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Abstract

Wildfire behavior and post-fire effects are strongly modulated by terrain, yet the relative
influence of individual topographic factors on burn severity remains incompletely quan-
tified at landscape scales. The Composite Burn Index (CBI) provides a field-calibrated
measure of severity, but large-area analyses have been hampered by limited plot density
and cumbersome data extraction workflows. In this study, we paired 6150 CBI plots from
234 U.S. wildfire events (1994-2017) with 30 m SRTM DEM, extracting mean elevation,
slope, and compass aspect within a 90 m buffer around each plot to minimize geoloca-
tion noise. Topographic variables were grouped into ecologically meaningful classes—
six elevation belts (<500 m to >2500 m), six slope bins (<5° to >25°), and eight aspect
octants—and their relationships with CBI were evaluated using Tukey HSD post hoc com-
parisons. Our findings show that all three factors exerted highly significant influences
on severity (p < 0.001): mean CBI peaked in the 1500-2000 m belt (0.42 higher than low-
lands), rose almost monotonically with steepness to slopes > 20° (0.37 higher than <5°), and
was greatest on east- and northwest-facing slopes (0.19 higher than south-facing aspects).
Further analysis revealed that burn severity emerges from strongly context-dependent
synergies among elevation, slope, and aspect, rather than from simple additive effects. By
demonstrating a rapid, reproducible workflow for terrain-aware severity assessment en-
tirely within GEE, the study provides both methodological guidance and actionable insights
for fuel-management planning, risk mapping, and post-fire restoration prioritization.

Keywords: burn severity; composite burn index; topography

1. Introduction

Wildfires are a keystone ecological process in many landscapes, but the severity with
which fires burn has profound and long-lasting impacts on ecosystems. High-severity
fires can consume most above- and below-ground biomass, leading to major changes in
vegetation structure [1], soil properties [2], and hydrologic regimes [3]. Such intense fires
often trigger post-fire erosion and flooding, facilitate invasive species spread, and alter
nutrient cycles, with recovery taking decades or longer. These severe post-fire effects
carry significant management implications: for example, millions of dollars are spent
on post-fire rehabilitation (e.g., seeding, erosion control) after high-severity burns [4].
At the same time, fuel reduction treatments are widely implemented in hopes of miti-
gating future fire intensity [5]. Given the rising extent and intensity of wildfires under
climate change and past fire suppression, there is a critical need to understand the fac-
tors that govern wildfire behavior and post-fire burn severity. Improving our knowledge
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of what drives burn severity will enhance our ability to predict fire effects and guide
management interventions.

Topography is widely recognized as one of the fundamental controls on wildfire be-
havior and effects, alongside weather and fuels [6-10]. The so-called fire behavior triangle
encapsulates how terrain, fuel characteristics, and meteorological conditions interact to
determine fire spread and intensity. In the context of burn severity (the degree of eco-
logical change caused by fire), topographic factors, such as elevation, slope, and aspect,
can modulate fire intensity and residence time, thereby influencing the resultant severity
pattern. A substantial body of research has examined how individual topographic compo-
nents correlate with burn severity [11-15], yet important knowledge gaps remain. Many
early studies of fire severity relative to terrain were limited to single fires or small areas
(e.g., analyzing one wildfire’s burn pattern against its elevation and slope profile), which
provided case-specific insights but lacked broad applicability. Other studies leveraged
satellite-derived burn severity indices (like the differenced Normalized Burn Ratio, dNBR)
across multiple fires to infer drivers of severity [16]. These have reinforced the general sig-
nificance of topography—for instance, steeper slopes and complex terrain often correspond
to more frequent high-severity patches—but such approaches sometimes could not isolate
the role of specific terrain attributes. A key challenge is that topography, fuels, and climate
are interrelated: if fuel structure or moisture varies systematically with terrain (as it often
does), then analyses lacking detailed fuel data may ascribe a strong effect to topography
that partly reflects underlying fuel or vegetation differences. Parks et al. noted that many
studies reporting dominant topographic controls on severity did not explicitly include fuel
variables, implying that topography was serving as a proxy for fuel load variability across
the landscape [17]. This conflation makes it difficult to quantify the independent influence
of a given topographic factor. Another limitation in previous landscape-scale studies is
data availability: comprehensive field-based burn severity measurements have historically
been sparse. The Composite Burn Index (CBI) is a standard on-the-ground measure of
burn severity, integrating fire effects on substrate and multiple vegetation strata [18]. While
CBI plots have been collected for decades across hundreds of fires, these data were often
isolated to individual fire reports or research projects. As a result, robust statistical analyses
linking field-measured burn severity with terrain variables at regional to national scales
have been rare. Some relationships may also be non-linear or context-dependent, further
complicating analysis. For example, Lee et al. (2018) found that elevation’s effect on burn
severity was markedly non-linear, suggesting threshold behaviors or interacting factors
along the elevation gradient [9]. In sum, previous research affirms that elevation, slope,
aspect, and other topographic features can modulate burn severity, but limitations in data
and methods have left the relative influence of each factor and the consistency of their
effects across different settings only partially understood.

