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Abstract: In this work, a quantitative uncertainty estimation of the random distribution of the soil
material properties to the probability density functions of the failure load and failure displacements
of a shallow foundation loaded with an oblique load is portrayed. A modified Cam Clay yield
constitutive model is adopted with a stochastic finite element model. The random distribution of
the reload path inclination κ, the critical state line inclination c of the soil and the permeability k
of the Darcian water flow relation, has been assessed with Monte Carlo simulations accelerated by
using Latin hypercube sampling. It is proven that both failure load and failure displacements follow
Gaussian normal distribution despite the excessive non-linear behaviour of the soil. In addition, as
the obliquity increases the mean value of failure load and the failure displacement always increases.
The uncertainty of the output failure stress with the increase of the obliquity of the load remains the
same. The failure spline of clays can be calculated within an acceptable accuracy with the proposed
numerical scheme in every possible geometry and load conditions, considering the obliquity of the
load in conjunction with non-linear constitutive relations.

Keywords: oblique load; stochastic finite element method; shallow foundation; footing settlement;
failure spline

1. Introduction

The ultimate load of footing settlements and the subsequent displacements and ma-
terial states is an area of significant concern in the field of geomechanics. The bearing
capacity of soils, originally addressed by [1], has been widely researched and the literature
consists of a number of articles published, such as [2–6]. The aforementioned publications
provide a consideration of analyses with Mohr–Coulomb yield criterion and linear elastic
material. In the vast majority of the cases 1D or 2D soil domains have been analyzed along
with homogeneous or layered soils: [7–9]. The literature was subsequently applied to the
foundation design regulations by introducing the shape influence variables S f and the
friction variables N f . The friction variables N f are three respecting for the three addends
contributing to the total bearing capacity. The influence of possible vertical load in the
lateral of the foundation is controlled by the variable Nq, the cohesion of the soil is con-
trolled by the variable Nc and the settlement dimensions alongside with the total weight
of the soil is controlled by the variable Nγ. Similarly, the shape variables Sq, Sc, Sγ are
incorporated [10–12].

The uncertainty estimation of the limit load of shallow foundations of saturated
porous continuum with respecting to the input uncertainty, such as the Young Modulus
or the permeability, has been assessed with the implementation of the stochastic finite
element method, where the input variable and its stochastic spatial interpretation can be
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given by using two alternative methods. The first method considers the properties of
nodal points following a set of random variables and the shape functions are adopted for
the interpolation of the material spatial distribution as deterministic functions [4,13–17].
Subsequently, random field processes may be implemented, like the spectral representation
or the Karhunen–Loeve series expansion or the spatial average method [18–25]. The sam-
pling method can be either non-biased through pseudorandom relations or an importance
sampling method could be adopted, such as Latin hypercube Sampling (LHS) [26,27]. Then,
the standard Monte Carlo simulation can be performed.

The scientific publications offer in the vast majority analyses that incorporate 1D-
2D elastic halfspace theory with material yield function the Mohr–Coulomb criterion.
In the recent years, scientific publications with 3D analyses that implement the Mohr–
Coulomb yield criterion have been incorporated [28–30]. In the present paper, a numerical
simulation scheme with a modified Cam Clay material yield model proposed in [31] is
implemented, which is an accurate and valid quantitatively material for cohesive soil
simulation [32]. This material yield surface with the incorporation of a finite element
model can estimate the real load and displacement field in every possible 3D loading
conditions. The computational cost needed by the crude Monte Carlo simulation method
can be decreased with efficient computational schemes as proposed in [33,34]. For the
calculation of failure load an improved version of a recurrence relation algorithm proposed
by the authors of [35], which provides reliable results with a small number of trials and
with one initial guess trial is portrayed. The algorithm is theoretically defined, proven and
compared with the bisection method. The aim of the present paper, which is an extension
of previous work in [35], is to quantify numerically, in the case of shallow foundations,
the variability of the failure load and failure displacement alongside with the uncertainty
quantification of the failure mechanism in relation to the variability of the input parameters
like the spatial distribution of the material variables and the obliquity of the load with
respect to the horizontal direction.

Three material variables are assumed to be stochastic: the compressibility factor κ,
the permeability factor k and the critical state line inclination c of the soil. The compress-
ibility factor κ can be determined by the standard isotropic compression experiment. κ is
the inclination of the reload path in terms of void ratio and the natural logarithmic scale of
the volumetric component of the stress tensor. The critical state line inclination c is directly
associated with the friction angle and the cohesion. Consequently, c can be obtained with
triaxial experiments and by implementing the Mohr–Coulomb yield criterion in the 3D
principal stress plane the friction angle φ0 and the cohesion. The permeability k can be
estimated with several methods of providing a hydraulic gradient and measuring the
velocity of the flow like pumping tests, falling head permeability tests and estimations
through the cone penetration test (CPT). The randomness of the three material parameters
can be justified through the literature [36–38]. For κ the randomness is evident since the
reload path may vary significantly due to the structure of the clay microtiles. The random-
ness of c, which is a function of friction angle (φ0), is also seen and may differ notably
even in adjacent positions. Finally, since the water flow is not constant even with constant
hydraulic gradient throughout the soil domain, k may notably diverge from its mean value.

The spatial distributions of the material parameters with respect to the depth of the soil
domain are the linear, the constant variation and the random field process, formulated from
the Karhunen–Loeve series expansion adopting an exponential autocorrelation function.
In the constant and linear variation with respect to depth, the truncated normal random
variable [39,40] is assumed at the nodal points. The LHS importance sampling method is
implemented in order to obtain the input random vectors. The eccentricities of the shallow
foundation in X and Y directions and correlation lengths are parametrized and compared
to the analogous solid problem in which the pore pressure is neglected.
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2. Dynamic Soil–Pore–Fluid Interaction: The System of Equations and Its
Numerical Solution

The generalized porous media behaviour can be computed with a system of partial
differential equations called the Biot problem. When low frequency loads and static
forces are considered, the Biot problem is deducted to a more simple system which has
an alleviated problem complexity and computational cost. The u-p formulation of Biot
system of equations, which consists of the soil–fluid energy balance with the Darcian flow,
the stress–strain constitutive relation and the boundary conditions is numerical problem
which is more stable than the corresponding Biot system of equations. In the present
work the u-p formulation is considered since static forces are implemented to the clay soil
domain. It should be noted that for a variety of natural clays the u-p formulation is suitable
in practically all the possible frequency excitations as proved in [41].

The finite element discretization of the u-p formulation takes the form following [42,43]:

Mẍ + Cẋ + Kx = f (1)

The augmented mass matrix M, stiffness matrix K and damping matrix C are
as follows:

M =

[
MS 0

0 0

]
C =

[
CS 0
QT

c S

]
K =

[
KS −Qc
0 H

]
(2)

MS is the standard mass matrix of the solid skeleton and denoting with ρd the density of
the soil and with Nu the shape functions of the displacement field the formulation of the
mass matrix is given by:

MS =
∫

V
NuTNuρddv (3)

KS is the standard stiffness matrix of the solid skeleton. B, E is the deformation and
elasticity matrices respectively. The standard stiffness matrix takes the form:

KS =
∫

V
BTEBdv (4)

CS is the standard mass matrix of the solid skeleton which in the present work is a Rayleigh
damping matrix. Furthermore, the load vector and the unknown variables vector are
composed as:

f =
[

fS
0

]
x =

[
u
p

]
(5)

The augmented matrices consist of the following three components. The saturation
matrix S =

∫
V Np 1

Q Npdv where NP are the shape functions for pore pressure and Q is
a function of the bulk moduli of fluid and soil skeleton. The permeability matrix H =∫

V(5Np)Tk5Npdv where k is the matrix of permeability. The coupling matrix Qc =∫
V BTmNpdv where m is the unity matrix. Finally, the loading vector divided by the total

mixture density denoted with b, results to an equivalent force vector fS =
∫

V(N
p)T 5T

(kb)dv. For the aforementioned numerical simulation algorithm numerical integration
schemes such as the Newmark method can be used to obtain the solution.

3. The Constitutive Material Yield Function
3.1. Plastic Yield Envelope and Bond Strength Envelope Mathematical Representation

The material yield function used in this paper is a modified Cam Clay type model.
In this section the effective stresses in the solid skeleton are considered. The model
is defined by two surfaces, the plastic yield envelope (PYE) which defines the elastic
region and the bond strength envelope (BSE) which defines the acceptable positions for
PYE [31,32,44–46]. BSE is influenced by the structure of the cohesive soil microtiles. If a
stress point lays in the BSE boundary, the structure degradation rate of the clayey soil is
maximized. Both envelopes are ellipses and are depicted in Figure 1.
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The general representation of an envelope is the following:

fg(ph, s, pL, sL, a) =
1
c2 (s− sL) : (s− sL) + (ph − pL)

2 − (ξa)2 = 0 (6)

In Equation (6) the general stress point σ has a hydrostatic component ph and a
deviatoric component s while the centre of the ellipse L has a hydrostatic component pL
and a deviatoric component sL. Moreover, a is the halfsize of the large diameter of BSE and
a similarity factor ξ in introduced. When the deviatoric part of the centre of the ellipse is
not zero and the hydrostatic part is not equal to a then the generalized envelope coincides
with the plastic yield envelope of the stress point.

fg(ph, s, pL, sL, a) = fp(ph, s, pL, sL, a) (7)

However, if sL = 0, pL = a then ξ = 1 and consequently the bond strength envelope
is obtained:

fg(ph, s, pL, sL, a) = F(ph, s, a) =
1
c2 s : s + (ph − a)2 − a2 = 0 (8)

Figure 1. Generalized form of the modified Cam Clay yield surfaces considering elastoplastic behaviour.

