Groundwater Dynamics in the Middle Brahmaputra River Basin: A Case Study of Shallow Aquifers in Inner Guwahati City, Assam, India
Abstract
1. Introduction
2. Study Area
2.1. Geological Setting of the Study Area
2.2. Hydrogeology
3. Materials and Methods
3.1. Data Collection
3.2. Groundwater Level Trend Analysis
4. Results and Discussion
4.1. Aquifer Lithology
4.2. Depth-to-Water Level and Flow Direction
4.3. Water Level Fluctuations
4.4. Trends in Groundwater Level
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- John, B.; Das, S.; Das, R. Natural groundwater level fluctuations of Kolkata City based on seasonal field data and population growth using geo-spatial application and characterized statistical techniques. Environ. Dev. Sustain. 2022, 25, 6503–6528. [Google Scholar] [CrossRef]
- Hasan, K.; Paul, S.; Chy, T.J.; Antipova, A. Analysis of groundwater table variability and trend using ordinary kriging: The case study of Sylhet, Bangladesh. Appl. Water Sci. 2021, 11, 120. [Google Scholar] [CrossRef]
- Hossain, M.J.; Rahman, M.Z.; Maksud Kamal, A.S.M.; Chowdhury, M.A.; Hossain, M.S.; Rahman, M.M.; Zahid, A.; Towfiqul Islam, A.R.M. Quantitative and qualitative assessment of groundwater resources for drinking water supply in the peri-urban area of Dhaka, Bangladesh. Groundw. Sustain. Dev. 2024, 25, 101146. [Google Scholar] [CrossRef]
- Wang, R.; Xiong, L.; Xu, X.; Liu, S.; Feng, Z.; Wang, S.; Huang, Q.; Huang, G. Long-term responses of the water cycle to climate variability and human activities in a large arid irrigation district with shallow groundwater: Insights from agro-hydrological modeling. J. Hydrol. 2023, 626 Pt A, 130264. [Google Scholar] [CrossRef]
- Swain, S.; Sahoo, S.; Taloor, A.K.; Mishra, S.K.; Pandey, A. Exploring recent groundwater level changes using Innovative Trend Analysis (ITA) technique over three districts of Jharkhand, India. Groundw. Sustain. Dev. 2023, 18, 100783. [Google Scholar] [CrossRef]
- Kumar, K.S.; Rathnam, E.V. Analysis and prediction of groundwater level trends using four variations of Mann-Kendall tests and ARIMA modeling. J. Geol. Soc. India. 2019, 94, 281–289. [Google Scholar] [CrossRef]
- Ghosh, A.; Bera, B. Estimation of groundwater level and storage changes using innovative trend analysis (ITA), GRACE data, and google earth engine (GEE). Groundw. Sustain. Dev. 2023, 23, 101003. [Google Scholar] [CrossRef]
- Song, S.; Xu, Y.P.; Wu, Z.F.; Deng, X.J.; Wang, Q. The relative impact of urbanization and precipitation on long-term water level variations in the Yangtze River Delta. Sci. Total Environ. 2019, 648, 460–471. [Google Scholar] [CrossRef]
- Wang, D.; Li, P.; He, X.; He, S. Exploring the response of shallow groundwater to precipitation in the northern piedmont of the Qinling Mountains, China. Urban Clim. 2023, 47, 101379. [Google Scholar] [CrossRef]
- Swain, S.; Taloor, A.K.; Dhal, L.; Sahoo, S.; Al-Ansari, N. Impact of climate change on groundwater hydrology: A comprehensive review and current status of the Indian hydrogeology. Appl. Water Sci. 2022, 12, 120. [Google Scholar] [CrossRef]
- Bhanja, S.N.; Mukherjee, A. Insitu and Satellite–based estimates of usable geroundwater storage across india: Implications for drinking water supply and food security. Adv. Water Resour. 2019, 126, 15–23. [Google Scholar] [CrossRef]
- Maina, F.; Kumar, S.V. Anthropogenic influences alter the response and seasonality of evapotranspiration: A case study over two high mountain asia basins. Geophys. Res. Lett. 2024, 51, e2023GL107182. [Google Scholar] [CrossRef]
- Census of India (Census). Final Population Totals; Ministry of Home Affairs, Government of India: New Delhi, India, 2011.
- Central Groundwater Board (CGWB). Dynamic Groundwater Resources of India; Central Groundwater Board (CGWB): Faridabad, India, 2022.