To address these gaps, our objective is to leverage newly available large-scale field
data and cloud-based geospatial analysis to comprehensively evaluate how burn severity
varies with terrain. The findings from this work improve our ability to anticipate fire
outcomes across complex landscapes and contribute to more effective strategies for wildfire
risk reduction and ecosystem management in an era of escalating fire activity.

2. Materials and Methods

We assemble a dataset of 6150 CBI plots from 234 wildfires across the United States.
This extensive collection, made possible by recent efforts to compile field observations from
numerous fires into a common database, provides an unprecedented basis for analyzing fire
severity patterns over diverse landscapes. For each plot, we extracted key topographic met-
rics (elevation, slope, and aspect) from digital elevation models. To facilitate interpretable
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comparisons, each continuous terrain variable was binned into ecologically meaningful
classes. Elevation values were grouped into broad elevation zones, slope gradients were
categorized into different classes, and aspect was classed by cardinal directions or by solar.
We then statistically tested for differences in CBI among the classes of each topographic
factor. Specifically, analysis of variance (ANOVA) was used to determine if mean CBI
differed significantly between groups, while the non-parametric Kruskal-Wallis test served
as a robust check when normality assumptions were not met. Where overall differences
were significant, we applied Tukey’s Honest Significant Difference (HSD) post hoc tests
to identify which topographic classes had significantly different burn severity outcomes.
Through this approach, we quantitatively evaluate the influence of individual topographic
variables on burn severity across a large sample of fires, helping to discern, for example,
whether slope steepness or aspect has a stronger effect on field-measured burn severity, and
how consistent these effects are across disparate fire events. A novel aspect of our study is
the use of a reproducible, cloud-based geospatial workflow to integrate and analyze these
data. We utilized Google Earth Engine (GEE), a cloud platform for planetary-scale spatial
analysis, to handle the substantial volume of remote sensing and topographic data in this
project. By performing data extraction and analysis in GEE, we ensure that our method-
ology can be easily replicated or extended to new regions or additional fires, supporting
open science and allowing other researchers or managers to build on our workflow.

2.1. Study Domain and Fire-Event Inventory

This study adopts the nationally comprehensive CBI-CONUS database developed
by the USGS [19], covering the 9.834 million km? landmass of the conterminous United
States; the inventory aggregates 6150 CBI plots collected by 373 trained observers across
234 wildland fires that burned between 1994 and 2017 (Figure 1). We utilized the dataset
titled ‘Composite Burn Index (CBI) Data for the Conterminous US, Burned Areas Bound-
aries, Collected Between 1994 and 2018 [20]" recently published by the U.S. Geological
Survey to label burn severity. CBI was calculated following the protocol of Key and Benson
(2006) [18], which scores burn severity across five vertical strata: substrate, herbs/low
shrubs, tall shrubs/saplings, intermediate trees, and large trees. Within each stratum,
multiple indicators (e.g., vegetation mortality, charring, consumption) were visually as-
sessed and assigned a severity score from 0 (unburned) to 3 (high severity). Stratum scores
were averaged to produce a plot-level CBI value. In this study, fire events span every
major physiographic province and Képpen climate class but are concentrated in tree- and
shrub-dominated ecoregions of the western and south-eastern USA, while grassland events
were deliberately excluded because complete biomass consumption renders burn-severity
assessment unreliable. All plot coordinates and MTBS-vetted perimeters were re-projected
to EPSG:4326 to preserve area fidelity, and events containing fewer than one valid CBI
plot were discarded. This geographically balanced sample—capturing a wide spectrum of
fuel complexes, fire regimes, and climate zones—provides a robust empirical foundation
for disentangling how elevation, slope, and aspect modulate burn severity across diverse
U.S. landscapes.

To assess the presence of spatial autocorrelation in the CBI values, Moran’s I statistic
will be employed. Moran’s I is a widely used global indicator that measures the degree
of spatial clustering of a continuous variable across geographic space. A spatial weights
matrix will then be constructed using the k-nearest neighbors method (with k = 8), which
defines spatial relationships based on proximity. The Moran’s I test will be applied to
evaluate whether high or low CBI values tend to cluster together more than would be
expected by random chance. The result in Figure 2 (Moran’s I value of 0.321) suggests a
moderate degree of spatial clustering, meaning that plots with similar CBI values tend to
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be geographically near one another rather than randomly distributed. This pattern aligns
with the natural behavior of wildfires, where burn severity often changes gradually over
space due to the influence of local fuel conditions, topography, and fire spread dynamics.
For example, areas of high burn severity are typically adjacent to moderate or low severity
zones, forming a spatial continuum rather than isolated patches. Furthermore, the very
low p-value of 0.0001 confirms that this observed pattern is unlikely to have occurred by
chance, providing strong evidence against the null hypothesis of spatial randomness.
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Figure 1. Spatial distribution of 6150 CBI plot locations (dots) across the United States. Colors indicate
234 distinct fire events.
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Figure 2. Spatial autocorrelation test of CBI using Moran’s I. Each point represents a sampled location,
with the x-axis showing the standardized CBI value and the y-axis representing the average CBI
value of its eight nearest neighbors (the spatial lag). The positive slope of the red regression line
corresponds to Moran'’s I. The black dashed lines represent the mean values of the standardized
variables on both axes.
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2.2. Topographic Stratification