For the simulation of the elastic behaviour the integration point is assumed to be
poroelastic. The bulk modulus, proportional to the shear modulus as a consequence of a
constant Poisson ratio, is as follows:

Kbulk =
νph

κ
(9)

ν denotes the specific volume of the soil.
The aforementioned material constitutive model is reliable for the majority of natural

cohesive soils, of which the friction angle varies between 17◦ and 30◦. The representation
of the response of a clayey soil point is accurate in all possible loadings. Moreover, the
equations of the criterion are in closed form which contributes to a stable numerical system.
In addition, when large values of OCR of a cohesive soil is simulated this yield function can
be easily reformed to take into account possible tensile stresses. The stresses and the strains
algebraic transformations are performed in order to have energy conjugate amounts by
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adopting the numerical transformations used in Von Mises yield criterion. In this context
the following variables are introduced

q =
√

3/2s : s , e =
√

2/3εdev : εdev (10)

The variable e is used for denoting deviatoric strain measure whilst q is used for
denoting the deviatoric stress measure (Von Mises stress).

4. Stochastic Processes, the Truncated Normal Distribution and Latin
Hypercube Sampling
4.1. The Karhunen–Loeve Series and the Truncated Normal Variables

The material uncertainty of the random parameters can be interpreted either by consid-
ering that the nodal points following random variables with deterministic shape functions,
or by using the Karhunen–Loeve series expansion for the estimation of a realization of
a random field [47–53]. In this paper, both methods are used in order to evaluate the
performance of each simulation procedure.

The method of the Karhunen–Loeve series expansion applied in the present work, is
formed for the calculation of H1(x, ω), a random field of mean µ(x) based on the exponen-
tial autocovariance function. Denoting with b the correlation length the autocovariance
function is stated as:

Ch(x1, x2) = σ2
d e

x1−x2
b (11)

A realization H1 of the field considering Me number of eigenfunctions φi with corre-
sponding eigenvalues λi can be computed as:

H1(x, ω) = µ(x) +
Me

∑
i=1

√
λiφi(x− Tp)ξi(ω) (12)

where ξi is a set of random variables of zero mean and covariance function COV(ξi, ξ j) =
δij and Tp is the symmetrization factor of the subspace of the process. If a stochastic
process is Gaussian, as adopted in this paper, the ξi functions are a set of standard normal
random variables. This series expansion is the most widely used due to its high accuracy.
If the Fredholm eigenvalue problem cannot have an analytical solution, and this takes
place when the autocovariance function is more complicated, numerical methods can be
introduced [19,50].

In [47] a method for interpreting the spatial randomness of a material parameter has
been proposed, in which the random function f is formed with the implementation of
shape functions Ni. Denoting with fi the nodal point values, which are random variables
following a probability density function (PDF) and N0 the total number of shape functions
the random function f takes the form:

f (x) =
N0

∑
i=1

Ni(x) fi (13)

In the present work, linear shape functions are adopted and the fi follow the truncated
normal distribution ([39,40,54,55]), whose PDF is described by the equation

h1(x) =
φ(X0)

σd(Φ(B)−Φ(A))
(14)

In Equation (14), A, B, X0 denote the normalized coordinates of the subspace limits
and x, respectively while φ(X0) and Φ(X0) denote the standard normal probability and
cumulative distribution function for X0. Additionally, σd and the mean value of the
normalization corresponds to the PDF of the random variable before truncation.
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4.2. Latin Hypercube Sampling

The random vector samples can be selected by implementing pseudorandom unbiased
algorithms to generate a large random vector, or by variance reduction methods like
importance sampling [56] and Latin hypercube sampling (LHS) ([26,27]). The choice of the
random vector through LHS the method reduces notably the computational cost in order
to estimate the statistical moments of the output random variables.

The Latin hypercube procedure is as follows: consider X as a random vector (x1,x2,. . . xn).
For each random variable xi the following are made:

• The interval [0,1] of the cumulative distribution function (CDF) is subdivided into Ns
equal subspaces

• A random number is chosen and through the inverse CDF a sample xi is acquired
• All the xi vectors are permuted in a random way and thus the vector realization X

is composed

The aforementioned procedure ensures that at each possible row and each possible
column in the (n x n) Euclidean space one sample is exactly extracted. This attribute is
portrayed in Figure 2.

Figure 2. Latin hypercube sampling method for three dimensional standard normal distribution.
For each row and column of the cubic intervals only one sample is obtained.

The most profound advantage of this scheme is that a smaller amount of values in
comparison with the crude Monte Carlo simulation are required to integrate the PDF
of the input uncertainty and subsequently to approximate the variability of the output.
Moreover, the subintervals in each dimension are of different sizes in order to take into
consideration possible asymmetries of the PDF of the input. This perspective can be used
to cross-correlate variables, i.e., when the correlation matrix is not diagonal, thus it is
of general application in the uncertainty quantification in engineering systems. In the
present work the variables are not cross-correlated and the LHS sampling is implemented
to acquire samples for the variables in the 3-dimensional space of the compressibility factor
κ, the critical state line inclination c and the permeability k.

The material random variables following the PDF h1 of Section 4.1 and the random
field realizations calculated with the Equation (12) effect the finite element numerical
scheme of Equation (1). The corresponding matrices C, K and F alter due to the randomness
of the compressibility factor κ, as well as of the critical state line inclination c and the
permeability k. The selection of the samples follows the importance sampling technique of
the LHS method.
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5. An Improvement of a Proposed Algorithm for the Determination of Failure Load in
Ramp Dynamic Load Function

In this section an improvement of an algorithm proposed by the authors of [35] for
the determination of failure load, when the dynamic loading function is the ramp loading
function, is presented. The aim of the algorithm is to find the failure load at exactly the end
of the ramp loading as indicated in Figure 3.

Figure 3. Dynamic load which follows the rampload function. λ denotes a generalized dynamic load
like force, load factor or applied stress.

The objective of this algorithm is to estimate the load factor λ∗ which causes failure of
a body at exactly the time T. An initial trial of λ1 is considered leading to an initial time
of failure t1 is obtained. Then, for each new estimation λn+1 if the load factor λn causes
failure to the body is calculated by the equation

λn+1 = λn
tn

T
(15)

If the load factor λn is not causing failure, then the maximum no failure factor
λmax−no− f ailure is acquired from all previous estimations used for the calculation of λn+1,
with the implementation of the following equation:

λn+1 = λmax−no− f ailure (16)

In practice this recurrence relation usually converges ”by the failure region” which
means that only Equation (15) is implemented. The difference between λn+1 and λn is
given by:

λn+1 − λn = λn(
tn

T
− 1) (17)

In Equation (17) it is evident that as n→ ∞, tn → T consequently, the left side of the
equation tends to 0, and consequently the algorithm converges to the desired load factor
λ∗.

In Table 1 an investigation of the proposed algorithm is depicted. Comparing with
the typical bisection method, where one should estimate initial values of failure and safety
values λ1, f ail and λ1,no− f ailure and then compute the new load factor by the bisection of
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maximum safety factor and minimum failure factor, this algorithm gives less or an equal
number of trials for the same initial failure guess and convergence tolerance, as is portrayed
in Table 1. In addition, it needs only one initial guess, which makes the divergence of
the solution less probable. In conclusion, as proven by the numerical tests presented in
Table 1 and in Section 6, the divergence in failure load and failure displacement between
the two algorithms is less than 1%. The absolute percentage difference is computed
considering as exact solution of the bisection algorithm with an initial value of safety stress
1000 kPa. The computational performance for the 100 deterministic analyses of a Monte
Carlo simulation is also presented in Table 1. The proposed algorithm can save up to
almost 55% of the time demanded for a Monte Carlo analysis to be performed, indicating a
considerable advantage of the aforementioned recurrence relation.

Table 1. Comparison of the proposed algorithm with the bisection method for the calculation of the
failure load λ∗ and failure displacement.

Bisection
Algorithm

Bisection
Algorithm

Bisection
Algorithm

Proposed
Algorithm

Absolute
Percentage
Difference

Initial value
of failure stress (kPa) 5000 5000 5000 5000

Initial value
of safety stress (kPa) 1000 2000 3000 -

Convergence tolerance 0.01 0.01 0.01 0.01

Number of trials for
convergence 6 5 5 3

Displacement
of failure at convergence (m) 0.03054 0.03072 0.03054 0.03072 0.58

Load
of failure at convergence (kPa) 4484.38 4478.52 4484.38 4477.50 0.15

Computational time (mins) 750 833 663 302 54.45

6. Numerical Tests on Stochastic Failure of Shallow Foundations with Random Linear
and Non-Linear Material Properties
6.1. Description of the Problem

The proposed numerical simulation scheme is implemented in porous problems as
portrayed in Figure 4 and are defined by the set of Equations (1). The monitored output
variables are the total force of the footing settlement and its maximum and minimum
displacements which are the mean value of displacements calculated at points A–D of
Figure 4. The loading conditions consist of the oblique nodal values q1 − q4 at points
B, C, A and D respectively and incorporate the equivalent forces of an oblique shallow
foundation load having angle of obliquity denoted as θq, with respect to the horizontal
direction and is uniformly distributed over the footing settlement surface. The modelling
of the foundation consists solely of its equivalent forces along its surface ABCD, which is
measured (1× 1 m2). The finite element mesh is constructed with eight node hexahedral
finite elements with linear shape functions for u and p, which gives an acceptable numerical
reliability [57,58]. The soil dimensions in X, Y, Z directions are respectively lx = 5 m, ly = 5
m, lz = 4 m. The geostatic stresses are directly imported as initial conditions, with the
relations σv = γz, σx = σy = 100 kPa and are associated with stress point L of Figure 1.
The simulation duration in all cases is one day and quasi static conditions are attained.
A time step of dt = 0.001 d is adopted. The other deterministic parameters of the soil are
given in Table 2.
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Table 2. Deterministic properties of the soil domain.