- Saikia, P.; Nath, B.; Dhar, R.K. Quantifying the changing pattern of water level conditions and groundwater potential zones in a rapidly urbanizing Kamrup metropolitan district of Assam, India. Groundw. Sustain. Dev. 2023, 21, 100935. [Google Scholar] [CrossRef]
- Singh, S.; Ranjan, M.R.; Tripathi, A.; Ahmed, R. Assesment of groundwater quality of greater Guwahati with reference to iron and fluoride. Int. J. Res. Appl. Sci. Eng. Technol. 2017, 5, 2315–2320. [Google Scholar] [CrossRef]
- Bakshi, A.R.; Roy, I. Groundwater management options in Greater Guwahati area. In Water Resource Day seminar; Institute of Engineers: Guwahati, India, 2006; pp. 68–80. [Google Scholar]
- Goswami, D.C.; Kalita, N.R.; Kalita, S. Pattern of availability and use of domestic water in Guwahati city. In Symposium on 150 Years of Guwahati Under Public Administration—A Critical Assessement of Its Development; Gauhati University: Guwahati, India, 2005; pp. 71–80. [Google Scholar]
- Nath, B.; Ni-Meister, W.; Choudhury, R. Impact of urbanization on land use and land cover change in Guwahati city, India and its implication on declining groundwater level. Groundw. Sustain. Dev. 2021, 12, 100500. [Google Scholar] [CrossRef]
- Das, N.; Goswami, D.C. A geo-environmental analysis of the groundwater resource vis-a vis surface water scenario in Guwahati City. Curr. World Environ. 2013, 8, 275–282. [Google Scholar] [CrossRef]
- Central Groundwater Board (CGWB). Northeast Region and Ministry of Water Resource, Annual Report; Central Groundwater Board (CGWB): Faridabad, India, 2013.
- Ribeiro, L.; Kretschmer, N.; Nascimento, J.; Buxo, A.; Rötting, T.; Soto, G.; Señoret, M.; Oyarzún, J.; Maturana, H.; Oyarzún, R. Evaluating piezometric trends using the Mann–Kendall test on the alluvial aquifers of the Elqui River basin, Chile. Hydrol. Sci. J. 2015, 60, 1840–1852. [Google Scholar] [CrossRef]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Mondal, A.; Kundu, S.; Mukhopadhyay, A. Rainfall trend analysis by Mann–Kendall test: A case study of North-Eastern part of Cuttack district, Orissa. Int. J. Geol. Earth Environ. Sci. 2012, 2, 70–78. [Google Scholar]
- Yadav, R.; Tripathi, S.K.; Pranuthi, G.; Dubey, S.K. Trend analysis by Mann–Kendall test for precipitation and temperature for thirteen districts of Uttarakhand. J. Agrometeorol. 2014, 16, 164–171. [Google Scholar] [CrossRef]
- Saha, D.; Shekhar, S.; Ali, S.; Vittala, S.S.; Raju, N.J. Recent hydrogeological research in India. Proc. Indian Natl. Sci. Acad. 2016, 82, 787–803. [Google Scholar] [CrossRef]
- Karanth, K.R. Groundwater Assessment, Development and Management; Tata McGraw-Hill Publishing Company Limited: New Delhi, India, 1997. [Google Scholar]
- Gunduz, O.; Simsek, C. Influence of Climate Change on Shallow Groundwater Resources: The Link Between Precipitation and Groundwater Levels in Alluvial Systems. In Climate Change and Its Effect on Water Resource; Springer: Dordrecht, The Netherlands, 2011; pp. 225–233. [Google Scholar]
- Islam, M.; Van Camp, M.; Hossain, D.; Sarker, M.M.R.; Khatun, S.; Walraevens, K. Impacts of Large-Scale Groundwater Exploitation Based on Long-Term Evolution of Hydraulic Heads in Dhaka City, Bangladesh. Water 2021, 13, 1357. [Google Scholar] [CrossRef]
- Yihdego, Y.; Webb, J.A. Modeling of bore hydrographs to determine the impact of climate and land-use change in a temperate subhumid region of southeastern Australia. Hydrogeol. J. 2011, 19, 877–887. [Google Scholar] [CrossRef]
- Waco, K.E.; Taylor, W.W. The influence of groundwater withdrawal and land use changes on brook charr (Salvelinus fontinalis) thermal habitat in two coldwater tributaries in Michigan, U.S.A. Hydrobiologia 2010, 650, 101–116. [Google Scholar] [CrossRef]
- Brauman, K.A.; Freyberg, D.L.; Daily, G.C. Land cover effects on groundwater recharge in the tropics: Ecohydrologic mechanisms. Ecohydrology 2012, 5, 435–444. [Google Scholar] [CrossRef]