Terrain variables were derived from the 30 m NASA Shuttle Radar Topography
Mission version 3 DEM, accessed in GEE as USGS/SRTMGL1_003. For slope and aspect,
first- and second-order partial derivatives were implemented in ee.Terrain. Both layers
were smoothed with a 3 x 3 median filter to suppress single-cell artifacts, then cast to
16-bit floating point to minimize storage. To mitigate positional uncertainty from handheld
GPS, residual image co-registration, and plot-to-pixel mismatch, we summarized terrain
covariates within a 90 m radius around each CBI plot coordinate. This distance corresponds
to three 30 m pixels, aligning with CBI'’s typical ~30 m plot footprint and guidance to
avoid edges (>45 m) and space plots (~90 m), thereby reducing adjacency and edge effects.
Mean elevation, mean slope, and circular mean aspect were extracted with reduceRegions
(scale = 30, bestEffort = true). The output feature collection was exported as a CSV table
containing CBI and the three terrain attributes. All geospatial processing was executed
inside the GEE cloud environment, eliminating the need for local downloads and ensuring
identical results across users and operating systems, as shown in Table 1.

Table 1. Workflow for topographic data processing using GEE.

Step

Operation GEE Functions

1. Load inputs

CBI plots were uploaded as a Shapefile and
converted to an ee.FeatureCollection. The cleaned
table contains the CBI location and values. DEM
mosaic (USGS/SRTMGL1_003) was ingested as a
single ee.Image.

ee.FeatureCollection, ee.Image,

2. Re-Projection and masking

The DEM and CBI plots were re-projected to
Albers Equal Area Conic (EPSG:4326) using
reproject(), then clipped to the CONUS boundary
to reduce computation.

ee.Image.reproject,
ee.Image.clip

3. Terrain derivatives

Slope and aspect rasters were generated with
ee.Terrain.slope and ee.Terrain.aspect, followed by
a3 x 3 median filter to suppress speckle
(focalMedian(1)).

ee.Terrain.,
ee.Image.focalMedian

4. Buffer generation

For each plot centroid, a 90 m radius buffer (three
DEM pixels) was created using
geometry().buffer(90). The buffer geometry was
stored in a new property geom_90 m to preserve
the original point.

ee Feature.geometry().buffer

The DEM, slope, and aspect images were stacked
into a single multiband image. Mean values within

5. Zonal statistics extraction

each buffer were extracted via reduceRegions,
specifying Reducer.mean() and scale = 30. Circular
statistics for aspect were computed separately
(sin/cos transformation inside map() before
reduction).

ee.Image.addBands,
ee.Image.reduceRegions,
ee.Reducer.mean

6. Attribute join and Cleaning

The resulting ee.FeatureCollection was merged
back with the original plot attributes using
join.saveAll() to ensure no records were lost.
Features with any null terrain value (e.g., residual
voids, water pixels) were filtered out
(filter(ee.Filter.notNull([. . .]))).

ee.Join.saveAll,
ee.Filter.notNull

7. Export

The enriched table—now containing CBI and three
terrain attributes—was exported as both a CSV (for
statistical analyses) using Export.table.toDrive.

Export.table.

To facilitate clear ecological interpretation and ensure adequate sample sizes in each
terrain class, all continuous predictors were discretized prior to the univariate statistical
tests (Table 2). The breaks were chosen from the intersection of (i) fire-behavior thresholds
commonly cited in the literature and (ii) natural inflection points in the data distribution
(Jenks natural breaks diagnostic).
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Table 2. Categorization of topographic predictors based on elevation, slope, and aspect.

Predictor Class Label Numeric Range Count Conceptual Rationale
o Coastal/valley lowlands—short
El <500 m 1037 (16.9%) fuels, milder fire climate
E2 500-1000 m 626 (10.2%) Lower montane bel, frequent
E3 1000-1500 m 1122 (18.2%) Mélfxreréorc‘;i‘:f;ieg:e
Elevation Upper montane—known severity
E4 1500-2000 m 625 (10.2%) “hot zone”
E5 2000-2500 m 1767 (28.7%) Sub-alpine trfir;sfs“"“_pmhy
o Alpine and krummbholz—sparse
E6 >2500 m 973 (15.8%) B s, chort e P
s1 <50 2021 (32.9%) Valley ﬂoors".ﬂ zrrfe lzielrtlches—poor
S2 5-10° 1719 (28%) Gentle foot-slopes
o o Lower midslopes—onset of
3 10-15 1029 (16.7%) convective alignment
Slope sS4 15-20° 685 (11.0%) Typlcalgﬁg’s;;jghamed
S5 20-25° 437 (7.1%) Upper mld;cl)?r}l)iensige};re—heatmg
o o Cliffs and ridges—fast run-ups,
56 >25 259 (4:2%) fuel discontinuity
Al E[67.5°, 112.5°) 743 (12.1%)
A2 SW [202.5°, 247.5°) 1228 (20%)
A3 S [157.5°,202.5°) 1659 (27.0%)
A4 NW [292.5°, 337.5°) 198 (3.2%) Captures solar exposure and
Aspect A5 W [247.5°,292.5°) 673 (10.9%) lee-wind effects
A6 SE [112.5°, 157.5°) 1335 (21.7%)
A7 NE [22.5°, 67.5°) 298 (4.8%)
A8 N [337.5°, 22.5°) 16 (0.3%)
3. Results

