
presented in Figure 7a–d. The SEM results of the untreated non-gypseous soil confirms a
more porous mass when compared with the untreated gypseous sample. The soil particles
of the non-gypseous soil can be seen loosely bonded by cohesion of the grains rather than
being cemented. This less dense matrix is a major contribution to the lower UCS even
before the samples were subjected to wet–dry cycles and the subsequent lower resistance
against desiccation cracks with increasing wet–dry cycles of the untreated non-gypseous
soil. This state of the soil is largely a function of the lack of binding compound (CSH and
CAH). Comparing the untreated non-gypseous soil (soil 1) with the untreated gypseous
soils, it is clearly seen that a denser matrix ensued from the addition of gypsum due to
slight development of cementation from the addition of gypsum and the Si-Al content
in the soil following slightly higher calcium oxide availability with increasing gypsum
content, which reduced the porosity of the gypseous soils. Furthermore, following treat-
ment with lime and GGBS, a denser matrix is observed with the addition of 4% lime and
8% GGBS to the gypseous soil, as shown in Figure 7c. The higher pH of the soils and
higher calcium and silicate availability from lime addition improved the pozzolanic activity
as reported by [49,54], which resulted in less porous mass since the particles were more
glued together by cementation and by the effects of cation exchange. A higher calcium
content due to the combined effects of gypsum, lime, and GGBS shows increased binding
capability and improved strength. The more flake-like CSH and CAH gels were formed as
reported by [55–58], resulting in a denser matrix with far less pores compared to treated
non-gypseous sample. The SEM result of the treated gypseous soil in Figure 7d shows no



Geotechnics 2021, 1 409

visible ettringite formation which can be attributed to the rather early age of the treated
gypseous soil and hence, significant reduction in swell potential, as shown in Figure 8a,b.
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In addition, the results plotted in Figure 8a,b show that the inclusion of gypsum to
the natural soil (soil 1) decreases the swell potential from 69% to 23% for the untreated
gypseous soils after the soaking period due to the development of cementitious bonds at
7 days. Further reduction in swell potential was recorded upon treatment with 4% lime
and 8% GGBS due to the enhanced cementation effect in the presence of lime and GGBS.
The swell potential further decreased from 69% to 1.25% for soil 1, and from 30% to 1.7%
for soil 2, and from 23% to 3.4%, and 25% to 2.4% for soil 3 and 4, respectively.
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4. Conclusions

In this study, the addition of lime and GGBS mixtures to kaolin–bentonite soil under
cyclic wet–dry conditions has been investigated. This study simulates early age behaviour
of stabilised sulphate-bearing pavement subgrade materials. Subgrade materials are com-
monly evaluated using the UCS of the stabilised soils after 7 days. Thus, the performance of
the treated soils during the early stages of strength development becomes a parameter for
measuring the acceptability of the stabilisation programme. Additionally, in arid regions
where these gypseous soils are very common, and in tropical regions following higher
temperatures from changing climatic conditions, it is therefore of practical importance
to investigate other pertinent qualities of stabilised gypseous subgrade materials such
as their capability to resist crack development and expansion due to rapidly fluctuating
field conditions such as high temperatures and flooding at this early age. The use of lime
and GGBS as a binder in improving the strength of gypseous clays and the durability of
the treated clays when subjected to wet–dry cycles has been evaluated. From the results
of the experiments, the addition of gypsum to lime causes an initial increase in the UCS
and a reduction in swell of the soil with increasing gypsum content. However, when the
untreated gypseous soils were subjected to wet–dry cycles, the UCS was observed to reduce
with increasing gypsum content due to the dissolution of gypsum particles with the pores
of the gypseous soils by water ingress. In addition, the resistance to desiccation cracks was
lower for the untreated gypseous soils with higher gypsum content, which increased water
absorption at the end of the wet–dry cycles. However, the effectiveness of the lime-GGBS
treatment was observed in the treated soils from enhanced cementation, which resulted in
increased UCS as expected. The application of 4% lime and 8% GGBS improved the pH
of the treated soils during the wet–dry cycle and enhanced the resistance to desiccation
cracks and water absorption. Additionally, the lime-GGBS-treated soils showed lower
swell potential at the end of the wet–dry cycles. From the results of this study, the following
conclusions can be made.

• The use of 4% lime and 8% GGBS is an effective binder combination for improvement
of gypseous soils with 5–25% gypsum content.

• The addition of lime and GGBS to gypseous soils improves the early age characteristics
of the treated soil under cyclic wet–dry conditions and is a suitable treatment for



Geotechnics 2021, 1 413

gypseous materials under the influence of environmental changes faced by subgrade
materials in tropical regions.

• Lime and GGBS treatment is effective in improving the water absorption of treated
gypseous soils under wet–dry cycles. The application of GGBS and lime in stabilisa-
tion of a sulphate-bearing subgrade soil proved effective in improving strength and
reducing swell of treated sulphate soils.

• The addition of lime and GGBS improves the microstructural properties of treated
gypseous soils through the precipitation of cementitious compounds, which increases
the strength of interparticle bonds, reduces porosity, and improves resistance to
development of desiccation cracks under wet–dry conditions.

• It is also logical to conclude from this study that extending the wet–dry cycle period
may have eventually led to a lower UCS value for soil 4 with 25% gypsum following
further dissolution of gypsum as envisaged.
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Abbreviations

UCS Unconfined compressive strength
pH Potential of hydrogen
GGBS Ground granulated blast furnace slag
PFA Pulverised fuel ash
SEM Scanning electron microscopy
CSH Calcium silicate hydrate
CAH Calcium aluminate hydrate
OLC Optimum lime content
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