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Abstract: Social media platforms are valuable data sources in the study of public reactions to
events such as natural disasters and epidemics. This research assesses for selected countries around
the globe the time lag between daily reports of COVID-19 cases and GDELT (Global Database of
Events, Language, and Tone) and Twitter (X) COVID-19 mentions between February 2020 and April
2021 using time series analysis. Results show that GDELT articles and tweets preceded COVID-19
infections in Australia, Brazil, France, Greece, India, Italy, the U.S., Canada, Germany, and the U.K.,
while for Poland and the Philippines, tweets preceded and GDELT articles lagged behind COVID-19
disease incidences, respectively. This shows that the application of social media and news data for
surveillance and management of pandemics needs to be assessed on a case-by-case basis for different
countries. It also points towards the applicability of time series data analysis for only a limited
number of countries due to strict data requirements (e.g., stationarity). A deviation from generally
observed lag patterns in a country, i.e., periods with low COVID-19 infections but unusually high
numbers of COVID-19-related GDELT articles or tweets, signals an anomaly. We use the seasonal
hybrid extreme Studentized deviate test to detect such anomalies. This is followed by text analysis of
news headlines from NewsBank and Google on the date of these anomalies to determine the probable
event causing an anomaly, which includes elections, holidays, and protests.
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1. Introduction

The COVID-19 pandemic restrained daily life activities worldwide for large parts of
2020 and 2021, resulting in economic [1] and social [2] disruptions. It dominated both
the news and social media [3,4] beginning from March 2020, when the World Health
Organization (WHO) declared it a pandemic [5].

Various communication channels such as official government websites [6], health
organizations such as the Centers for Disease Control and Prevention (CDC) [7], mass
media [8], and social media [9] were used to raise awareness and disseminate information
about the pandemic. Moreover, social media applications such as Twitter (X) [10] and news
outlets [11] facilitated public discussions around the pandemic, thus enabling the analysis
of public attention to the disease. Among social media platforms, Twitter data were the
most prominently featured in COVID-19-related research [12]. However, social media data
have their limitations [13], such as user selection bias, which may affect conclusions drawn
from the analysis of such data.

Comparison and cross-validation of Twitter data with other datasets can help to
identify and potentially mitigate these drawbacks. GDELT is a news repository which is
built upon machine learning algorithms that monitor over 300 categories of events spanning
different locations around the world [14]. It has been used to study public attention to the
Zika epidemic [15] but is underexplored pertaining to COVID-19-related research [16].

The public response to events on social media and other online platforms can be
analyzed from thematic, information flow, spatial, and temporal standpoints [17]. Our
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study primarily focuses on the temporal aspect and analyzes the synchronicity between
the number of newly reported COVID-19 infections and related responses on GDELT and
Twitter using cross-correlation analysis [18,19]. The novelty of this study is in assessing
the effectiveness of this technique across diverse datasets and regions. That is, datasets
from 13 countries were used for the cross-correlation analysis, which demonstrates the
applicability of the chosen approach beyond single nations. We also discuss its limitations
for countries that failed to meet its data requirements.

This method involves assessing COVID-19 case trends and related GDELT and tweet
volume fluctuations to identify lead–lag patterns that describe whether COVID-19 cases are
correlated with GDELT and Twitter responses and which of these online sources precedes
or follows the other. This information can aid in anticipating potential stress periods
within the public health system, which is important when devising efficient public health
management strategies during health-related crises. Moreover, the analysis deepens our
understanding of how the public’s attention shifts during health crises, contributing to
advancement of the evolution of theories regarding public attention economics, social
media, and online news patterns.

Days with low records of new COVID-19 infections but unusually high numbers of
COVID-19-related GDELT articles or tweets denote outliers (anomalies) and, as such, a
disconnect between new COVID-19 case numbers and the public attention. Anomalies may
be caused by specific events impacting public attention. Part of our analysis explores which
events cause such news or tweeting spikes. For this task, news headlines from NewsBank
and results from Google searches, based on the ‘COVID’ search keyword, were scraped for
those dates and analyzed using text analysis.

The two described objectives of this study can therefore be summarized as follows:

1. Assess time-lagged relationships between new COVID-19 cases and the number
of COVID-19-related GDELT articles and tweets in selected countries using cross-
correlation analysis.

2. Identify anomalies and their causes on days with abnormally high COVID-19-related
responses on GDELT and Twitter but low numbers of new COVID-19 cases.

2. Literature Review

Previous studies have exemplified how social media platforms, news media por-
tals, and data from online search engines are reflective of the chronology of real-time
events [20,21]. They used time series analysis to examine pattern changes and time-lagged
relationships and to make predictions.

Time-lagged relationships between time series datasets are often determined using
cross-correlation analysis [18]. At the core of the method is the use of an autoregressive
integrated moving average (ARIMA) model, where future values of a univariate time series
with a constant mean and variance are predicted using its past values and errors of the
series [22]. In the case of existing feedback relationships, where the predictor and the
dependent variables influence each other, vector autoregressive (VAR) models are more
appropriate [23].

Cross-correlation analysis has been used to study the temporal relationship between
factual information and misinformation related to COVID-19 on Twitter [24] as well as the
effect of various climate variables, such as solar exposure, on the spread of COVID-19. It has
also been used to explore the interaction between social media posts (tweets), traditional
mass media outlets (newspapers), and information-seeking tools (Google Trends) during
peak years of the California drought 2013–2015 [25]. Regarding GDELT, cross-correlation
analysis revealed that the Saudi Stock Market Index (TASI) lagged the tone of GDELT news
by one day, indicating that GDELT could have a predictive power over TASI [26].