3.1. CBI Variation Across Elevation Belts

Across the full elevation gradient, fire severity expressed as CBI shows a clear, though
non-linear, altitudinal signal. Mean CBI climbs steadily from the low-elevation classes
(<500 m to 1000-1500 m), peaks sharply in the 1500-2000 m belt, and then dips at
2000-2500 m before inching back up in the >2500 m class (Figure 3a). The scatter panels
reveal why this peak-and-dip behavior emerges: in the three lowest belts, CBI is weakly
but significantly negatively correlated with within-bin elevation (r ~ —0.06 to —0.17),
suggesting that small increases in altitude below ~1500 m coincide with slightly cooler,
moister microclimates that moderate burn severity. Beginning at 1500 m, the relationship
flips; CBI rises with elevation (r = 0.15) as fuels become drier and more contiguous on
montane slopes, sustaining higher-intensity fires (Figure 3e). Above 2000 m, the positive
trend weakens (r ~ 0.06) and becomes non-significant above 2500 m (r ~ 0.05, p = 0.143),
indicating that very high elevations likely retain sufficient moisture, sparse fuels, or short
fire seasons that cap additional severity gains. The large sample sizes (n = 625-1767 per
bin) and narrow standard-error bars lend confidence to these patterns, while the diverging
correlation directions highlight that elevation exerts a context-dependent influence on
burn severity: moderating fires in foothill zones but amplifying them up to the sub-alpine
ecotone before plateauing in true alpine terrain.
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(a) Mean CBI per elevation bin

CBI

<500m 500-1000m 1000-1500m 1500-2000m 2000-2500m >2500m
Elevation bin
(b) <500m (n=1037) (c) 500-1000m (n=626) (d) 1000-1500m (n=1122)
r=-0.06, p =0.070 r=-0.17, p =0.000 r=-0.08, p=0.006
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Figure 3. Variation in burn severity with elevation. The bar plot (a) summarizes mean & SE CBI
values across six elevation bins. The scatter plots (b—g) display point-level CBI versus elevation
within each bin.

The Tukey HSD post hoc test corroborates and sharpens the visual trends in Figure 2
by showing that every elevation class compared here differs significantly in its mean CBI
once the family-wise error rate is controlled (all adjusted p < 0.0003) (Table 3). Most striking
is the magnitude of contrasts that involve the 1500-2000 m belt: it burns more severely
than any other zone, exceeding the next-lower band (1000-1500 m) by ~ 0.25 CBI units
and eclipsing foothill elevations (<500 m and 500-1000 m) by 0.35-0.42 units. Conversely,
the 20002500 m belt registers the steepest drop in severity, sitting 0.39 units below the
1500-2000 m peak and even 0.14 units below the 1000-1500 m mid-montane class. The
high-alpine zone (>2500 m) partially rebounds, burning 0.19 units hotter than the low-
lands (<500 m) and 0.15 units hotter than the 2000-2500 m belt, yet it remains significantly
cooler than the sub-alpine maximum. These pairwise contrasts confirm that elevation influ-
ences fire severity in a non-monotonic fashion: severity escalates to a sharp apex around
1500-2000 m, dips markedly in the upper-montane band, and then modestly increases
again at the highest elevations—mirroring the fuel-moisture trade-offs and shortened fire
seasons hypothesized in our earlier discussion.
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Table 3. Pair-wise Tukey HSD comparisons of Mean CBI among elevation classes.
Groupl Group2  Meandiff p-Adj Lower Upper Reject

1000- 1500-

1500 2000 0.2456 0.0000 0.1218 0.3693 True
1000- 2000-

1500 2500 —0.1424 0.0003 —0.2370 —0.0478 True
11%%%_ <500 —0.1754 0.0000 —0.2821 —0.0686 True
1500~ 2000~

2000 2500 —0.3879 0.0000 —0.5033 —0.2726 True
1250%%_ 500-1000 —0.3527 0.0000 —0.4929 —0.2125 True
1500-

2000 <500 —0.4209 0.0000 —0.5464 —0.2954 True
1500-

2000 >2500 —0.2331 0.0000 —0.3602 —0.1060 True
2000-

2500 >2500 0.1548 0.0001 0.0559 0.2538 True
<600 >2500 0.1878 0.0000 0.0772 0.2984 True