- Faridatul, M.I. A comparative study on precipitation and groundwater level interaction in the highly urbanized area and its pheriphery. Curr. Urban Stud. 2018, 6, 209–222. [Google Scholar] [CrossRef]
- Rahmawati, N.; Rahayu, K.; Arisanty, D.; Adji, T.N.; Salvo, C.D. Variation of groundwater level due to land use, precipitation, and earthquake in Yogyakarta City from 2005 to 2020. Groundw. Sustain. Dev. 2024, 26, 101195. [Google Scholar] [CrossRef]
- Lutz, A.; Minyila, S.; Saga, B.; Diarra, S.; Apambire, B.; Thomas, J. Fluctuation of groundwater levels and recharge patterns in northern Ghana. Climate 2014, 3, 1–15. [Google Scholar] [CrossRef]
- Russo, T.A.; Lal, U. Depletion and response of deep groundwater to climate-induced pumping variability. Nat. Geosci. 2017, 10, 105–108. [Google Scholar] [CrossRef]
- Borthakur, M.; Nath, B.K. A study of changing urban landscape and heat island phenmenon in Guwahati Metropolitan Area. Int. J. Sci. Res. Publ. 2012, 2, 1–6. [Google Scholar]
- Tanwar, D.; Tyagi, S.; Sarma, K. Land use dynamics and its influence on groundwater depth levels in South region of National Capital Territory (NCT) of Delhi, India. Environ. Monit. Assess. 2023, 195, 1174. [Google Scholar] [CrossRef] [PubMed]
- Sarmah, R.; Chakraborty, S.; Sarma, A. Assessment of groundwater depletion at Guwahati, largest metropolis in North East India and its consequences—A review. Int. J. Emerg. Technol. Innov. Res. 2022, 9, f582–f588. [Google Scholar]
- Dutta, J.; Choudhury, R.; Nath, B. Quantification of Urban Groundwater Recharge: A Case Study of Rapidly Urbanizing Guwahati City, India. Urban Sci. 2024, 8, 187. [Google Scholar] [CrossRef]
ID | Station | Pre-Monsoon (1998–2014) | Post-Monsoon (1998–2012) | ||||
---|---|---|---|---|---|---|---|
Z Score | Sen’s Slope | Trend | Z Score | Sen’s Slope | Trend | ||
T1 | Amingaon | 1.4 | 0.02 | No | −0.84 | −0.01 | No |
T2 | Charabbhat Chariali | 3.17 | 0.35 | Falling | −0.3 | −0.03 | No |
T3 | Garchuk | 3.42 | 0.11 | Falling | −1.98 | −0.07 | Rising |
T4 | Jonali Path, Zoo Road | 3.01 | 0.35 | Falling | 3.47 | 0.24 | Falling |
T5 | Jyotinagar, Durga Namghar | 3.17 | 0.13 | Falling | −0.3 | −0.01 | No |
T6 | Kharguli, North of Kharguli Hill | −0.87 | −0.02 | No | −4.01 | −0.14 | Rising |
T7 | Krishna Nagar Cemetery | 2.39 | 0.16 | Falling | −0.89 | −0.03 | No |
T8 | Maligaon Colony | 1.44 | 0.14 | No | 0.1 | 0.03 | No |
T9 | Maligaon, Gosala | −1.03 | −0.08 | No | −1.19 | −0.07 | No |
T10 | Noonmati | −2.76 | −0.07 | Rising | −2.47 | −0.10 | Rising |
Year | Z Score | Sen’s Slope | p-Values | Trend |
---|---|---|---|---|
2007 | 0.41 | −1.56 | 0.68 | No |
2008 | −0.62 | −9.35 | 0.54 | No |
2009 | 1.24 | 21.34 | 0.22 | No |
2010 | −0.21 | −5.67 | 0.84 | No |
2011 | 0.07 | 1.53 | 0.95 | No |
2012 | −0.62 | −1.05 | 0.54 | No |
2013 | 0 | 0 | 1 | No |
2014 | 0 | 1.65 | 1 | No |
2015 | 0.48 | 5.81 | 0.63 | No |
2016 | −0.75 | −1.86 | 0.45 | No |
2017 | −0.07 | −0.82 | 0.95 | No |
2018 | 0.62 | 1.61 | 0.54 | No |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Medhi, S.; Choudhury, R.; Sharma, P.; Nath, B. Groundwater Dynamics in the Middle Brahmaputra River Basin: A Case Study of Shallow Aquifers in Inner Guwahati City, Assam, India. Geographies 2024, 4, 675-686. https://doi.org/10.3390/geographies4040037
Medhi S, Choudhury R, Sharma P, Nath B. Groundwater Dynamics in the Middle Brahmaputra River Basin: A Case Study of Shallow Aquifers in Inner Guwahati City, Assam, India. Geographies. 2024; 4(4):675-686. https://doi.org/10.3390/geographies4040037
Chicago/Turabian StyleMedhi, Smitakshi, Runti Choudhury, Pallavi Sharma, and Bibhash Nath. 2024. "Groundwater Dynamics in the Middle Brahmaputra River Basin: A Case Study of Shallow Aquifers in Inner Guwahati City, Assam, India" Geographies 4, no. 4: 675-686. https://doi.org/10.3390/geographies4040037
APA StyleMedhi, S., Choudhury, R., Sharma, P., & Nath, B. (2024). Groundwater Dynamics in the Middle Brahmaputra River Basin: A Case Study of Shallow Aquifers in Inner Guwahati City, Assam, India. Geographies, 4(4), 675-686. https://doi.org/10.3390/geographies4040037