λ
κ ainitialKpa aresidualKpa OCR ν0

2G
Kbulk

ξ γ kN
m3

10 1600 400 4 1.627 0.75 0.05 20

In Table 2, λ denotes the inclination of isotropic compression line for the respective
virgin normally consolidated clay and ν0 denotes the initial specific volume of the soil,
which is assumed proportional to κ. The boundary conditions are: ux(z = h) = uy(z =
h) = uz(z = h) = 0 and the lateral boundary surfaces are constraint-free. The input mate-
rial uncertainty consist of the material variables, the compressibility factor κ, the critical
state line inclination c and the permeability factor k.

The compressibility factor κ, is considered as constant (κC) over depth, or linear (κL).
In the κL occasion, κz=0 = 0.008686 and the ratio R follows the truncated normal distri-
bution with R = κz=max

κz=0
. The mean value of the ratio is µR = 0.469 and the corresponding

CoV is 0.25, as a consequence κz=max,mean = 0.004074. These values are chosen in order for
the mean stiffness of the soil to correspond to a shear velocity of 200 m

s . In Figure 5 the
spatial distribution of κL is portrayed. It should be emphasized that that bulk and the shear
moduli are proportional since the Poisson ratio is assumed as constant. As a consequence,
κ is directly related to the shear velocity. When κ has a constant distribution over depth,
the mean value of κ is κµ = 0.004074 and the CoV is 0.25.

Figure 4. Geometry of the problem where the dimensions are lx = 5 m, ly = 5m, lz = 4 m and the
hexahedral finite element is a cube of length 1 m. Additionally, the obliquity angle of the total load
θq is drawn in the edge of the soil domain for the sake of clarity. The obliquity angle is only with
relation with the X axis. The projection of the total force to the Y axis is the zero length vector.
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Figure 5. Graphical representation for the linear variation over depth of the compressibility factor.

For the critical state inclination c the constant variation over depth is presumed. Two
possible considerations for the absolute value are implemented. If a random variable case is
assumed cR, the friction angle φ0 follows the truncated normal distribution with the mean
value is µφ = 23◦ and the standard deviation is σφ = 2◦ which gives acceptable values for
φ0 considering for natural clays ([31]). A random vector of φ0 is obtained through Latin
hypercube sampling for the standard normal distribution. The vector φ0 components are

transformed into the truncated normal PDF h1. Finally, c is computed from c =
√

2
3

6sin(φ0)
3−sin(φ0)

.
In an alternative case, for the deterministic value cD, c = 0.7336 for friction angle µφ = 23◦.

The permeability k, is considered constant over depth. The absolute value may be
calculated by two possible cases. If a random variable approach is adopted kR, the mean
value is µk = 10−8 and the CoV is CoVk = 0.25. On the other hand, for the deterministic
case kD, k = 10−8 .

Two types of analyses are investigated. The solid analyses, where the water flow is
not taken into account and the porous analyses, where the pore pressure is considered.
The solid analyses performed, denoted with (S), are presented in Table 3, using linear
(L) or constant (C) distribution for κ and deterministic (D) or random variable (R) cases
for c. The corresponding porous analyses performed abbreviated are depicted in Table 4,
incorporating linear (L), constant (C) and random field (RF) distribution for κ. Deterministic
(D), random variable case (R) and random field (RF) distribution for c. Deterministic (D),
random variable case (R) and random field distribution (RF) for k.

Table 3. Non-porous (solid) simulations analyzed.

κ c Abbreviation

Constant Deterministic S-κC-cD

Constant Random S-κC-cR

Linear Deterministic S-κL-cD

Linear Random S-κL-cR
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Table 4. Porous simulations analyzed.

κ c k Abbreviation

Constant Deterministic Deterministic P-κC-cD-kD

Constant Random Deterministic P-κC-cR-kD

Linear Deterministic Deterministic P-κL-cD-kD

Linear Random Deterministic P-κL-cR-kD

Constant Deterministic Random P-κC-cD-kR

Constant Random Random P-κC-cR-kR

Linear Deterministic Random P-κL-cD-kR

Linear Random Random P-κL-cR-kR

Random Field, b = 2 Random Field, b = 2 Random Field, b = 2 P-κRF-cRF-kRFb=2

Random Field, b = 4 Random Field, b = 4 Random Field, b = 4 P-κRF-cRF-kRFb=4

Random Field, b = 8 Random Field, b = 8 Random Field, b = 8 P-κRF-cRF-kRFb=8

In the stochastic processes the mean values are chosen as follows: κmean = 0.008686,
cmean = 0.7336 and kmean = 10−8 m3s

Mgr following [41,43,59]. The standard deviations chosen
are: σκ = 0.25κmean, σφ = 2◦ and σk = 0.25kmean. The exponential autocorrelation function
described in section Section 4.1 is used in all stochastic processes. The correlation lengths
are chosen b = 2 m (kRF), b = 4 m (kRF) and b = 8 m (kRF). The spatial distributions for κ, κL
and κC, as well as the random variable distributions for all material variables are a random
variable case analysis. For c a constant deterministic analysis is assumed. The random field
(RF) distributions refer to the Karhunen–Loeve series expansion and realizations of the
spatial stochastic process are computed through equation H1 of Section 4.1 with the use of
the autocovariance function given by Equation (11).

The simulations are static, and the number of Fredholm eigenfunctions taken into ac-
count is eight. Failure is defined when the first Gaussian point exhibits softening behaviour
(i.e., plastic hardening modulus H < 0). Each Monte Carlo simulation was implemented
with 100 samples, using the Latin hypercube sampling method, which led to convergence
for the mean value and standard deviation of the monitored displacements as depicted in
Figure 6 where 1000 samples were taken for a randomly selected Monte Carlo simulation
and compared to the corresponding statistics for 100 samples. It should be mentioned that
the cross-correlation of all material variables is not taken into account and subsequently
the correlation matrix is diagonal.

Figure 6. Mean value and standard deviation percentage difference of a randomly chosen Monte
Carlo simulation for the output failure displacement. The reference value of the convergence rate is
the statistical moment in the 100 samples.
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6.2. Presentation of the Results
6.2.1. Limit Failure Force and Displacement

The results for the statistics of failure force and failure displacement are presented in
Tables A1–A3 and in Figures A1–A9 in Appendix A. In these tables the mean values (µν) of
the total settlement force N, the vertical displacement uy and the horizontal displacement
ux at failure are portrayed with the coefficient of variation (CoV) (σδ) as well as the maxi-
mum (M) and minimum µ values acquired from the Monte Carlo simulation. The PDFs
of the simulations are portrayed in the presented figures. They have been obtained by
implementing the Kolomogorov–Smirnov test for proving their Gaussian normal distribu-
tion and then the corresponding histograms are smoothened for drawing the probability
density function.

As portrayed in Table A1, when the water flow is not present, larger mean failure
displacements and lower CoV are obtained when κL is assumed compared to κC. In ad-
dition, a smaller mean total foundation load is obtained when κL case is adopted whilst
the corresponding uncertainty is maximized for the κc − cR case. In solid analyses the
maximum CoV of the output for failure footing force is 40% the input variability while the
largest CoV for failure displacement in both directions is the same as the input uncertainty
(see κC − cR for all monitored variables). This applies for all values of obliquity angle θq.
The mean value of N for θq = 60 degrees is 1,9 times than the value for θq = 0. The mean
values for the uy increase with the increase of θq while for ux the critical angle for the
maximization of its mean value is θq = 30. Thus, the critical spatial distribution of κ for
the CoV of the output in all monitored variables is the κC case and for c, the random
variable case. The PDFs of solid analyses are portrayed in Figures A1–A3 where it can be
concluded that the increase of obliquity leads to an increase of N and uy while for ux for
obliquity angles of more than 30 degrees, a significant decrease is observed. This behaviour
in the displacements is explained by the fact that in κL distribution the upper compressible
layers of the soil, have smaller CoV of κ causing smaller variability for displacements and
strains. The assumption of constant variation over depth of the soil mass tends to be more
homogeneous and stiff and, consequently the Gauss points have greater stiffness and larger
failure footing forces occur.

The output uncertainty of the foundation total load in porous analyses is influenced to
the same magnitude compared to solid problems with the alteration of obliquity. The vari-
ability of the output failure displacements increases with the increase of the obliquity until
the angle of 45 degrees and then decreases, unlike the corresponding solid analyses in which
the obliquity has practically no influence on the CoV of the output. As depicted in Table A2,
the largest CoV of the footing total load, which is found at P−κC − cR − kd, θq = 60◦, is
40% of the variability of the input, while for both horizontal and vertical displacements
the maximum CoV is 12% greater than the uncertainty of the input and is located at
P−κC − cR − kd, θq = 45◦. Therefore, when taking into account the pore pressure in the
soil domain, a decrease of the variability of the failure footing force takes place whilst
in failure displacements when there is constant variation over depth for κ, a significant
uncertainty enlargement occurs, as indicated in Figures A4–A6. This way of behaving
can be attributed to the fact that when a constant spatial variation of a material variable is
adopted, all Gauss points are associated with greater uncertainty leading to larger CoV for
strains and displacements. Taking into account that the bulk modulus is related through
Equation (9), in porous problems it is generally smaller than the corresponding solid prob-
lems, it is concluded that smaller mean values of failure force and smaller variability are
expected, due to tensile failure of the first Gauss point. This will be proven numerically in
Section 6.2.2 in Tables A4–A6.