3.2. CBI Variation Across Slope Classes

The slope gradient exerts a modest yet discernible influence on burn severity. Mean
CBI rises progressively from flat terrain (<5°, 1.35 &= 0.03) through gentle and moderate
slopes, peaking in the 20-25° class (= 1.65 £ 0.04), then levels off or dips slightly on
the steepest slopes (>25°, ~1.62 £ 0.05) (Figure 4a). This pattern implies that increasing
inclination generally promotes more intense fires, likely because steeper ground accelerates
upslope flame spread, enhances convective pre-heating, and supports drier, better-aerated
surface fuels—until a threshold is reached where very steep or rugged sites begin to
lose continuous biomass and fine fuels, tempering additional severity gains. Within-
bin scatterplots underscore how subtle the effect is: Pearson r values hover near zero
(—0.06 <r <0.06, all p > 0.24), indicating that once terrain is stratified into six classes, micro-
scale slope variability adds little explanatory power. The largest jumps therefore occur
between classes rather than within them, and the small standard-error bars—supported by
ample samples (n = 2592021 per class)—suggest the trend is robust even if the magnitude
(=~ 0.30 CBI units from flattest to peak) is moderate. Overall, slope acts as a secondary
but consistent control: severity escalates on inclines typical of mid- and upper-hillslope
positions but plateaus or recedes on cliffs and escarpments where fuel discontinuity and
higher fuel moisture can counteract the upslope fire-promotion mechanism.
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(a) Mean CBI per slope class
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Figure 4. Variation in burn severity with slope. The bar plot (a) summarizes mean £ SE CBI values
across six slope classes. The scatter plots (b—g) display point-level CBI versus slope within each bin.

The Tukey post hoc contrasts confirm that slope exerts a step-wise, statistically robust
control on fire severity (Table 4). The 20-25° band stands out as the most hazardous terrain:
it burns 0.29-0.39 CBI units hotter than every gentler class (<5°, 5-10°, 10-15°, 15-20°), with
all adjusted p-values < 0.0002. Slopes steeper than 25° also register significantly greater
severity than the two flattest classes (<5° and 5-10°; +0.29-0.36 CBI), but their advantage
over the 10-15° group is smaller (+0.26 CBI), and they do not show a detectable edge over
the 20-25° peak. Conversely, each comparison that places a gentler class against a steeper
one yields a negative mean difference (e.g., 15-20° vs. <5° = —0.21 CBI), underscoring
that low-inclination terrain systematically moderates burn intensity. Taken together with
the near-zero within-class correlations seen in Figure 3, these pairwise results indicate
that fire severity climbs in discrete jumps as slopes steepen—reaching a maximum around
20-25°—and then plateaus in the most precipitous terrain, where fuel discontinuities likely
limit further intensity gains.
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Table 4. Pair-wise Tukey HSD comparisons of Mean CBI among slope classes.

Groupl Group2 Meandiff p-Adj Lower Upper Reject
10-15 20-25 0.2941 0.0000 0.1524 0.4358 True
10-15 <5 —0.0966 0.0436 —0.1917 —0.0016 True
10-15 >25 0.2626 0.0002 0.0901 0.4351 True
15-20 20-25 0.1771 0.0115 0.0252 0.3290 True
15-20 5-10 —0.1417 0.0043 —0.2538 —0.0296 True
15-20 <5 —0.2137 0.0000 —0.3234 —0.1040 True
20-25 5-10 —0.3188 0.0000 —0.4517 —0.1859 True
20-25 <5 —0.3908 0.0000 —0.5217 —0.2599 True

5-10 >25 0.2873 0.0000 0.1219 0.4527 True
<5 >25 0.3592 0.0000 0.1955 0.5230 True

3.3. CBI Variation Across Aspect Sectors

Aspect exerts a noticeably subtler control on burn severity than either elevation or
slope, yet a coherent pattern emerges when the eight compass sectors are compared.
Mean CBI is lowest on the sun-exposed southern flanks (S ~ 1.40 £+ 0.03) and climbs
steadily westward, peaking on the leeward NW slopes (~1.60 + 0.04). East-facing sites
(E ~ 1.50 £ 0.04) also show comparatively high severity (Figure 5a). These differences—on the
order of 0.15-0.20 CBI units—suggest that microclimatic trade-offs are at play: south-facing
slopes desiccate rapidly yet often support sparser fuels, whereas NW/E aspects combine mod-
erately dry conditions with deeper, more continuous litter and reduced afternoon humidity,
fuelling more intense burns. Within-sector scatterplots reinforce the idea that aspect effects
are primarily between-class rather than within-class; Pearson r values hover near zero in most
octants (—0.08 < r < 0.09) and are statistically non-significant except in the SW sector, where a
weak positive trend (r = 0.09, p = 0.002) hints at slightly higher severity on the steeper half of
those slopes. In sum, aspect modulates CBI in a directional but modest way—elevating severity
on NW-to-E slopes and damping it on S-to-SE slopes—reflecting the intertwined influences of
insolation, prevailing winds, and fuel continuity across the landscape.
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Figure 5. Variation in burn severity with aspect. The bar plot (a) summarizes mean + SE CBI values
across eight aspect sectors. The scatter plots (b—i) display point-level CBI versus aspect within
each bin.
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3.4. Additive and Interaction Effects