Regular patterns in a time series can be affected by other events, leading to abnormal
changes. Such artifacts can be discovered through a variety of methods, which can be cate-
gorized into statistical, clustering, classification, and regression techniques [27]. Time series
data from online sources tend to exhibit characteristics such as multimodal distribution,
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volatility, and seasonality, which need to be handled accordingly in anomaly detection,
for example, by using the seasonal hybrid extreme Studentized deviate (SHESD) test [28].
This method has been applied in the temporal analysis of Twitter data and Google Trends
before [29] and is a modified version of the extreme Studentized deviate (ESD) test [30].

Social media data have known limitations such as geodata sparsity, retrieval restric-
tions, and sociodemographic bias, and they are affected by data privacy regulations [13].
GDELT’s global coverage of events with over two billion geocoded data, its historical cover-
age which reaches back to 1979, and its 15 min update cycle allow for a comprehensive and
rapid analysis of events. These facts render GDELT a potentially viable alternative data
source to Twitter and other social media for disease monitoring and prediction. GDELT has
been rarely used in the context of COVID-19, with only a few exceptions, such as the use of
4Chan, Reddit, and GDELT data to analyze pandemic-related conspiracies [31].

Existing studies have analyzed online news media coverage of COVID-19 [32] and
used data from Twitter for predicting COVID-19 infections [33,34]. The spike in tweets
around disease news can, among other factors, be explained by preference of user-generated
content sites compared to those of governmental authorities to share disease-related news,
such as information on outbreaks and case reports [35]. This can lead the number of
disease-related tweets to increase even before governmental official announcements of first
probable disease cases, as was found for the Ebola outbreak in Nigeria [36]. However, the
accuracy of social media surveillance systems can decline with media attention, since this
increases messages about the disease that do not pertain to an actual infection [37].

3. Materials and Methods
3.1. Data Sources
3.1.1. New Daily COVID-19 Infections

The number of new daily cases of COVID-19 per country reported between 11 February
2020 and 30 April 2021 were obtained as CSV files from Johns Hopkins University [38]. The
data quality differs between countries due to varying degrees of access to resources needed
to adequately monitor disease spread [39]. Low quality of data (e.g., missing records)
for numerous countries prevented the use of their data in cross-correlation and anomaly
analysis. Where possible, linear interpolation was used to fill in data gaps.

3.1.2. Twitter

The academic research product track on the Twitter API provided free access to the
full-archive search endpoint. This enabled the retrieval of geotagged COVID-19-related
tweets worldwide between 11 February 2020 and 30 April 2021. With an API rate limit of
900 requests/15 min, a delay between requests was used to adhere to this restriction, which
extended the data collection process to seven weeks. The following ten COVID-19-related
hashtags were used as a filter: #Coronavirus, #COVID2019, #2019nCoV, #COVID_19, #so-
cialdistancing, #novelcoronavirus, #stayhome, #SARSCoV2, #lockdown, and #quarantine.

Tweets can be tagged with location data including the exact geographic coordinates
or the bounding box enclosing a place (e.g., neighborhood, city, administrative area).
Since Twitter for iPhone, Twitter for Android, and Instagram have the highest number of
geotagged tweets and effectively exclude automated tweets (bots) [40], only tweets posted
from those sources were used. Duplicate tweets shared by the same user in a day were
deleted as they are characteristics of robotic content which can skew the analysis results [41].
Tweets were downloaded in JSON (JavaScript Object Notation) format and stored in a
PostgreSQL database.

3.1.3. GDELT

GDELT is a worldwide news repository of events gathered from broadcast, print,
and online news media in over 100 languages that contains hyperlinks to news articles.
The dataset can be freely accessed as raw CSV files or, as was performed in this study,
through Google BigQuery by querying GDELT’s Global Geographic Graph (GGG), which
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contains over 2.1 billion location mentions of events from various web news sources
worldwide. The graph enables mapping of an event of interest at the location at which it
is mentioned with the spatial resolution of location data extracted from articles coded as
follows: 1 = country, 2 = U.S. state, 3 = U.S. city or landmark, 4 = city or landmark outside
the U.S., and 5 = administrative area outside the U.S. that is equivalent to a U.S. state.

The GGG was queried to analyze the worldwide news coverage of the coronavirus
pandemic between 11 February 2020 and 30 April 2021 for all five spatial resolution
categories. Contextual texts like ‘COVID’ and ‘coronavirus’ were used as keywords to
retrieve articles using Structured Query Language (SQL).

3.2. Data Preprocessing

For objective 1, the analysis of time series data required the extraction of underlying
patterns comprising a trend, seasonality, and residuals. Preliminary analysis of the three
datasets (new daily COVID-19 infections, GDELT news, and tweets) for some countries
revealed a weekly seasonality pattern which can be studied using the seasonal-trend decom-
position (STL) using LOESS (locally estimated scatterplot smoothing) [42]. Cross-correlation
employs STL, which uses a logarithm transformation to ensure seasonal variations are con-
stant in scale. Due to the use of a logarithm, only countries with positive count values in the
three datasets between the date of the first reported COVID-19 case and 30 April 2021 were
selected for cross-correlation analysis. This criterion was met by 21 out of 197 countries
(Figure 1a).
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Cross-correlation analysis requires each of the three datasets to be stationary, which
means that their mean and variance have to be constant with no autocorrelation in the
ARIMA model residuals throughout their respective timelines [23]. Therefore, time series
data from each of the 21 previously identified countries were screened for the presence of a
90-day period which satisfied required statistical regularities in each of the three datasets.
Such a 90-day period was identified for a subset of 13 countries (Figure 1b).