Porous analyses with the assumption that the material variables follow a stochastic
process are conducted as a more general case in order to take into account the spatial
randomness of the material parameters of the soil. In porous random field simulations,
the greatest CoV of the shallow foundation total load is 48% the input uncertainty, while
for the displacements the reduction of the variability is by 40% and 56% for the vertical
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and horizontal displacement, respectively. As depicted in Table A3, the critical correlation
length for maximizing the output uncertainty is b = 2 m whilst for minimizing the mean
foundation force is b = 4 m for all obliquities examined. When b = 2 m, the vertical mean
failure displacements are the largest whilst for mean horizontal displacements for θq = 0 the
critical value for b = 2 m and when θq > 0 the corresponding critical failure displacements
occur when b = 8 m. The mean values of failure total foundation force in porous random
field analyses are slightly smaller, with divergence on the vicinity of 10% compared to
porous analyses with deterministic shape functions for the material parameters κ, c, k while
the mean values for the failure displacements in both horizontal and vertical directions
are larger in the porous analyses with random field representation for all the material
variables. In the vertical displacements the enlargement compared to the corresponding
porous analyses with deterministic shape functions for κ, c, k is in the order of magnitude
of 20% whilst in the horizontal displacements it is in the vicinity of 30%. The unfavourable
situation takes place when the foundation force is small and, consequently, the critical
spatial distribution for the mean value of N is the random Karhunen–Loeve expansion for
all material input variables and b = 4 m. The probability density functions of P-κRF-cRF-kRF
are portrayed in Figures A7–A9.

The results acquired give qualitative statements and quantitative proposals on the
influence of the input uncertainty of each material variable in porous failure phenomena
taking into account the obliquity of the shallow foundation. The compressibility factor κ
affects the statistical moments of all monitored variables. This effect in CoV of the output is
more profound when κ is uniformly distributed along the depth. This holds in both porous
and non-porous problems which can be attributed to the fact that κ is directly associated
with the bulk modulus and consequently this reflects on the strains the displacements and
the stiffness of the soil domain leading to larger alteration of the footing force.

The permeability k has alleviated the effect of failure shallow foundation forces and
failure displacements. The spatial variability of k appears to influence to a lesser extent
the CoV of the output in most Monte Carlo analyses. For porous consolidation problem
with the load geometry and deterministic parameters remaining the same, the output
displacements and stresses field are not influenced by the permeability since the pore
pressures are fully dissipated, as verified by the numerical results.

Finally, the uncertainty of a plastic variable like the critical state line inclination c
of the material model appears to have the most notable effect on the uncertainty of the
shallow foundation total load and the corresponding displacements when the constant
variation over depth and random variable case cR is adopted. The mean values for failure
force are critical when cR case is assumed. For mean failure displacements the alteration of
c has a negligible effect in all obliquities in both solid and porous problems. This can be
explained by the fact that c is directly influenced by the integration point state at failure,
subsequently it alters the limit load of the soil domain.

The validity of the PDFs presented has been verified in two ways. Firstly, the his-
tograms obtained from each Monte Carlo simulation are smoothed and the aforementioned
curve is estimated as a Gaussian normal PDF or a Gaussian lognormal PDF respectively.
The Gaussian lognormal PDF is estimated when the CoV is large. Subsequently, the Kolo-
mogorov and Smirnov test for the numerical validation of this assumption is performed.
In all cases the null hypothesis for the 5% reliability interval is accepted so in all cases
either the normal PDF or the lognormal PDF is thpropriate for the output monitored vari-
ables. In the present work since the largest CoV of the output obtained provide a small
probability of negative values for the monitored output variables, the normal probability
density functions are assumed.

6.2.2. Limit Stresses–Strains and Failure Spline

The results for the limit stress–strain statistics and failure splines are portrayed in
Tables A4–A6. In these tables the following statistics are given: mean values, CoV and
minimum values for the volumetric stresses denoted as pvol , and deviatoric Von Mises
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stresses denoted as qdev, as explained in Section 3.1. Moreover, the mean value with the
CoV of the volumetric strains denoted as evol and the deviatoric strains denoted as edev
are also presented in Tables A4–A6, The probability of first Gauss point failure for all
simulations is also depicted. At this point, it is declared that the volumetric strain at failure
is tensile.

As depicted in analyses of non-porous medium of Table A4, larger uncertainty of
the output and reduced minimum value of failure volumetric and deviatoric stresses are
acquired when cR case is assumed. This assumption for critical state line inclination give
the greatest variability of the strains at failure in all obliquities. The mean value for the
volumetric component is in the vicinity of 15‰ for the linear variation over depth for κ and
in the vicinity of 7‰ for the constant variation over depth for κ. The respective values for
the deviatoric component are 18‰ and 10‰. From the output results of the Monte Carlo
simulation it can be concluded that the percentage of plastic deviatoric strains are larger
when θq = 0.30, thus the distortional failure is critical. For θq = 45.60 the volumetric failure
is evident. Finally, when the obliquity is not present, which means when pure horizontal
loading is applied, (3.21, 2.21, 3.79) is the critical integration point, whilst when θq > 0,
(1.79, 2.21, 3.79) is the critical Gauss point.

In porous simulations with deterministic spatial distributions for all the material
parameters larger stress variability in both volumetric and deviatoric components is ob-
tained when the κL − cR case is assumed, as portrayed in Table A5. The alteration of
the permeability significantly affects the output uncertainty when θq = 60 degrees in
P−κC − cR − kD and P−κC − cR − kR analyses. The numerical Monte Carlo simulations
indicate that the largest output uncertainty for volumetric strains is found at θq = 60,
P−κC − cR − kR while for deviatoric stresses is located at P−κC − cR − kD for obliquity
angle of 60 degrees. The mean value of volumetric strains varies between 5 and 8‰ and
the mean values of deviatoric strains is in order of magnitude of 10‰, considering constant
variation over depth for the compressibility factor. For κL case the mean values are notably
larger. From the output results attained it is evident that for small obliquities the volumetric
failure is critical, while for larger angles, with the exception of θq = 60 and P−κC − cR − kD
case the distortional failure is evident. Finally, the most probable failure Gauss point is the
(3.21, 2.21, 3.79) for θq = 0, (3.79, 2.21, 3.79) for θq = 30 and (1.79, 2.21, 3.79) for θq = 45, 60.
As the obliquity increases more, integration points share a larger probability of failure.
The smallest probability of the most profound integration point is over 80% indicating the
importance of this Gauss point in the estimation of the failure spline.

In porous analyses with random process for κ, c, k, greater output uncertainty for
stresses is obtained for b = 2 m, in all cases as portrayed in Table A6. The volumetric strains
in most obliquities have critical correlation length b = 4 m and similar conclusions can
be made for the deviatoric strains. Taking into account the numerical results obtained
by the analyses simulated when b = 2 and θq = 30 degrees the probability is divided to
larger amount of integration points, consequently the variability of the failure mechanism
is maximum. When the obliquity angle in degrees is θq = 0.30 the volumetric failure occurs
whilst if θq = 45.60 the deviatoric failure takes place. Finally, when θq = 0 the critical
integration point is (3.21, 2.21, 3.79), when θq = 30 the critical Gauss point is (3.79, 2.21,
3.79), when θq = 45, 60 the aforementioned spline point is (1.79, 2.21, 3.79).

7. Conclusions

In this paper, the variability estimation of the failure of shallow foundations on cohe-
sive soils taking into account the pore pressure soil interaction with the use of the stochastic
finite element method is depicted. The aim of this article is to provide a numerical tool
for acquiring accurate quantitative results on the failure footing force and corresponding
displacements in relation to the input variability of soil material parameters. The afore-
mentioned numerical simulation model is valid for general assumptions for the geometry,
the loading and the material distribution of the soil mass. In this context, a detailed finite
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element simulation, alongside an accurate and reliable material constitutive yield function
are used.

The numerical results of the simulations portray that the monitored output variables
of ultimate foundation load and corresponding displacements follow a Gaussian random
distribution despite material non-linearity of high magnitude that is profound in failure
phenomena. The randomness of material poroelasticity is important in the uncertainty
of the output variables especially when it has a constant variation with respect to the
depth of the soil domain. Analogous considerations can be made for the critical state
line inclination c. When the constant distribution for κ is adopted, the CoV of the output
maximum displacement is increased in relation to the input variability by 12%. The porous
variable of permeability appears to have an alleviated influence to the uncertainty of the
monitored variables. In porous problems the failure load when the obliquity is not 0, the
mean failure foundation force is smaller in comparison with the corresponding non-porous
medium.