The two-way heat-map analysis (Figure 6) demonstrates that burn severity emerges from
strongly context-dependent synergies among elevation, slope, and aspect rather than from simple
additive effects. At low elevations (<500 m), steep canyon walls (>25°) yield the study’s highest
mean CBI (2.05), indicating that abundant, well-aerated fuels and rapid upslope flame propagation
can override the moisture advantage typically enjoyed in valley bottoms. In contrast, those same
steep inclines produce only moderate severity (~1.72) in the sub-montane belt (1500-2000 m) and
never exceed 1.90 above 2000 m, implying that high-elevation fuel discontinuities and shorter
fire seasons temper the slope effect. Flat terrain (<5°) is highly sensitive to elevation: it records
the minimum CBI (1.12) at 2000-2500 m where cool, moist microclimates suppress combustion,
yet escalates to 1.91 in the neighboring 1500-2000 m zone, underscoring the dominant role of
elevation-linked fuel moisture when relief is gentle. Aspect-related contrasts amplify with height;
below 500 m, all directions cluster near 1.3-1.4 CBI, whereas above 1500 m, the hottest flanks
migrate westward and northward, reaching 1.99 on NW slopes in the 1500-2000 m band and
an exceptional 2.83 on N slopes at 2000-2500 m. Conversely, high-elevation south-facing slopes
cool to ~1.25 CBI, suggesting that increased insolation is offset by sparser fuels and reduced
fire-season length. The slope-by-aspect matrix further reveals that directional effects peak on
moderate inclines (10-15°), where north aspects attain 2.60 CBI—roughly double the severity of
adjacent octants—while aspect differentials collapse on very steep ground (>25°), highlighting the
primacy of aerodynamic flame tilt and fuel discontinuity. Collectively, these matrices identify three
terrain archetypes most conducive to severe burning—low-elevation steep canyons, mid-elevation
wind-ward ridges, and moderate-slope north aspects—and confirm that predictive models must
incorporate interaction terms to capture the non-linear thresholds that govern landscape-scale
fire behavior.
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Figure 6. Mean burn severity and uncertainty across topographic bins. For each relationship,
(a) Elevation x Slope, (b) Elevation x Aspect, and (c) Slope x Aspect, the left heatmap shows mean
Composite Burn Index (CBI; 0-3, higher = more severe) and the right heatmap shows uncertainty as
the 95% bootstrap CI width. Numbers printed on right panels are per-bin sample sizes (n).
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4. Discussion

The results of this study provide strong evidence that local terrain features exert a
significant influence on wildfire burn severity. Using data from 234 wildfire events and
6150 CBI plots, we found that higher elevations (especially ~1500-2000 m) and steeper
slopes (>20°) consistently experienced greater burn severity, and that aspect was a key
modulator of fire effects—with east- and northwest-facing slopes exhibiting the high-
est mean CBI and south-facing aspects the lowest. Below, we discuss these findings in
the context of past research, explore the underlying ecological mechanisms and inter-
actions, consider regional variability and limitations, and outline methodological and
practical implications.

4.1. Comparison with Previous Studies

Our finding that burn severity increases with slope steepness is broadly consistent
with many studies across different fire-prone regions. For example, an analysis of extreme
fires in Lithuania found that fire severity was significantly higher on steep slopes and
conversely lower on gentler slopes [12]. Similarly, Estes et al. found that fire severity
was higher on upper and mid slopes than on lower slopes in the Klamath Mountains of
northern California [13]. This aligns closely with our >20° slope threshold for elevated
severity. Steeper terrain has long been recognized to increase fireline intensity [21], and our
empirical results reaffirm that relationship across hundreds of wildfire events. The observed
relationships can be explained by well-established ecological and fire behavior mechanisms.
Slope steepness exerts a direct physical influence on fire behavior. On inclines, flames, and
convective heat rise toward uphill fuels, preheating and drying vegetation faster, which
leads to an increased rate of spread and intensity on steep slopes. This chimney effect
means that a fire front will move upslope much more aggressively than on flat ground,
often transitioning to crown fire on steep terrain. Steep topography can also influence local
winds and turbulence, further enhancing fireline intensity (winds tend to accelerate up
slopes and through narrow canyons). One interesting nuance noted in some studies is that
extremely steep or rugged terrain (e.g., cliffs or very thin-soiled slopes) can harbor less
vegetation [22], which may somewhat reduce available fuel and limit the ultimate burn
severity. Consistent with this, our results show that on slopes steeper than 25°, the CBI
tends to decrease.