As a result, cross-correlations between COVID-19 cases and related GDELT articles
and tweets were computed for a 12-week period between 29 February 2020 and 29 May
2020 for Australia, Canada, Germany, Italy, the U.K., and the U.S., and between 11 March
2020 and 9 June 2020 for France, Brazil, Greece, India, Philippines, Poland, and Mexico.

For objective 2, anomaly detection and text analysis were attempted on the three
datasets for the original 197 countries between 11 February 2020 and 30 April 2021. Datasets
from numerous countries had to be excluded from the analysis because of low daily sample
numbers in any of the three sources. This left the following ten countries for this part
of the analysis: Bangladesh, Bolivia, Botswana, Cyprus, Guatemala, Jamaica, Lebanon,
Netherlands, Serbia, and Singapore.

For the 23 countries analyzed for objective 1 (13 countries) and objective 2 (10 coun-
tries), a weekly average of 1,514,844 new COVID-19 cases, 23,901 related tweets, and
48,958 related GDELT news mentions were observed.

3.3. Cross-Correlation Analysis

Cross-correlation analysis models the time-lag relationship between two time series
datasets by measuring their similarity through the correlation coefficient at each lag and
testing its significance. The time series of the independent variable (new COVID-19 infec-
tions) is the input series, whereas the dependent variable (GDELT articles or tweets) is the
response series. The principle of cross-correlation entails carrying out a lagged regression
where the response time series (Y variable) is predicted at the present time using lags of an
input times series (X variable) and lags of the Y variable.

This process cannot be performed using the original time series datasets because the
cross-correlation function (CCF) value is affected by the time series structure of the input
series and any long-term common patterns between the input and response series, which
results in dependencies [43]. These interdependencies can be removed through prewhiten-
ing. During this procedure, an ARIMA model is first fitted to the input series (COVID-19
cases), and then the same model is fitted to the response variable (GDELT/Twitter). Finally,
their respective residuals are used to calculate the CCF. Prewhitening helped, for exam-
ple, to remove dubious correlations resulting from chronological dependencies between
COVID-19 cases and related GDELT articles or tweets [31].

The steps involved in cross-correlation analysis are described in the following subsec-
tions and annotated through numbers in the flowchart (Figure 2) as follows: (1) time series
decomposition, (2) transformation and differencing, (3) ARIMA model fitting, (4) prewhiten-
ing, (5) cross-correlation of residuals from the ARIMA model, (6) vector autoregressive
model fitting, and (7) cross-correlation of residuals from the VAR model.

3.3.1. Step 1: Time Series Decomposition

The patterns inherent in each of the three time series datasets (new COVID-19 cases,
GDELT activity, and Twitter activity) can be split into three components, i.e., trend, season-
ality, and residuals. This is shown in Figure 3b–d for new COVID-19 cases for the U.S. as
an example.
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During the decomposition process of time series data, components can be combined
additively or multiplicatively, reflecting an additive or multiplicative decomposition ap-
proach, respectively. Additive decomposition is applicable when the magnitude of the
seasonal component fluctuations is constant over time, whereas multiplicative is used when
it changes over time.

The trend, which is the upward or downward pattern of a time series, can be estimated
using smoothing techniques such as moving average. Seasonality expresses fluctuations
that occur repeatedly after specific periods. A fast Fourier transform (FFT) applied to
COVID-19 case numbers, GDELT news articles, and tweets time series data revealed a pre-
dominant frequency of seven days and, thus, a weekly seasonality. Removal of seasonality
and trend is a prerequisite for achieving stationarity before cross-correlation [44].

The residuals are the noise components which remain after the removal of trend
and seasonal parts. They can be distorted by large anomalies, which affect the mean
and exaggerate the variance of time series data values. This influence can be reduced
through the STL technique, which uses locally weighted regression to extract the seasonal
component. Each of the three time series datasets for the remaining 13 countries were of
a multiplicative nature and hence were decomposed using R (stl function in the R stats
package) into their constituent parts. The seasonally adjusted data were recovered by
applying R (seasadj function in the R forecast package) on the decomposed components to
remove the seasonal components.
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3.3.2. Step 2: Time Series Transformation and Differencing

The augmented Dickey–Fuller (ADF) test showed that seasonally adjusted obser-
vations of the three datasets for the 13 countries were nonstationary. To reach a stable
variance, a power transformation (Equation (1), upper clause) was applied to each variable
yt at a time period t where lambda λ values were chosen from the interval [0; 1] using R
(BoxCox.lambda function in the R forecast package). If λ = 0, Box–Cox transformations [45]
can be applied instead (Equation (1), lower clause).

wt =

{
(yλ

t − 1
)

/λ if λ 6= 0.
log(y t) if λ = 0;

(1)

To stabilize the mean and remove the trend, the transformed datasets underwent
first-order differencing. Figure 4a depicts the original U.S. COVID-19 cases time series
between 29 February 2020 and 29 May 2020, and Figure 4b shows the result of these two
processes (transformation and differencing). A subsequent ADF test confirmed that the
modified time series were stationary.
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3.3.3. Step 3: Fitting an ARIMA Model to the Input Series

An ARIMA model performs time series forecasts using its past data values, which
are defined in the autoregressive (AR) term, and past errors, which are described by the
moving average (MA) term. The (I) term represents the order of differencing applied.

An ARIMA model specification is given as ARIMA (p, d, q) where p captures the AR
term, d the differencing order, and q the MA term. With a seasonal component present,
additional (P, D, Q)s terms are included where P, D, Q, and s represent the seasonal AR
term, differencing order, MA term, and seasonality, respectively, as in ARIMA (p, d, q) (P,
D, Q)s. An ARMA (autoregressive moving average) model of (p, q) order consists of p AR
and q MA terms, as shown in Equation (2) where {Zt} is a purely random process with
mean zero and variance σ2

z and α1...p and β1...q are the autoregressive and moving average
coefficients, respectively [46].