The random fields for κ, c, k give larger mean failure volumetric and deviatoric strains
for all obliquity angles examined. In porous stochastic process simulations when the load
angle with respect to the horizontal direction is small, the volumetric failure is critical whilst
when the obliquity angle is larger the distortional failure is critical. If deterministic shape
function over depth is assumed for κ, c, k, similar conclusions can be made. In conclusion,
when an a horizontal force is applied the (3.21, 2.21,3.79) is the most probable failure point
and if obliquity is present the (1.79, 2.21,3.79) integration point is the most probable onset
of the failure spline.
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Nomenclature
The following symbols are used in this manuscript:

N f Friction variables
Nq Friction variable indicating the influence of possible vertical load in the lateral of

the foundation
Nc Friction variable indicating the influence of the cohesion of the soil
Nγ Friction variable indicating the influence of the settlement dimensions

alongside with the total weight of the soil
S f Shape variables
Sq Shape variable indicating the influence of possible vertical load in the lateral of

the foundation
Sc Shape variable indicating the influence of the cohesion of the soil
Sγ Shape variable indicating the influence of the settlement dimensions

alongside with the total weight of the soil
κ Compressibility factor
c Critical state line inclination
k Permeability in units m3s

Mgr
φ0 Friction angle
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M Total mass matrix
C Total damping matrix
K Total stiffness matrix
Ms Solid skeleton mass matrix
ρd Density of the soil
B Deformation matrix
E Elasticity matrix
Cs Solid skeleton damping matrix
Ks Solid skeleton stiffness matrix
m Unity matrix
b Loading vector
k Matrix of permeability in units m3s

Mgr
NP Shape functions for pore pressure
Nu Shape functions for displacements
S Saturation matrix
Qc Coupling matrix
H Permeability matrix
fS Equivalent forces due to external loading
Q Variable for combining the influence of bulk moduli of fluid and solid skeleton in

porous problems
σ Total stress tensor
s Deviatoric component of the stress tensor
ph Hydrostatic component of the stress tensor
a Halfsize of the bond strength envelope
sL Deviatoric component of the stress point of the centre of the plastic yield envelope
pL Hydrostatic component of the stress point of the centre of the plastic yield envelope
ξ Similarity factor between the plastic yield envelope and bond strength envelope
fg Generalized elliptic envelope
fp Plastic yield envelope (PYE)
F Bond strength envelope (BSE)
ν Specific volume of the soil
q Von Mises stress
e Deviatoric strain measure
εdev Deviatoric component of the strain tensor
f Random function
fi Value of the random function at nodal points
Ni Shape functions
N0 Total number of shape functions
h1 Truncated normal PDF
φ(x) Standard normal PDF
Φ(x) Standard normal CDF
σd Standard deviation of the random variable before truncation
A, B, X0 Normalized coordinates of the subspace of the truncated PDF

limits and x respectively
H1(x, ω) Karhunen–Loeve random field
Ns Number of subintervals in the Latin hypercube Sampling
µ(x) Mean value of the random field
X(x1, x2, . . . xn) Random vector created by the Latin hypercube sampling
Me, λi, φi Total number of eigenvalues λi and eigenfunctions

φi respectively
b Correlation length
COV(ξi, ξ j) Covariance function
λ∗ Load factor causing failure of the body at exactly the time which ends

the rampload function
T Time which the rampload function ends
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Tp Symmetrization factor of the stochastic process
λn Trial load factor of step n causing failure
tn Time of failure at the generalized load factor λn
λmax−no− f ailure Maximum trial load factor which causes safety
λ1, f ail Initial trial load factor causing failure
λ1,no− f ailure Initial trial load factor which causes safety
q1 − q4 Equivalent forces of the shallow foundation
θq Obliquity angle
lx − ly − lz Dimensions of the total finite element mesh
σv, σx, σy Geostatic stresses in vertical direction and directions x and y respectively
λ Inclination of isotropic compression line for the respective normally

consolidated clay
ainitial Initial halfisize of the ellipse
aresidual Residual halfisize of the ellipse
OCR Overconsolidation ratio
G Shear modulus
Kbulk Bulk modulus
γ Specific weight
ν0 Initial specific volume of the soil
ux Displacement vector in direction x
κz=0 Compressibilty factor at depth = 0
κz=max Compressibilty factor at maximum depth
R = κz=max

κz=0
Ratio of the compressibility factors measured at depth = 0 and at
maximum depth

µR Mean value of ratio R
κz=max,mean Compressibilty factor at maximum depth when the ratio R has its

mean value
κL Linear distribution over depth for the compressibility factor
κC Constant distribution over depth for the compressibility factor
κµ Mean value of κ

cR Random variable case for the critical state line inclination
cD Deterministic case for the critical state line inclination
µφ Mean value of the friction angle
σφ Standard deviation of the friction angle
µk Mean value of the permeability
CoVk Coefficient of variation of the friction angle
κmean Mean value of the compressibility factor in the random field representation
cmean Mean value of the critical state line inclination in the random

field representation
kmean Mean value of the permeability in the random field representation
σκ Standard deviation of the compressibility factor in the random field

representation
σφ Standard deviation of the critical state line inclination in the random field

representation
σk Standard deviation of the permeability in the random field representation
µν Mean values of the results
σδ Coefficient of variation of the results
M Maximum values of the results
µ Minimum values of the results
N Total settlement force
ux Horizontal displacement at failure
uy Vertical displacement at failure
pvol Volumetric stress at failure
qdev Von Mises stress at failure
evol Volumetric strain at failure
edev Deviatoric strain at failure
Rvol Percentage plastic volumetric strains at failure
Rdev Percentage plastic deviatoric strains at failure
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Appendix A

The following tables and figures are placed in this section.

Table A1. Monte Carlo results for the settlement force (kN), the vertical and horizontal failure
displacements (m) for non-porous medium (θq in degrees).

N θq = 0 θq = 30
S− κC-cD κC-cR κL-cD κL-cR κC-cD κC-cR κL-cD κL-cR
µν 668.94 667.19 645.75 643.56 809.81 805.00 759.06 755.13
σδ 0.02 0.04 0.01 0.04 0.03 0.06 0.01 0.06
M 700.00 721.00 658.00 700.00 861.00 882.00 770.00 833.00
µ 651.00 609.00 637.00 588.00 777.00 714.00 756.00 665.00
M
µ 1.08 1.18 1.03 1.19 1.11 1.24 1.02 1.25

N θq = 45 θq = 60
S− κC-cD κC-cR κL-cD κL-cR κC-cD κC-cR κL-cD κL-cR
µν 1120.90 1121.30 1030.30 1029.90 1330.40 1331.80 1225.40 1226.80
σδ 0.04 0.10 0.01 0.09 0.05 0.10 0.02 0.09
M 1239.00 1358.00 1057.00 1218.00 1491.00 1624.00 1274.00 1456.00
µ 1043.00 931.00 1008.00 861.00 1232.00 1106.00 1190.00 1022.00
M
µ 1.19 1.46 1.05 1.41 1.21 1.47 1.07 1.42

uy θq = 0 θq = 30
S− κC-cD κC-cR κL-cD κL-cR κC-cD κC-cR κL-cD κL-cR
µν 0.0018 0.0019 0.0029 0.0029 0.0051 0.0051 0.0094 0.0094
σδ 0.21 0.25 0.04 0.11 0.25 0.26 0.03 0.04
M 0.0026 0.0028 0.0031 0.0035 0.0075 0.0076 0.0101 0.0102
µ 0.0010 0.0010 0.0027 0.0024 0.0024 0.0024 0.0087 0.0088
M
µ 2.67 2.73 1.16 1.44 3.16 3.18 1.15 1.16

uy θq = 45 θq = 60
S− κC-cD κC-cR κL-cD κL-cR κC-cD κC-cR κL-cD κL-cR
µν 0.0121 0.0122 0.0207 0.0207 0.0186 0.0187 0.0307 0.0307
σδ 0.23 0.25 0.04 0.07 0.22 0.25 0.04 0.08
M 0.0173 0.0182 0.0222 0.0233 0.0263 0.0278 0.0332 0.0352
µ 0.0060 0.0062 0.0188 0.0185 0.0095 0.0098 0.0278 0.0271
M
µ 2.87 2.95 1.18 1.26 2.76 2.84 1.19 1.30

ux θq = 0 θq = 30
S− κC-cD κC-cR κL-cD κL-cR κC-cD κC-cR κL-cD κL-cR
µν 0.0257 0.0257 0.0409 0.0408 0.0432 0.0431 0.0655 0.0652
σδ 0.23 0.25 0.06 0.09 0.23 0.25 0.07 0.10
M 0.0370 0.0382 0.0454 0.0475 0.0617 0.0645 0.0745 0.0773
µ 0.0127 0.0130 0.0358 0.0362 0.0216 0.0220 0.0555 0.0563
M
µ 2.91 2.94 1.27 1.31 2.86 2.93 1.34 1.37

ux θq = 45 θq = 60
S− κC-cD κC-cR κL-cD κL-cR κC-cD κC-cR κL-cD κL-cR
µν 0.0419 0.0421 0.0621 0.0621 0.0311 0.0312 0.0460 0.0461
σδ 0.22 0.25 0.07 0.11 0.22 0.25 0.07 0.11
M 0.0586 0.0632 0.0701 0.0749 0.0435 0.0465 0.0520 0.0554
µ 0.0216 0.0224 0.0525 0.0533 0.0161 0.0166 0.0390 0.0399
M
µ 2.71 2.82 1.33 1.41 2.71 2.80 1.33 1.39
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Figure A1. PDFs of the normal force of the settlement in kN for non-porous medium.
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Figure A2. PDFs of the vertical displacement in m for non-porous medium.
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Figure A3. PDFs of the horizontal displacement in m for non-porous medium.



Geotechnics 2021, 1 368

Table A2. Monte Carlo results for the settlement force (kN), the vertical and horizontal failure
displacements (m) for porous analyses with linear and constant distribution for κ and c (θq in degrees).