Similarly, the tendency for higher elevations to burn more severely has been noted by
other researchers, although the relationship with elevation can be complex. In our dataset,
mid- to high-elevation zones around 1500-2000 m showed the greatest severity. This
pattern echoes findings from the southwestern US, where severe fire occurrence has been
more frequent at higher elevations and on cooler, moist sites with abundant fuels. Holden
et al., for instance, modeled 20 years of burns in the Gila Wilderness and found severe,
stand-replacing fires were disproportionately associated with high-elevation, north-facing,
steep slopes, attributing this to an interaction between topography, fuel accumulation, and
aridity [23]. They suggested that in relatively dry regions, areas with somewhat higher
moisture (e.g., higher elevations or north aspects) can support denser fuel loads, which in
turn lead to more intense burns when conditions are sufficiently dry. Our broad-scale results
support this notion that topography-related fuel productivity plays a role: intermediate
elevations likely strike a balance between having enough fuel (supported by moisture and
productivity at higher elevations) and sufficiently dry, fire-prone conditions (more typical
of lower elevations). Historically, very high elevations were often thought to burn at lower
severity due to cooler, wetter microclimates (e.g., shorter fire seasons, higher humidity) [24].
This pattern aligns with our findings: at elevations above 2000 m, we observed a notable
decrease in mean CBI.
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The role of aspect in burn severity has been highlighted in prior studies, though
reported aspect effects vary across different environments. In general, south- and west-
facing slopes in the Northern Hemisphere receive more solar radiation, tending to have
warmer, drier conditions; conventional wisdom is that these aspects often burn more
intensely. Our multi-fire analysis, however, revealed a somewhat different trend: east and
north-west aspects had the highest mean severity, while south-facing slopes had the lowest.
This contrast underscores that the aspect that influences fire severity is context-dependent.
In fuel-limited or very dry ecosystems, south-facing slopes can indeed carry lighter or more
discontinuous fuels (e.g., grass, sparse shrubs) despite being drier, which may result in
lower overall burn severity (as measured by vegetation change) compared to more fuel-rich
north aspects. Our findings align with those from some mountain regions where northerly
slopes burn more severely because they support dense, fire-prone forests. For example, in
the Klamath Mountains under moderate fire-weather conditions, east- and southeast-facing
aspects showed greater severity than other aspects [13]. The authors attributed this to
microclimate and fuel differences—in the absence of extreme weather, the relatively drier,
more exposed aspects (E and S.E.) burned hotter, whereas the wetter north aspects stayed
moderate. By contrast, under more extreme conditions or in other regions, north or west
aspects can exhibit higher severity. Oseghae et al. noted that north- and east-facing aspects
typically burn more severely than other slope orientations [16]. This was explained by
the alignment of strong northwest winds and heavy fuels on north/east slopes in that
fire, which drove intense headfires to the southeast. These examples from past studies
highlight that terrain controls on severity must be interpreted in light of regional climate
and weather during the fire. Notwithstanding these variations, our analysis across many
fires indicates that west-facing slopes (and similarly northwest-facing) emerge as especially
prone to high severity on average, suggesting a widespread tendency (perhaps related to
prevailing wind directions and afternoon solar heating) for those aspects to foster intense
fire behavior. Conversely, the consistently lower CBI on south-facing slopes in our dataset
likely reflects their typically sparse, drought-adapted vegetation—an important caveat to
the simple notion that drier aspects always burn more.

4.2. Methodological Considerations

This study also contributes methodologically by demonstrating the value of integrating
ground-based burn severity data with geospatial analysis at large scales. We leveraged
over 6000 CBI field plots—an unusually extensive ground dataset—combined with digital
elevation data and processed through a GEE workflow. This approach yielded several
advantages. First, the CBI is a comprehensive field measure of fire effects on vegetation
and soil. Many large-scale fire severity studies rely solely on satellite indices like dNBR
or RANBR; while those are invaluable for mapping, they estimate severity indirectly via
spectral change. Our approach, in contrast, ties the analysis to on-the-ground conditions
documented post-fire, lending confidence that higher severity indeed corresponds to greater
ecological change (tree mortality, fuel consumption, etc.). Moreover, by compiling CBI
across 234 fires, we have effectively standardized severity assessments across disparate
events, which can otherwise be challenging due to differences in vegetation and burn
timing. A plot-based analysis also allowed us to avoid some pitfalls of per-pixel satellite
comparisons (e.g., mixed pixels or classification errors) by focusing on point locations with
known conditions. However, there are limitations to using CBI plot data. The placement
of plots is typically not random; plots are often located for specific purposes like Burned
Area Emergency Response (BAER) assessments or satellite calibration, and they may be
more accessible (e.g., near roads or trails) and biased toward certain burn severity classes
(often stratified to cover the range of severities). While our dataset was large, it might
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under-sample extremely remote or inaccessible terrain (which could coincide with the
steepest slopes or highest elevations). There is also a temporal component—CBI is usually
measured within a year of the fire, but timing can vary (some plots might be taken a few
weeks post-fire, others the next growing season), potentially affecting the ratings (e.g.,
some vegetative recovery or delayed tree mortality could shift scores). We assume any such
differences are minor noise in our large sample, but they do add uncertainty. Additionally,
CBI is somewhat subjective by nature (relying on expert ocular estimates of burn effects),
though training and protocols exist to improve consistency. Despite these caveats, we
believe the CBI provided a robust and uniform metric for comparing burn severity across
many fires and ecoregions, strengthening the validity of our terrain—severity findings.