Xt = α1Xt−1+ . . . + αpXt−p + Zt + β1Zt−1+ . . .+βqZt−q (2)

Xt represents a time series variable at time t estimated through a linear combination of
the lagged values (Xt−1...Xt−p) of Xt where p are the lags of the AR terms and Zt−1...Zt−q
represent lagged forecast errors in past values with q as the lags of the MA terms.

Using the backward shift operator B, Equation (2) can be rewritten as (Equation (3)):

ARMA(p, q) : φ(B)Xt = θ(B)Zt (3)
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where φ is a nonseasonal autoregressive parameter of order p, θ a nonseasonal moving
average parameter of order q, and φ(B) and θ(B) polynomials of order p, q, respectively,
such that (Equation (4))

φ(B)= 1− α1B− . . .− αPBP (4)

θ(B)= 1+β1B+ . . .+βqBq

ARIMA adds a nonseasonal differencing order d with (1 − B)d equal to the d-th
nonseasonal difference so that an ARIMA process of order (p, d, q) can be formulated as
(Equation (5)):

ARIMA(p, d, q) : φ(B)(1− B)dXt = θ(B)Zt (5)

After obtaining stationarity in the daily COVID-19 dataset, it was fitted to an ARIMA
model using R (auto.arima function in the R forecast package) to identify the best ARIMA
model based on the Akaike information criterion (AIC) [47].

The residuals were normally distributed, had a zero mean and constant variance, and
were not autocorrelated, as confirmed using R (checkresiduals function in the R forecast
package). The function includes the Ljung Box test [48], which tests the overall randomness
based on a number of lags. The test resulted in a correlogram, which plots residual
autocorrelation function values (ACF) against lag time (Figure 5). All lags fall inside the
95% confidence interval (dashed blue lines), indicating that the residuals from the ARIMA
model for new COVID-19 cases in the U.S. were not autocorrelated.
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3.3.4. Steps 4 and 5: Prewhitening and Cross-Correlation of Residuals

The ARIMA (0, 1, 2) (1, 0, 1)7 model for the U.S. obtained in the previous step was
fitted to the stationary response variables, i.e., COVID-19-related GDELT articles and tweets
for the U.S., respectively (step 4). The residuals were then cross-correlated with residuals
from the ARIMA model of the COVID-19 dataset (step 5). CCF plots in Figure 6 display
cross-correlation values of COVID-19 cases versus GDELT articles (Figure 6a) and tweets
(Figure 6b) in the U.S. for different time lags.
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Qualitative aspects of cross-correlation plots from previous works [19] guided the in-
terpretation of the cross-correlation results. This includes use of the highest peak magnitude
in the plot, which indicates the strength of the correlation between the two time series at
that specific time lag, as well as the arithmetic sign, which specifies the direction of strength
of the peaks. The time lag at significant cross-correlations, determined through hypothesis
testing at a predetermined 0.05 significance level, was used as a quantitative measure.

Each CCF plot can be divided into four quadrants representing different combinations
of arithmetic signs for cross-correlations and lags. When a significant correlation is found
on positive lags (x axis), it means that the GDELT or Twitter time series leads the COVID-19
time series, whereas a negative lag means the opposite. Cross-correlation patterns for
analyzed countries fell into either quadrant 1 or 3, which will therefore be discussed in
more detail in the Results section. The lag whose correlation value exceeds the blue dashed
line and has the largest absolute value is picked as the lag for interpretation [49].

3.3.5. Steps 6 and 7: Vector Autoregressive Models and Cross-Correlation of Residuals

The cross-correlation of residuals from ARIMA models sometimes yields inconclusive
results, as indicated through significant correlations in both the positive and negative lags.
This occurrence shows the presence of a feedback relationship where the dependent and
predictor variables influence each other. In such a case, a VAR model can help distinguish
the dynamics of the interrelations between variables [23] (step 6). A VAR model requires the
time series datasets to meet the stationarity condition. Therefore, time series decomposition,
differencing, and transformation must be applied before the optimal VAR model can
be identified based on the lowest AIC value. A useful VAR model yields uncorrelated,
heteroscedastic, normally distributed, and stable residuals.

A formulation of a VAR (p) model with m variables and of p-th order can be written
as (Equation (6) [46]):

Φ(B)Xt = εt (6)

where Xt is an (m × 1) vector of m observed variables, Φ is a matrix polynomial of order
p in the backward shift operator B, and εt is a vector of white noise error terms for the
m variables at time t. A VAR (1) model for two series is shown in Equation (7), where
values of X1, t and X2,t depend linearly on the values of both series at time t−1, and {φij}
are autoregressive coefficients.

X1,t = φ11X1,t−1 +φ12X2,t−1 + ε1,t (7)
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X2,t = φ21X1,t−1 +φ22X2,t−1 + ε2,t

In the first VAR model in our study, X1 and X2 represent COVID-19 cases and COVID-
19-related GDELT articles, respectively, and in the second VAR model, X1 and X2 represent
COVID-19 cases and COVID-19-related tweets, respectively. For each VAR model, the
ACF of the residuals from the variables did not have any significant correlations for any
lag; thus, residuals were considered white noise. These residuals from the respective VAR
model were then cross-correlated individually to find significant correlations at different
lags to identify the lead–follow patterns between the variables in the model (step 7).

3.4. Anomaly Detection

The three analyzed datasets exhibited weekly seasonality patterns and multimodal
distribution for all ten countries in this part of the study, rendering conventional anomaly
detection methods such as the Grubbs’ test and extreme Studentized deviate (ESD) test,
which require normally distributed data, unsuitable [30]. Therefore, the SHESD test, which
is a modified version of the ESD test, was used instead to find unexpected patterns in
COVID-19-related activities on GDELT and Twitter.