N θq = 0, kD θq = 0, kR
P− κL-cD κL-cR κL-cD κL-cR κL-cD κL-cR κL-cD κL-cR
µν 693.47 691.40 674.89 672.91 694.26 692.14 675.75 673.60
σδ 0.02 0.05 0.01 0.05 0.02 0.04 0.01 0.05
M 724.10 751.64 683.38 733.44 722.97 751.66 688.53 733.60
µ 674.89 629.52 668.17 607.46 675.09 636.80 665.44 617.92
M
µ 1.07 1.19 1.02 1.21 1.07 1.18 1.03 1.19

N θq = 30, kD θq = 30, kR
P− κL-cD κL-cR κL-cD κL-cR κL-cD κL-cR κL-cD κL-cR
µν 798.42 794.09 746.87 743.03 798.99 794.52 747.81 744.16
σδ 0.03 0.05 0.02 0.06 0.03 0.05 0.02 0.06
M 850.39 868.48 751.43 816.38 850.59 868.20 760.42 816.63
µ 769.53 710.21 702.08 659.51 773.25 714.13 699.54 669.53
M
µ 1.11 1.22 1.07 1.24 1.10 1.22 1.09 1.22

N θq = 45, kD θq = 45, kR
P− κL-cD κL-cR κL-cD κL-cR κL-cD κL-cR κL-cD κL-cR
µν 1040.50 1035.90 989.56 988.71 1041.30 1031.20 989.05 988.57
σδ 0.03 0.07 0.01 0.08 0.03 0.07 0.01 0.09
M 1079.10 1163.90 1005.90 1175.60 1099.20 1163.90 1007.10 1175.60
µ 937.26 896.72 964.87 832.49 932.40 894.52 963.24 830.55
M
µ 1.15 1.30 1.04 1.41 1.18 1.30 1.05 1.42

N θq = 60, kD θq = 60, kR
P− κL-cD κL-cR κL-cD κL-cR κL-cD κL-cR κL-cD κL-cR
µν 1137.00 1158.50 1158.50 1152.90 1140.30 1143.60 1156.60 1150.90
σδ 0.06 0.10 0.02 0.08 0.06 0.09 0.02 0.08
M 1262.50 1435.60 1204.30 1308.60 1265.40 1434.10 1205.60 1302.20
µ 1039.70 1037.50 1120.40 974.57 1016.70 1001.00 1115.90 973.22
M
µ 1.21 1.38 1.07 1.34 1.24 1.43 1.08 1.34

uy θq = 0, kD θq = 0, kR
P− κL-cD κL-cR κL-cD κL-cR κL-cD κL-cR κL-cD κL-cR
µν 0.0018 0.0018 0.0028 0.0028 0.0018 0.0018 0.0028 0.0028
σδ 0.20 0.24 0.05 0.12 0.20 0.24 0.05 0.12
M 0.0024 0.0026 0.0030 0.0034 0.0024 0.0026 0.0030 0.0034
µ 0.0010 0.0010 0.0026 0.0022 0.0010 0.0010 0.0026 0.0021
M
µ 2.54 2.67 1.18 1.53 2.49 2.61 1.16 1.59

uy θq = 30, kD θq = 30, kR
P− κL-cD κL-cR κL-cD κL-cR κL-cD κL-cR κL-cD κL-cR
µν 0.0054 0.0054 0.0100 0.0100 0.0054 0.0054 0.0101 0.0100
σδ 0.27 0.27 0.04 0.05 0.27 0.27 0.05 0.05
M 0.0081 0.0082 0.0106 0.0108 0.0083 0.0084 0.0109 0.0111
µ 0.0024 0.0025 0.0088 0.0089 0.0024 0.0024 0.0088 0.0089
M
µ 3.30 3.34 1.20 1.21 3.41 3.45 1.24 1.25
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Table A2. Cont.

uy θq = 45, kD θq = 45, kR
P− κC-cD κC-cR κL-cD κL-cR κC-cD κC-cR κL-cD κL-cR
µν 0.0123 0.0123 0.0214 0.0213 0.0123 0.0123 0.0214 0.0213
σδ 0.26 0.28 0.04 0.07 0.26 0.28 0.05 0.07
M 0.0180 0.0189 0.0228 0.0241 0.0182 0.0191 0.0230 0.0242
µ 0.0051 0.0051 0.0189 0.0191 0.0051 0.0051 0.0188 0.0190
M
µ 3.56 3.70 1.21 1.26 3.58 3.75 1.22 1.27

uy θq = 60, kD θq = 60, kR
P− κC-cD κC-cR κL-cD κL-cR κC-cD κC-cR κL-cD κL-cR
µν 0.0175 0.0177 0.0317 0.0316 0.0184 0.0186 0.0317 0.0315
σδ 0.27 0.27 0.04 0.08 0.23 0.23 0.05 0.07
M 0.0267 0.0271 0.0341 0.0361 0.0263 0.0269 0.0342 0.0358
µ 0.0089 0.0090 0.0286 0.0280 0.0112 0.0113 0.0286 0.0282
M
µ 3.02 2.99 1.19 1.29 2.35 2.38 1.20 1.27

ux θq = 0, kD θq = 0, kR
P− κC-cD κC-cR κL-cD κL-cR κC-cD κC-cR κL-cD κL-cR
µν 0.0276 0.0276 0.0439 0.0438 0.0277 0.0276 0.0439 0.0438
σδ 0.23 0.25 0.07 0.10 0.23 0.25 0.07 0.10
M 0.0398 0.0416 0.0496 0.0520 0.0400 0.0418 0.0499 0.0523
µ 0.0136 0.0139 0.0382 0.0386 0.0136 0.0139 0.0380 0.0388
M
µ 2.93 3.00 1.30 1.35 2.94 3.02 1.31 1.35

ux θq = 30, kD θq = 30, kR
P− κC-cD κC-cR κL-cD κL-cR κC-cD κC-cR κL-cD κL-cR
µν 0.0457 0.0456 0.0687 0.0685 0.0457 0.0456 0.0688 0.0686
σδ 0.23 0.25 0.09 0.11 0.23 0.25 0.09 0.11
M 0.0655 0.0683 0.0799 0.0835 0.0656 0.0684 0.0803 0.0839
µ 0.0228 0.0232 0.0546 0.0558 0.0228 0.0232 0.0544 0.0556
M
µ 2.87 2.94 1.46 1.50 2.88 2.95 1.48 1.51

ux θq = 45, kD θq = 45, kR
P− κC-cD κC-cR κL-cD κL-cR κC-cD κC-cR κL-cD κL-cR
µν 0.0439 0.0439 0.0657 0.0657 0.0439 0.0438 0.0657 0.0657
σδ 0.25 0.28 0.08 0.12 0.25 0.28 0.08 0.12
M 0.0628 0.0675 0.0754 0.0807 0.0626 0.0672 0.0752 0.0806
µ 0.0186 0.0189 0.0547 0.0558 0.0186 0.0187 0.0544 0.0555
M
µ 3.37 3.57 1.38 1.45 3.36 3.60 1.38 1.45

ux θq = 60, kD θq = 60, kR
P− κC-cD κC-cR κL-cD κL-cR κC-cD κC-cR κL-cD κL-cR
µν 0.0305 0.0309 0.0492 0.0490 0.0321 0.0323 0.0491 0.0489
σδ 0.26 0.26 0.07 0.11 0.22 0.23 0.07 0.10
M 0.0459 0.0468 0.0564 0.0601 0.0448 0.0461 0.0564 0.0589
µ 0.0155 0.0159 0.0420 0.0422 0.0194 0.0196 0.0420 0.0423
M
µ 2.95 2.95 1.34 1.42 2.31 2.35 1.34 1.39
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Figure A4. PDFs of the normal force of the settlement in kN for porous analyses with linear and
constant distribution for κ and c.
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Figure A5. PDFs of the vertical displacement in m for porous analyses with linear and constant
distribution for κ and c.



Geotechnics 2021, 1 372

Figure A6. PDFs of the horizontal displacement in m for porous analyses with linear and constant
distribution for κ and c.
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Table A3. Monte Carlo results for the settlement force (kN), the vertical and horizontal failure
displacements (m) for porous analyses with random field representation for all material variables (θq

in degrees).

N θq = 0 θq = 30
P− b = 2 m b = 4 m b = 8 m b = 2 m b = 4 m b = 8 m
µν 652.06 642.80 658.60 720.63 711.95 736.82
σδ 0.07 0.05 0.03 0.06 0.06 0.03
M 714.77 700.04 699.92 795.46 788.87 764.27
µ 566.54 569.01 610.76 617.93 625.67 683.02
M
µ 1.26 1.23 1.15 1.29 1.26 1.12

N θq = 45 θq = 60
P− b = 2 m b = 4 m b = 8 m b = 2 m b = 4 m b = 8 m
µν 926.81 905.85 943.85 1069.60 1044.70 1086.30
σδ 0.11 0.08 0.06 0.12 0.09 0.06
M 1104.00 1031.60 1056.80 1287.50 1213.10 1231.30
µ 727.98 745.38 823.83 840.41 855.21 945.59
M
µ 1.52 1.38 1.28 1.53 1.42 1.30

uy θq = 0 θq = 30
P− b = 2 m b = 4 m b = 8 m b = 2 m b = 4 m b = 8 m
µν 0.0031 0.0030 0.0031 0.0121 0.0114 0.0118
σδ 0.15 0.12 0.05 0.10 0.08 0.06
M 0.0040 0.0038 0.0034 0.0139 0.0127 0.0135
µ 0.0022 0.0023 0.0027 0.0093 0.0098 0.0104
M
µ 1.79 1.62 1.24 1.50 1.29 1.29

uy θq = 45 θq = 60
P− b = 2 m b = 4 m b = 8 m b = 2 m b = 4 m b = 8 m
µν 0.0254 0.0240 0.0250 0.0374 0.0355 0.0370
σδ 0.11 0.08 0.05 0.12 0.10 0.05
M 0.0301 0.0278 0.0283 0.0447 0.0423 0.0417
µ 0.0191 0.0203 0.0228 0.0273 0.0299 0.0346
M
µ 1.58 1.37 1.24 1.64 1.42 1.20

ux θq = 0 θq = 30
P− b = 2 m b = 4 m b = 8 m b = 2 m b = 4 m b = 8 m
µν 0.0551 0.0528 0.0549 0.0889 0.0861 0.0898
σδ 0.10 0.07 0.06 0.08 0.07 0.06
M 0.0647 0.0595 0.0609 0.0987 0.0955 0.1001
µ 0.0426 0.0457 0.0484 0.0750 0.0730 0.0751
M
µ 1.52 1.30 1.26 1.32 1.31 1.33

ux θq = 45 θq = 60
P− b = 2 m b = 4 m b = 8 m b = 2 m b = 4 m b = 8 m
µν 0.0845 0.0810 0.0850 0.0634 0.0611 0.0639
σδ 0.11 0.09 0.07 0.11 0.08 0.07
M 0.1000 0.0931 0.0946 0.0756 0.0704 0.0712
µ 0.0670 0.0680 0.0720 0.0493 0.0516 0.0533
M
µ 1.49 1.37 1.31 1.53 1.36 1.34
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Figure A7. PDFs of the normal force of the settlement in kN for porous analyses with random field
representation for all material variables.