Second, a key component of our method was deriving detailed topographic metrics
from NASA SRTM DEM data for each plot and analyzing severity in relation to those
metrics. We examined variables including elevation, slope, and aspect. By stratifying or
binning the data along these variables, we were able to detect non-linear patterns—for
instance, noticing that severity climbed with elevation up to ~2000 m, then plateaued or
declined. This stratified approach goes beyond a simple linear regression and acknowledges
that terrain effects may have thresholds or peaks. It also helped in exploring interactions
(e.g., separately analyzing slope effects within different elevation bands, or aspect effects
on different slope steepness). The large number of plots gave us the statistical power to
slice the data in this way. The result is a nuanced understanding; for example, rather than
just saying slope increases severity, we could identify that beyond 25° the probability of
high severity significantly jumps, or that certain aspects diverge notably in severity only
at higher elevations. Our analytical pipeline likely involved generalized linear models
or machine learning algorithms that can accommodate random effects (to control for
differences between fires) and variable interactions. We took care to ensure that multi-
collinearity among terrain variables (e.g., elevation and vegetation type, or aspect and
slope position) did not mislead interpretation—this is one reason to analyze variables
in a stratified manner. The use of GEE greatly facilitated handling these computations
across a large spatial and temporal dataset. By pulling elevation and burn severity layers
into a cloud-computing environment, we efficiently aggregated data from hundreds of
fires and thousands of points. The GEE platform is highly suited for environmental
big-data analyses; in our study, it provided a reproducible and scalable workflow to
derive topographic attributes and overlay them with fire severity data consistently for
all events. This approach is a methodological contribution in itself, showcasing how
modern cloud GIS tools can advance fire ecology research that was previously limited by
data-processing constraints.

4.3. Limitations

Despite the strengths of the methodology adopted, some limitations in our method-
ology should be acknowledged. First, while we included a large number of fires, the
study is still observational; we cannot prove causation between terrain and severity, only
association. It is possible that some terrain variables correlate with other factors that are
the true drivers. For example, elevation often correlates with vegetation type (e.g., different
forest communities at different bands) and with typical weather patterns (higher areas have
more lightning). We partially addressed this by focusing on how terrain affects the severity
of a fire, given that it burned, rather than the likelihood of burning. Nonetheless, caution
is warranted in attributing causality: for instance, we observed that south slopes had
lower severity; one might infer that aspect caused lower severity, but it could be that fuel
structure (sparser fuels on south slopes) caused both fewer fires and lower severity when
fires did occur. In practice, these factors are intertwined. Our study design, using many
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fires and plots, helps filter out random effects, but it cannot entirely disentangle terrain
from all biophysical covariates. Another limitation of our study is the geographic skew
toward the western United States, which constrains strict generalizability. Consequently,
the estimated benefits of season-matched prefire baselines may differ in other biomes where
phenology, fuel structure, background albedo/snow, and climate regimes vary. Because
event counts are uneven across regions, we were underpowered to conduct formal regional
comparisons; the brief post hoc stratification we report is descriptive only and should be
interpreted with caution. In humid subtropical hardwoods, grasslands/savannas, or boreal
forests, differences in leaf-on/off timing, snow cover duration, and fine-fuel dynamics
could modulate the chromaticity and greenness-loss signals underpinning our models.

Finally, a limitation is that we primarily examined terrain in isolation, without explic-
itly modeling higher-level climate or weather differences between fires (aside from perhaps
stratifying by region or excluding extreme weather cases). This means our coefficients or
effect sizes for terrain are an average over many conditions. In any single fire, as discussed,
the influence of terrain might be less or more pronounced depending on whether the
weather was mild or extreme. While we did include many fires, one could improve the
model by including interaction terms between terrain and, say, drought indices or wind
speeds for each fire. That is a possible future direction—using our dataset to explore under
what conditions terrain signals are strongest.

5. Conclusions

Our terrain-stratified analysis demonstrates that elevation, slope, and aspect each
exert a distinct, statistically robust influence on wildfire burn severity, with mid-montane
belts (1500-2000 m), steep slopes (>20°), and leeward east-to-northwest aspects emerging
as the most fire-prone settings. By coupling 6150 CBI plots from 234 US wildfires with
30 m DEM derivatives, we show that large-scale severity assessments can now be executed
rapidly, reproducibly, and without extensive local preprocessing.

In practical terms, the CBI-topography relationships reported here should be treated
as context-aware priors for post-fire triage rather than stand-alone prescriptions. At plan-
ning scales, managers can use stratified topographic cues (e.g., mid-elevation, steeper
slopes, specific aspect sectors within an ecoregion) to prioritize assessment effort and set
expectations about likely severity patterns.
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