For the ESD test, the residual component of a time series Rt at time t is obtained by
subtracting the seasonal component St and the median Mt from the values of the original
time series Yt (Equation (8)):

Rt = Yt − St −Mt (8)

The ESD test is then applied to the residuals, which requires defining an upper bound
of the number of suspected outliers (k). Its null hypothesis is that there are no outliers,
while the alternative hypothesis is that there are up to k outliers in the dataset. The ESD
test performs k separate runs, i.e., a test for one outlier, a test for two outliers, etc., up to k
outliers, with a total of k test statistics. The SHESD test is a variation of the ESD test in that
it uses (a) the median in place of the mean and (b) the median of absolute deviations from
the sample median in place of the standard deviation to compute the test statistics.

A comparative review of outlier detection methods found that the SHESD test per-
forms satisfactorily in identifying point anomalies on univariate data [50], which is the
setting in our study.

3.5. Word Frequency Analysis

The results from anomaly detection were used to identify events that caused a spike
in the number of COVID-19-related GDELT articles and tweets during days of few newly
reported COVID-19 infections. To identify potential events causing such spikes, articles
for a country of interest were obtained from the NewsBank news repository [51] using the
‘COVID’ keyword. In addition, a customized Python script was used to scrape results from
a Google search with search terms comprising the date of the anomaly, the country name
of interest, and the word ‘COVID’.

Word frequency analysis was run on unstructured text in the headlines using the
Natural Language Toolkit (NLTK) package in Python after headlines were tokenized
(extraction of individual words) and stop words, such as prepositions or conjunctions, and
punctuation marks were removed. High-frequency buzzwords were then visualized as
word clouds using the word cloud Python library.

4. Results
4.1. Cross-Correlation

The temporal relationships between new daily COVID-19 infections (input series)
and COVID-19-related GDELT articles and tweets (output series) are depicted in cross-
correlograms. The following sections discuss the 12 countries that revealed significant
cross-correlation, grouped by the arithmetic sign of cross-correlation, and identified lags,
i.e., by quadrants shown in Figure 6a.
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4.1.1. Positive Lag

The cross-correlation of COVID-19 cases versus GDELT and Twitter had significant
positive correlations on positive lags (first quadrant) for the U.S. (Figure 6), Australia,
India, Brazil, Greece, and Italy. The same cross-correlation pattern (first quadrant) was
reflected only for Twitter but not GDELT for France. Significant positive correlations on
positive lags imply that the input series (COVID-19) follows GDELT and tweet activity
numbers, respectively. The CCF plot for COVID-19 cases versus Twitter for Greece reveals
a significant positive correlation at lag 0, meaning that COVID-19-related tweets reflect
COVID-19 infections immediately, without lag time.

4.1.2. Negative Lag

COVID-19 cases versus GDELT CCF plots for Poland reveal a significant negative
correlation at a negative lag (third quadrant). This means that the input series (new COVID-
19 cases) led related GDELT articles, respectively. Therefore, as COVID-19 cases increased,
the respective GDELT articles followed with a delayed decrease. The COVID-19 cases
versus Twitter CCF had a significant positive correlation at lag 0 (first quadrant), meaning
that COVID-19-related tweets reflected COVID-19 infections immediately, without lag time.

4.1.3. Positive and Negative Lag

In the datasets for Canada, the U.K., the Philippines, and Germany, significant cor-
relations were found at both negative and positive lags, which is indicative of feedback
relationships. For example, COVID-19 cases versus GDELT news CCF plots had significant
correlations for positive and negative lags. To determine the most significant correlation
and the direction of the relationship, VAR models were used instead.

After implementing separate VAR models, the cross-correlations of residuals for
COVID-19 infections versus GDELT and Twitter for Canada resulted in single significant
correlations on positive lags indicating that the input series (COVID-19) followed GDELT
without lag time (lag 0) and tweets by 11 days, respectively. A similar application of VAR
models led to single significant correlations for either negative or positive lags for GDELT
and Twitter correlograms for the U.K., the Philippines, and Germany.

Estimated coefficients, standard errors, and goodness-of-fit measures for the VAR mod-
els are shown in Table 1 (Canada) and Table A1 (the U.K., the Philippines, and Germany).
In the VAR model that uses COVID-19 cases and GDELT responses, 50.6% of the varia-
tion in COVID-19 cases was explained by both variables at specific lags (second column).
For the VAR model that uses COVID-19 cases and Twitter responses, COVID-19 cases on
lag 1 and related content from Twitter at lags 1, 4, and 5 explain 50.6% of the variation in
COVID-19 cases (fifth column). The VAR models explain 9.1% and 23.8% of the variation
in the COVID-19-related GDELT (third column) and Twitter (sixth column) responses,
respectively, using different lags. Corresponding results for the U.K., the Philippines, and
Germany are presented in Table A1.

To analyze the dynamic relationship between the variables in the VAR models, the
impulse response function (IRF), as implemented in R (irf function in the R vars package),
was applied to the models. This resulted in plots that were jagged, as in Figure 7 (Canada)
and Figure A2 (the U.K., Philippines, and Germany).

In these figures, the y axis represents the responses of GDELT and Twitter to a one-
standard-deviation shock from new COVID-19 cases over time. In all IRF plots, due
to sudden changes in COVID-19 cases, there are irregular fluctuations in the responses
characterized by a decline followed by tapering growth that gradually diminishes until the
impact returns to zero by the end of the 30-day (x axis) period.



Geographies 2023, 3 596

Table 1. VAR parameters for COVID-19 infections versus GDELT and Twitter (Canada).