Geotechnics 2021, 1 375

Figure A8. PDFs of the vertical displacement in m for porous analyses with random field representa-
tion for all material variables.



Geotechnics 2021, 1 376

Figure A9. PDFs of the horizontal displacement in m for porous analyses with random field repre-
sentation for all material variables.
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Table A4. Monte Carlo results for the stresses (kPa), the strains (‰) and the probability of the first
Gauss point failure for non-porous medium (θq in degrees).

pvol θq = 0 θq = 30
S− κC-cD κC-cR κL-cD κL-cR κC-cD κC-cR κL-cD κL-cR
µν 59.81 59.66 59.71 59.55 62.71 62.59 62.80 62.68
σδ 1.14× 10−3 0.03 6.08× 10−4 0.03 8.38× 10−4 0.02 1.10× 10−3 0.02
µ 59.21 58.36 59.41 57.96 62.43 61.51 62.30 61.23

pvol θq = 45 θq = 60
S− κC-cD κC-cR κL-cD κL-cR κC-cD κC-cR κL-cD κL-cR
µν 727.14 727.03 628.98 628.49 831.76 831.56 712.12 712.67
σδ 0.05 0.11 0.01 0.10 0.06 0.11 0.01 0.09
µ 663.98 595.68 623.40 516.65 758.50 686.22 706.17 585.51

qdev θq = 0 θq = 30
S− κC-cD κC-cR κL-cD κL-cR κC-cD κC-cR κL-cD κL-cR
µν 102.67 102.51 99.19 98.97 86.15 86.04 82.39 82.27
σδ 0.01 0.01 2.17× 10−3 0.01 0.01 0.01 0.01 0.01
µ 101.49 100.96 98.88 96.99 85.32 85.38 81.32 81.22

qdev θq = 45 θq = 60
S− κC-cD κC-cR κL-cD κL-cR κC-cD κC-cR κL-cD κL-cR
µν 1054.80 1054.90 947.37 947.81 1104.70 1104.30 991.54 991.90
σδ 0.03 0.11 2.41× 10−3 0.11 0.03 0.11 2.30× 10−3 0.11
µ 994.62 839.67 943.22 754.34 1042.10 888.32 987.30 796.09

evol θq = 0 θq = 30
S− κC-cD κC-cR κL-cD κL-cR κC-cD κC-cR κL-cD κL-cR
µν 7.68 7.68 14.42 14.36 8.76 8.74 16.60 16.52
σδ 0.22 0.25 0.01 0.07 0.22 0.24 0.01 0.06

evol θq = 45 θq = 60
S− κC-cD κC-cR κL-cD κL-cR κC-cD κC-cR κL-cD κL-cR
µν 5.50 5.51 11.20 11.19 5.90 5.91 11.93 11.92
σδ 0.24 0.26 4.02× 10−3 0.05 0.24 0.26 4.26× 10−3 0.04

edev θq = 0 θq = 30
S− κC-cD κC-cR κL-cD κL-cR κC-cD κC-cR κL-cD κL-cR
µν 8.86 8.86 16.90 16.85 8.38 8.36 15.92 15.84
σδ 0.23 0.25 0.01 0.06 0.23 0.25 0.01 0.05

edev θq = 45 θq = 60
S− κC-cD κC-cR κL-cD κL-cR κC-cD κC-cR κL-cD κL-cR
µν 10.34 10.36 19.45 19.42 10.29 10.32 19.21 19.21
σδ 0.22 0.24 0.01 0.05 0.22 0.24 0.01 0.05

Rvol θq = 0 θq = 30
S− κC-cD κC-cR κL-cD κL-cR κC-cD κC-cR κL-cD κL-cR
µν 0.32 0.32 0.25 0.25 0.28 0.28 0.21 0.20
σδ 0.06 0.10 0.02 0.07 0.08 0.13 0.02 0.12

Rvol θq = 45 θq = 60
S− κC-cD κC-cR κL-cD κL-cR κC-cD κC-cR κL-cD κL-cR
µν 0.12 0.12 0.08 0.08 0.10 0.10 0.07 0.07
σδ 0.12 0.15 0.01 0.08 0.11 0.17 0.01 0.12
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Table A4. Cont.

Rdev θq = 0 θq = 30
S− κC-cD κC-cR κL-cD κL-cR κC-cD κC-cR κL-cD κL-cR
µν 0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.02
σδ 0.06 0.25 0.03 0.25 0.08 0.30 0.02 0.31

Rdev θq = 45 θq = 60
S− κC-cD κC-cR κL-cD κL-cR κC-cD κC-cR κL-cD κL-cR
µν 0.17 0.18 0.13 0.13 0.19 0.19 0.14 0.14
σδ 0.11 0.11 0.01 0.01 0.11 0.11 0.01 0.02

θq = 0 θq = 30
X Y Z Probability X Y Z Probability

κC-cD 3.21 2.21 3.79 100.00 1.79 2.21 3.79 100.00
κC-cR 3.21 2.21 3.79 100.00 1.79 2.21 3.79 100.00
κL-cD 3.21 2.21 3.79 100.00 1.79 2.21 3.79 100.00
κL-cR 3.21 2.21 3.79 100.00 1.79 2.21 3.79 100.00

θq = 45 θq = 60
X Y Z Probability X Y Z Probability

κC-cD 1.79 2.21 3.79 100.00 1.79 2.21 3.79 100.00
κC-cR 1.79 2.21 3.79 100.00 1.79 2.21 3.79 100.00
κL-cD 1.79 2.21 3.79 100.00 1.79 2.21 3.79 100.00
κL-cR 1.79 2.21 3.79 100.00 1.79 2.21 3.79 100.00

Table A5. Monte Carlo results for the stresses (kPa), the strains (‰) and the probability of the
first Gauss point failure for porous analyses with linear and constant distribution for κ and c (θq

in degrees).

pvol θq = 0, kD θq = 0, kR
P− κC-cD κC-cR κL-cD κL-cR κC-cD κC-cR κL-cD κL-cR
µν 58.77 58.61 58.53 58.37 58.76 58.60 58.51 58.35
σδ 1.88× 10−3 0.03 9.13× 10−4 0.03 2.12× 10−3 0.03 1.88× 10−3 0.03
µ 58.55 57.80 58.29 57.68 58.35 57.95 57.98 57.55

pvol θq = 30, kD θq = 30, kR
P− κC-cD κC-cR κL-cD κL-cR κC-cD κC-cR κL-cD κL-cR
µν 61.97 61.85 62.46 62.35 61.96 61.85 62.45 62.35
σδ 1.24× 10−3 0.02 0.03 0.04 1.38× 10−3 0.02 0.03 0.04
µ 61.55 60.80 59.33 58.85 61.46 60.03 60.15 59.96

pvol θq = 45, kD θq = 45, kR
P− κC-cD κC-cR κL-cD κL-cR κC-cD κC-cR κL-cD κL-cR
µν 651.89 647.68 553.58 551.63 645.94 640.38 553.13 551.47
σδ 0.06 0.08 0.29 0.31 0.08 0.10 0.29 0.31
µ 506.76 524.91 7.05 7.12 487.21 452.06 7.06 7.12

pvol θq = 60, kD θq = 60, kR
P− κC-cD κC-cR κL-cD κL-cR κC-cD κC-cR κL-cD κL-cR
µν 585.67 631.72 660.34 654.98 554.99 598.62 658.64 652.31
σδ 0.13 0.13 0.01 0.08 0.30 0.31 0.01 0.08
µ 432.41 474.54 650.04 547.02 3.80 0.19 649.08 544.82
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Table A5. Cont.

qdev θq = 0, kD θq = 0, kR
P− κC-cD κC-cR κL-cD κL-cR κC-cD κC-cR κL-cD κL-cR
µν 104.93 104.73 102.52 102.28 105.04 104.83 102.64 102.39
σδ 4.43× 10−3 0.01 3.17× 10−3 0.01 0.01 0.01 0.01 0.01
µ 104.24 102.94 101.86 99.49 103.74 103.25 101.04 100.26

qdev θq = 30, kD θq = 30, kR
P− κC-cD κC-cR κL-cD κL-cR κC-cD κC-cR κL-cD κL-cR
µν 85.96 85.86 83.44 83.34 86.03 85.93 83.52 83.41
σδ 1.71× 10−3 2.30× 10−3 0.02 0.02 0.01 4.78× 10−3 0.02 0.02
µ 85.74 85.43 82.12 81.71 85.33 85.35 81.32 81.38

qdev θq = 45, kD θq = 45, kR
P− κC-cD κC-cR κL-cD κL-cR κC-cD κC-cR κL-cD κL-cR
µν 1023.70 1019.40 880.24 877.83 1019.70 1015.50 880.04 877.72
σδ 0.02 0.09 0.23 0.26 0.03 0.09 0.23 0.26
µ 980.69 825.87 83.43 83.99 935.75 825.01 82.94 83.48

qdev θq = 60, kD θq = 60, kR
P− κC-cD κC-cR κL-cD κL-cR κC-cD κC-cR κL-cD κL-cR
µν 1001.00 1032.30 972.18 970.95 958.26 977.07 971.70 969.90
σδ 0.04 0.13 3.28× 10−3 0.10 0.20 0.24 3.26× 10−3 0.10
µ 943.32 862.25 965.64 780.05 233.89 235.83 965.46 779.38