Lag VAR (COVID-19 and GDELT) Lag VAR (COVID-19 and Twitter)
COVID-19 GDELT COVID-19 Twitter

COVID-19 (1) −0.860 ***
(0.122) COVID-19 (1) −0.865 ***

(0.22)

GDELT (1) (1) −0.289 **
(0.121) Twitter (1) 0.002 *

(0.001)

GDELT (2) −0.288 ***
(0.125) Twitter (2) −0.466 ***

(0.120)

GDELT (3) 0.029 *
(0.015) Twitter (3) 0.303 *

(0.130)

COVID-19 (5) 0.346 **
(0.156) Twitter (4) 0.002 *

(0.001)

COVID-19 (6) 0.234 *
(0.122) Twitter (5) 2.079 **

(0.937)
0.334 ***
(0.124)

N 83 83 84 84
R2 0.614 0.219 0.601 0.385

Adjusted R2 0.506 0.091 0.506 0.238

p < 0.001 ‘***’, p < 0.05 ‘**’, p < 0.1 ‘*’.
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The optimal ARIMA models, based on the lowest AIC values for the cross-correlation
analysis for all countries with significant correlations, are summarized in Table 2. Only
ARIMA models for the U.S. and Italy had both nonseasonal and seasonal components
(weekly seasonality represented by 7), whereas the others had only nonseasonal compo-
nents. Some countries, such as India, had a nonzero value of the intercept in the ARIMA
model. VAR(n) models, where n stands for the autoregressive order, were applied for
four countries (Canada, Germany, the Philippines, and the U.K.). No significant cross-
correlations were found for Mexico.
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Table 2. ARIMA and VAR models with their respective cross-correlation time lags.

Country Model
Time Lag in Days

Quadrant
COVID-19 vs. GDELT COVID-19 vs. Twitter

Australia ARIMA (1, 0, 2) 12 3 1

Brazil ARIMA (0, 0, 1) with nonzero mean 7 10 1

France ARIMA (0, 0, 1) none 8 1

Greece ARIMA (0, 0, 1) 1 0 1

India ARIMA (4, 0, 0) with nonzero mean 7 14 1

Italy ARIMA (0, 1, 2) (0, 0, 1)7 16 1 1

Poland ARIMA (2, 0, 0) with nonzero mean −16 0 1 and 3

U.S. ARIMA (0, 1, 2) (1, 0, 1)7 7 5 1

Canada VAR (6)—COVID-19 and GDELT
VAR (5)—COVID-19 and Twitter 0 11 1

Germany VAR (5)—COVID-19 and GDELT
VAR (7)—COVID-19 and Twitter 7 11 1

Philippines VAR (2)—COVID-19 and GDELT
VAR (4)—COVID-19 and Twitter −7 4 1 and 3

U.K. VAR (7)—COVID-19 and GDELT
VAR (7)—COVID-19 and Twitter 15 13 1

4.2. Anomaly Detection

COVID-19, GDELT, and Twitter time series were analyzed for anomalies for ten
countries (see Section 3.2). Between 11 February 2020 and 4 March 2020, most countries
experienced low COVID-19 infections but high related activity on GDELT and Twitter due
to the news about the virus spreading. Therefore, only outliers detected after this period
were investigated.

Generally, there was a significant drop in the number of COVID-19-related tweets for
all countries after May 2020. The Twitter time series, therefore, had only a few outliers
after May 2020, all of which occurred when there was an upsurge in COVID-19 infection
cases. This was, for example, the case for Bangladesh (Figure A3a(iii)) and the Netherlands
(Figure A5a(iii)). Therefore, the anomalies that were investigated further for event detection
were flagged on GDELT time series charts when COVID-19 cases were low, whereas no
further investigation was conducted for tweets in this regard.

As an example, Figure 8a(ii) indicates that GDELT articles in Lebanon had an uptick on
5 August 2020 (green highlighted area) with one outlier. This was associated with keywords
such as ‘explosion’, ‘deadly’, and ‘beirut’ (Figure 8b), which relate to headlines about the
Port of Beirut explosion. Other GDELT anomalies on August 8, 17, and 22 (Figure 8a(ii))
were about how the blast affected the spread of infections.

The locations of COVID-19 news mentions on GDELT related to the Port of Beirut
explosion in Lebanon on August 5, 2020, are mapped in Figure A1. Whereas only 209 news
mentions focused on the blast, 747 news announcements mentioned the explosion in the
context of COVID-19.

The GDELT outlier and word frequency analyses were able to identify at least one
event in each of the ten countries (Table 3). The corresponding headline buzzwords in word
clouds (Figure A3 through Figure A5) describe different events discovered in the remaining
nine countries, which include explosions, an election, protests, contraction of COVID-19 by
prominent people, the announcement of COVID-19 mitigation measures, and a COVID-19
scare on a cruise ship.
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Table 3. Buzzwords in word clouds for ten countries based on GDELT time series anomalies.

Country Anomaly Date Frequent Words Events

Bangladesh 2020-05-04 holidays National holiday

Bolivia 2020-10-19 election, party, victory General elections

Botswana 2020-7-31 requirements, compliant Introduction of lockdown

Cyprus 2021-03-07 Cyprus, protest Protests

Guatemala 2020-09-19 president President of Guatemala
contracted COVID-19

Jamaica 2020-08-25 Usain Bolt Jamaican Olympian contracted
COVID-19

Lebanon 2020-08-05 explosion, deadly, Beirut Beirut port explosion

Netherlands 2021-03-03 explosion Explosion

Serbia 2020-07-08 protest, violent Protests

Singapore 2020-12-09 cruise COVID-19 scare on a cruise ship

5. Discussion

Earlier studies found that COVID-19-related Twitter posts preceded COVID-19 cases
and deaths by two to three weeks [52]. Regarding the Ebola virus disease, an increase
in related tweets occurred seven days prior to the confirmation of the first case of the
virus [36]. In our study, ARIMA and VAR models identified similar patterns for selected
countries. That is, COVID-19-related GDELT articles and tweets preceded the number
of new COVID-19 infections in Australia, Brazil, Greece, India, Italy, the U.S., Canada,
Germany, and the U.K., and the same was true for tweets in France, Poland, and the Philip-
pines.