evol θq = 0, kD θq = 0, kR
P− κC-cD κC-cR κL-cD κL-cR κC-cD κC-cR κL-cD κL-cR
µν 7.45 7.45 13.92 13.87 7.45 7.45 13.91 13.87
σδ 0.22 0.25 3.87× 10−3 0.07 0.22 0.25 3.90× 10−3 0.07

evol θq = 30, kD θq = 30, kR
P− κC-cD κC-cR κL-cD κL-cR κC-cD κC-cR κL-cD κL-cR
µν 8.53 8.52 15.49 15.40 8.53 8.52 15.49 15.40
σδ 0.22 0.24 0.19 0.20 0.22 0.24 0.19 0.20

evol θq = 45, kD θq = 45, kR
P− κC-cD κC-cR κL-cD κL-cR κC-cD κC-cR κL-cD κL-cR
µν 5.32 5.31 10.02 9.99 5.29 5.32 10.02 9.99
σδ 0.27 0.28 0.36 0.37 0.27 0.28 0.36 0.37

evol θq = 60, kD θq = 60, kR
P− κC-cD κC-cR κL-cD κL-cR κC-cD κC-cR κL-cD κL-cR
µν 5.11 5.35 11.53 11.51 4.68 4.88 11.53 11.49
σδ 0.35 0.31 3.19× 10−3 0.04 0.62 0.60 3.48× 10−3 0.04

edev θq = 0, kD θq = 0, kR
P− κC-cD κC-cR κL-cD κL-cR κC-cD κC-cR κL-cD κL-cR
µν 8.97 8.97 17.20 17.15 8.98 8.97 17.21 17.16
σδ 0.23 0.25 0.01 0.06 0.23 0.25 0.01 0.06

edev θq = 30, kD θq = 30, kR
P− κC-cD κC-cR κL-cD κL-cR κC-cD κC-cR κL-cD κL-cR
µν 8.38 8.37 15.30 15.22 8.39 8.37 15.32 15.24
σδ 0.23 0.25 0.19 0.20 0.23 0.25 0.19 0.20
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Table A5. Cont.

edev θq = 45, kD θq = 45, kR
P− κC-cD κC-cR κL-cD κL-cR κC-cD κC-cR κL-cD κL-cR
µν 10.30 10.30 18.95 18.91 10.33 10.29 18.96 18.92
σδ 0.25 0.27 0.21 0.21 0.24 0.27 0.21 0.21

edev θq = 60, kD θq = 60, kR
P− κC-cD κC-cR κL-cD κL-cR κC-cD κC-cR κL-cD κL-cR
µν 9.65 9.61 19.78 19.67 9.73 9.72 19.76 0.02
σδ 0.24 0.25 0.01 0.04 0.23 0.23 0.01 0.04

θq = 0
X Y Z Probability

κC-cD-kD 3.21 2.21 3.79 100.00
κC-cR-kD 3.21 2.21 3.79 100.00
κL-cD-kD 3.21 2.21 3.79 100.00
κL-cR-kD 3.21 2.21 3.79 100.00
κC-cD-kR 3.21 2.21 3.79 100.00
κC-cR-kR 3.21 2.21 3.79 100.00
κL-cD-kR 3.21 2.21 3.79 100.00
κL-cR-kR 3.21 2.21 3.79 100.00

θq = 30
X Y Z Probability

κC-cD-kD 3.79 2.21 3.79 100.00
κC-cR-kD 3.79 2.21 3.79 100.00
κL-cD-kD 3.79 2.21 3.79 93.75

4.79 0.21 0.21 6.25
κL-cR-kD 3.79 2.21 3.79 93.75

4.79 0.21 0.21 6.25
κC-cD-kR 3.79 2.21 3.79 100.00
κC-cR-kR 3.79 2.21 3.79 100.00
κL-cD-kR 3.79 2.21 3.79 93.75

4.79 0.21 0.21 6.25
κL-cR-kR 3.79 2.21 3.79 93.75

4.79 0.21 0.21 6.25

θq = 45
X Y Z Probability

κC-cD-kD 1.79 2.21 3.79 100.00
κC-cR-kD 1.79 2.21 3.79 100.00
κL-cD-kD 1.79 2.21 3.79 93.75

4.79 0.21 0.21 6.25
κL-cR-kD 1.79 2.21 3.79 93.75

4.79 0.21 0.21 6.25
κC-cD-kR 1.79 2.21 3.79 100.00
κC-cR-kR 1.79 2.21 3.79 100.00
κL-cD-kR 1.79 2.21 3.79 93.75

4.79 0.21 0.21 6.25
κL-cR-kR 1.79 2.21 3.79 93.75

4.79 0.21 0.21 6.25
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θq = 60
X Y Z Probability

κC-cD-kD 1.79 2.21 3.79 81.25
1.79 1.79 3.79 12.50
1.79 3.21 3.79 6.25

κC-cR-kD 1.79 2.21 3.79 93.75
1.79 3.21 3.79 6.25

κL-cD-kD 1.79 2.21 3.79 100.00
κL-cR-kD 1.79 2.21 3.79 100.00
κC-cD-kR 1.79 2.21 3.79 87.50

1.79 3.21 3.79 6.25
0.21 0.21 0.21 6.25

κC-cR-kR 1.79 2.21 3.79 81.25
1.79 2.79 3.79 12.50
0.21 0.21 0.21 6.25

κL-cD-kR 1.79 2.21 3.79 100.00
κL-cR-kR 1.79 2.21 3.79 100.00

Table A6. Monte Carlo results for the stresses (kPa), the strains (‰) and the probability of the first
Gauss point failure for porous analyses with random field representation for all material variables
(θq in degrees).

pvol θq = 0 pvol θq = 30
P− b = 2 m b = 4 m b = 8 m P− b = 2 m b = 4 m b = 8 m
µν 57.92 57.68 58.29 µν 60.38 59.67 61.37
σδ 0.04 0.03 0.01 σδ 0.11 0.10 0.05
µ 56.95 56.85 57.67 µ 48.89 49.76 57.69

pvol θq = 45 pvol θq = 60
P− b = 2 m b = 4 m b = 8 m P− b = 2 m b = 4 m b = 8 m
µν 512.39 497.14 573.23 µν 621.49 607.80 634.77
σδ 0.32 0.31 0.04 σδ 0.11 0.08 0.04
µ 6.84 6.92 509.42 µ 493.61 519.47 566.88

qdev θq = 0 qdev θq = 30
P− b = 2 m b = 4 m b = 8 m P− b = 2 m b = 4 m b = 8 m
µν 103.22 104.88 103.65 µν 101.89 103.44 92.96
σδ 0.03 0.03 0.02 σδ 0.29 0.28 0.22
µ 98.04 96.97 99.64 µ 80.98 78.60 81.08

qdev θq = 45 qdev θq = 60
P− b = 2 m b = 4 m b = 8 m P− b = 2 m b = 4 m b = 8 m
µν 842.46 839.72 919.65 µν 946.08 942.54 957.25
σδ 0.27 0.26 0.04 σδ 0.14 0.10 0.04
µ 84.38 84.52 821.08 µ 710.68 753.96 858.87

evol θq = 0 evol θq = 30
P− b = 2 m b = 4 m b = 8 m P− b = 2 m b = 4 m b = 8 m
µν 14.55 13.17 14.14 µν 14.04 12.58 15.37
σδ 0.21 0.24 0.08 σδ 0.28 0.30 0.17

evol θq = 45 evol θq = 60
P− b = 2 m b = 4 m b = 8 m P− b = 2 m b = 4 m b = 8 m
µν 9.97 8.74 11.06 µν 12.09 10.79 11.65
σδ 0.57 0.51 0.09 σδ 0.22 0.29 0.09
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edev θq = 0 edev θq = 30
P− b = 2 m b = 4 m b = 8 m P− b = 2 m b = 4 m b = 8 m
µν 18.25 16.63 17.67 µν 15.88 14.41 16.25
σδ 0.20 0.23 0.07 σδ 0.27 0.28 0.16

edev θq = 45 edev θq = 60
P− b = 2 m b = 4 m b = 8 m P− b = 2 m b = 4 m b = 8 m
µν 19.99 17.83 20.30 µν 20.77 18.95 20.10
σδ 0.24 0.27 0.07 σδ 0.20 0.24 0.07

θq = 0
X Y Z Probability

b = 2 m 3.21 2.21 3.79 100.00
b = 4 m 3.21 2.21 3.79 100.00
b = 8 m 3.21 2.21 3.79 100.00

θq = 30
X Y Z Probability

b = 2 m 3.79 2.21 3.79 43.75
4.79 2.21 0.21 18.75
4.79 0.21 0.21 12.50
3.21 1.79 3.79 12.50
3.21 2.21 3.79 12.50

b = 4 m 3.79 2.21 3.79 56.25
4.79 0.21 0.21 18.75
3.21 1.79 3.79 12.50
3.21 2.21 3.79 12.50

b = 8 m 3.79 2.21 3.79 75
3.21 2.21 3.79 12.5
4.79 0.21 0.21 6.25
4.79 2.21 0.21 6.25

θq = 45
X Y Z Probability

b = 2 m 1.79 2.21 3.79 87.50
1.79 1.79 3.79 6.25
4.79 0.21 0.21 6.25

b = 4 m 1.79 2.21 3.79 68.75
1.79 1.79 3.79 25.00
4.79 0.21 0.21 6.25

b = 8 m 1.79 2.21 3.79 100.00

θq = 60
X Y Z Probability

b = 2 m 1.79 2.21 3.79 100.00
b = 4 m 1.79 2.21 3.79 100.00
b = 8 m 1.79 2.21 3.79 100.00
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