Positive cross-correlations with positive lags between COVID-19 cases and GDELT
and Twitter news counts for 10 out of 12 countries (Table 2) indicate that an increase in
COVID-19-related GDELT and Twitter responses was followed by an increase in new
COVID-19 cases sometime later, which is in line with previous epidemiological studies [53].
COVID-19 disease incidence and Twitter activity has been found to be positively correlated
in previous research [54–56], supporting the idea that social media is useful for disease
surveillance [57]. Similarly, COVID-19 infections were also found to be positively correlated
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with related news reports during the start of the outbreak in China [58]. COVID-19-linked
GDELT articles for Canada and tweets for Greece and Poland had instantaneous response
to reports of new COVID-19 infections without lag time, which provides further evidence
that online data sources can be useful for near-real-time disease monitoring [59].

Social media applications and news media have been critical for communication
between officials and the public during the COVID-19 pandemic to share public health
information and mitigate the spread of the virus [43]. Our study theorizes that the findings
of COVID-19-linked GDELT articles and tweets preceding reports of COVID-19 infections
are an indicator of how news media and social media were globally used to encourage the
public to take preventative action to mitigate disease spread.

For Poland and the Philippines, the CCF results show that COVID-19-related GDELT
responses lagged behind new infections and were negatively correlated to each other,
meaning that an increase in new COVID-19 cases was followed by a decrease in related
GDELT and Twitter responses after a period of time. Improvement of testing modalities
(higher detection rate) and accessibility of COVID-19 tests as the pandemic progressed
could have resulted in these patterns [60]. In addition, time series charts show how
interest in COVID-19 dropped after May 2020 on GDELT for most countries. This drop
in public attention to COVID-19 marked by lower volume counts of news items as the
outbreak progressed may have led to these negative correlations as well [58]. The lack of
effective treatments at the start of the pandemic caused an increase in false information
about treatment and prevention measures in various online news sources and social media
platforms [61]. This may have led to an inflation in COVID-19-related GDELT articles and
tweets. Data breaches in social media platforms have prompted the enactment of laws and
regulations such as the European Union’s General Data Protection Regulation (GDPR) in
2018. Recently, several U.S. states, such as California and New York, have passed laws to
safeguard user data. These laws led some social media applications such as Facebook to
restrict access to their user data through their API [62]. Our study revealed that sparsity
of geotagged COVID-19 tweets was the main caveat of using Twitter data for time series
analysis for various countries. A change in the Twitter app functionality in 2019 which
limits users to sharing their precise locations only through the camera app led to fewer
tweets with exact coordinates, which affects the sample size available for research [63].
These limitations call for the exploration of alternative data sources such as GDELT, which
are not affected by data privacy regulations or changed app functionality.

Disease surveillance and prediction have often relied on reactions on social me-
dia [64] applications which result in positive correlations with the disease incidence. Cross-
correlation analysis has been used to explore the causal relationships between Twitter
activity and new COVID-19 cases [65]. However, the application of GDELT data in this
context is underexplored. Twitter provides paid access to all tweets published since its
inception in 2006 through the full-archive search API, while GDELT’s freely accessible
archive currently goes back to 1979. Whereas Twitter is banned in countries such as China,
pairing Twitter data with GDELT, which has a global coverage of data points, presents an
opportunity to obtain a more holistic picture about the pandemic compared to one data
source alone.

Multiplatform analyses using datasets such as Google search query, Wikipedia, and
Twitter data to detect COVID-19 deaths have been found to be useful when conducting
disease surveillance, as they provide comparative insights in relation to the research
question [66]. Our study, therefore, posits GDELT as a reliable data source for this type
of application, as it compares and validates its findings with those from Twitter. For
instance, there was an evident drop in the volume of COVID-19-related GDELT and Twitter
responses after May 2020. Since activity on social media data sources can be used as a
proxy for disease activity [55], this drop can be an indicator of changes in disease risk
perception by the public, which should be considered when creating pandemic control
responses. In our study, GDELT data also detected a larger number of COVID-19-related
local events (e.g., protests) that triggered anomalies in the respective GDELT time series
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charts, which shows its ability to uncover patterns that can broaden our understanding of
COVID-19-related public attention beyond social media.

The lead–lag relationships observed between COVID-19-related GDELT and Twitter
responses and COVID-19 cases serve as indicators of public awareness about the virus
and can guide the design of targeted health communication campaigns that will sustain
this awareness. In addition, the impulse response function plots of VAR models showed
the dynamics of the relationship between COVID-19 cases and related GDELT and Twit-
ter responses, which depicted the attenuation of public attention from both sources as
COVID-19 cases became more commonplace. By capitalizing on the dynamics of atten-
tion, public health advisories can be timed to coincide with increased GDELT and tweet
activity to ensure critical information reaches the public before the initial attention to the
outbreak subsides.

Utilizing longitudinal analysis to detect anomalies within the datasets enabled the
identification of pandemic-related events, which provides insights into how public dis-
course responds to external stimuli (e.g., holidays, disasters, and contraction of COVID-19
by prominent people).

The use of different 90-day time periods for the cross-correlation analysis means that
its results are only valid for the period considered. As these temporal relationships change
over time due to evolving public perceptions or media coverage, long-term forecasting
using the results might be inaccurate. For longer study periods, prediction models can
introduce lagged variables that capture lead–lag relationships for improved forecasting.

ARIMA and VAR models used in this study are linear models, which cannot analyze
nonlinear patterns that might be present in the three datasets for other periods. In this
study, deficiencies (reporting delays, data entry errors) associated with the data collection
of COVID-19 cases [39] combined with the digital divide [67] can result in a skewed
representation of a phenomenon and consequently affect data samples. Another aspect
that may affect our cross-correlation results is that some COVID-19-related GDELT news
articles or tweets observed in a country may not always relate to local cases but to events
or new COVID-19 outbreaks abroad.

6. Conclusions

This study explored GDELT as an alternative data source to tweets for global disease
surveillance. The combination of GDELT and Twitter data sources underscores the nuanced
insights that can be unveiled regarding lead–follow patterns between online mentions and
new COVID-19 cases. This study was able to capture the temporal relationship between
new COVID-19 infections and GDELT/Twitter responses for 12 countries by providing
both the strength and direction of their respective cross-correlations through specifying the
lead–lag relationships. The results demonstrated that there are temporal lags between new
COVID-19 cases and counts of COVID-19-linked GDELT articles and tweets. The time series
for the three datasets that go beyond the selected 90-day periods had unstable variances;
therefore, nonlinear models, which are capable of handling time varying variances [68],
may be implemented in the future to analyze longer time periods. Buzzwords discovered
through outliers in the GDELT time series led to the identification of COVID-19-related
events. For future work, we plan to expand the comparison of Twitter and GDELT event
data to other crowdsourced event data sources, such as Google Trends.

Supplementary Materials: The following supporting information can be downloaded at: COVID-
19 Data S1: COVID-19 daily cases, https://doi.org/10.6084/m9.figshare.19729699; TweetIDs S2:
COVID-19-related tweets, https://doi.org/10.6084/m9.figshare.19729702; GDELT BigQuery S3: The
SQL query used on Google Big Query to retrieve COVID-19-related media articles, https://doi.
org/10.6084/m9.figshare.19729708; GDELT Data S4: COVID-19-related GDELT event mentions,
https://doi.org/10.6084/m9.figshare.19729714; Tweet Counts S5: COVID-19-related tweets, https:
//doi.org/10.6084/m9.figshare.19729717.
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Figure A2. Impulse response functions of COVID−19 cases shock on related GDELT and Twitter 
responses, respectively, for the U.K. (a,b), the Philippines (c,d), and Germany (e,f). 
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Figure A3. Anomalies in COVID−19 (i), GDELT (ii), and Twitter (iii) (left) with the word cloud of 
headlines for Bangladesh (a,b), Bolivia (c,d), and Botswana (e,f). 
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Figure A4. Anomalies in COVID−19 (i), GDELT (ii), and Twitter (iii) (left) with the word cloud of 
headlines for Cyprus (a,b), Guatemala (c,d), and Jamaica (e,f). 
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Figure A5. Anomalies in COVID−19 (i), GDELT (ii), and Twitter (iii) (left) with the word cloud of 
headlines for the Netherlands (a,b), Serbia (c,d) and Singapore (e,f). 
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Table A1. VAR parameters for COVID-19 infections versus GDELT and Twitter for the U.K., the
Philippines, and Germany.

Lag VAR (COVID-19 vs. GDELT) Lag VAR (COVID-19 vs. Twitter)
COVID-19 GDELT COVID-19 Twitter

U.K. GDELT (1) −0.429 ***
(0.128) Twitter (2) −0.546 ***

(0.125)

GDELT (2) −0.291 **
(0.141) Twitter (6) 0.218 *

(0.126)

COVID-19 (5) −0.087 *
(0.045) COVID-19 (7) 0.229 **

(0.123)

COVID-19 (7) 0.217 *
(0.122) Twitter (4) 0.213 *

(0.123)

N 82 82 82 82
R2 0.482 0.281 0.448 0.416

Adjusted R2 0.312 0.046 0.267 0.225

Philippines COVID-19 (1) −0.615 ***
(0.101)

5.450 **
(2.173) COVID-19 (1) −0.599 ***

(0.121)

GDELT (1) −0.448 ***
(0.103) Twitter (1) 0.191 *

(0.114)
−0.594 ***

(0.118)

COVID-19 (2) −0.475 ***
(0.105) COVID-19 (2) −0.449 **

(0.138)

GDELT (2) −0.421 ***
(0.098) Twitter (2) −0.375 *

(0.132)

Twitter (3) −0.301 **
(0.131)

N 87 87 82 82
R2 0.391 0.364 0.449 0.352

Adjusted R2 0.311 0.281 0.338 0.222

Germany COVID-19 (1) −0.625 ***
(0.113)

0.011 **
(0.005) COVID-19 (1) −0.653 ***

(0.125)

GDELT (1) −0.665 ***
(0.121) Twitter (3) 1.692 *

(0.915)

GDELT (2) −0.513 ***
(0.145) COVID-19 (4) 0.322 **

(0.132)

GDELT (3) −0.430 ***
(0.150) Twitter (4) 0.213 *

(0.123)

COVID-19 (4) 0.302 **
(0.131) COVID-19 (5) 0.443 ***

(0.136)

COVID-19 (5) 0.386 ***
(0.112) Twitter (6) 2.079 **

(0.937)

N 84 84 82 82
R2 0.522 0.418 0.598 0.322

Adjusted R2 0.408 0.280 0.467 0.099

p < 0.001 ‘***’, p < 0.01 ‘**’, p < 0.05 ‘*’.
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