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Article

Understanding Spatial Autocorrelation: An Everyday Metaphor
and Additional New Interpretations
Daniel A. Griffith

School of Economic, Political and Policy Sciences, University of Texas at Dallas, 800 W. Campbell Road,
Richardson, TX 75080, USA; dagriffith@utdallas.edu

Abstract: An enumeration of spatial autocorrelation’s (SA’s) polyvalent forms occurred nearly three
decades ago. Attempts to conceive and disseminate a clearer explanation of it employ metaphors
seeking to better relate SA to a student’s or spatial scientist’s personal knowledge databank. However,
not one of these uses the jigsaw puzzle metaphor appearing in this paper, which exploits an analogy
between concrete visual content organization and abstract map patterns of attributes. It not only
makes SA easier to understand, which furnishes a useful pedagogic tool for teaching novices and
others about it, but also discloses that many georeferenced data should contain a positive–negative
SA mixture. Empirical examples corroborate this mixture’s existence, as well as the tendency for
marked positive SA to characterize remotely sensed and moderate (net) positive SA to characterize
socio-economic/demographic, georeferenced data.

Keywords: Moran scatterplot; negative spatial autocorrelation; positive spatial autocorrelation;
spatial autocorrelation mixture; spatial autoregression

1. Introduction

Salvati [1] points out that “evidence from the analysis of scientific databanks and
repositories indicates how the geography discipline has a strong potential for growth
and [facilitating] the dissemination of complex global problems.” Realizing this potential
requires a wider awareness and deeper understanding of an often glossed over, ignored,
or unschooled fundamental property of all of the geospatial data housed in the data-
banks and repositories he mentions, namely, spatial autocorrelation (SA)—the tendency for
(dis)similar attribute values to cluster on a map. As Griffith [2] professes, SA is everywhere!
Accordingly, it is an essential ingredient for “develop[ing] and offer[ing] new strategies,
visions and proposals on the role of sustainability and resilience related to urban and
rural contexts” [1], such as partially constituting the spatial statistical theory underlying
tessellated stratified random sampling necessary for economically and efficiently moni-
toring and “studying [the] degree of resilience and future (sustainable) development [of
large territories]” [1]. Not only is SA a fundamental property of georeferenced data, but
it also is a fundamental geographic concept (e.g., Tobler’s [3] First Law of Geography;
see https://www.researchgate.net/publication/276917830_Concepts_and_Principles_for_
Spatial_Literacy (accessed on 24 August 2023)). Its history dates back to its informal, tacit,
non-verbal awareness concept formation recognition by, for example, Spilsbury in 1767 [4],
who invented the jigsaw puzzle to teach geography, and Brandes in 1816 [5], who invented
the isobar map to visualize general west-to-east movements of low pressure across Europe.
Nearly a century later, SA had its formal concept creation recognition by Student [6], fol-
lowed by a quarter century of acknowledgements about its correlated data source [7–9] and
its impacts on agricultural experimental designs [10,11], its quantification by Moran [12] and
Geary [13], its popularization by Cliff and Ord [14], as well as Journel and Huijbregts [15],
and its promotion as part of standard spatial statistical/econometric practice by Paelinck
and Klaassen [16], Anselin [17], Cressie [18], and Haining [19], among others.
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The concept of SA may be more meticulously defined as follows:
Coupling a tertile-classified set of attribute values [i.e., relatively high (H), interme-

diate (M), and relatively low (L) magnitude groups] with a posited geographic neighbors
definition (e.g., nearby points, adjacent line segments, and/or juxtaposed polygons sharing
a non-zero length common boundary—the rook designation, based upon its resemblance
to chess piece moves), the tendency for pairs of H, of M, and/or of L values (positive
SA), or the tendency for contrasting high-low (H-L) or low-high (L-H) value pairings as
well as still pairs of M values (negative SA), to be neighbors as defined by this given
geographic-based construction.

This tertile definition builds upon Anselin’s [20] local SA index conceptualization,
which translates points in a Moran scatterplot into neighboring pairings denoted by high-
high (H-H), low-low (L-L), H-L, and L-H; insignificant areal units constitute the M values.
SA has other correlated data parallels, including those involving matched pairs, time series,
space-time series, and network series [21].

During its catapulting into the forefront of the quantitative spatial sciences, many
students, in particular, of quantitative geography found understanding SA and its conse-
quences a challenge, spawning a set of earlier publications devoted to explicating it [22,23];
Griffith also published a monograph with this title in 1987). Contemporary literature,
including Getis [24], Goodchild [25], Griffith [26], Haining [27], Legendre [28], and McMil-
lan [29], contains a number of standalone explanatory treatments of SA. Today, the body
of literature dedicated to SA is sizeable (Figure 1; for an updated version, see [30]). The
objective of this paper is to augment this body of literature by explaining the concept of SA
utilizing a common everyday object as a metaphor. Doing so contributes to knowledge par-
ticularly by establishing a better comprehension of negative SA, one of the most neglected
concepts in spatial statistics/econometrics [31], as well as mixtures of positive and negative
SA [32,33].
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1.1. SA: An Important Geospatial Synoptic Statistic 

Figure 1. Web of Science (2012–2018) SA keyword cloud infographics (arbitrary group coloring visu-
ally differentiates among perceived SA research communities; node size reflects weighted normalized
citation counts, which tend to highlight leading community scholars); compilation and portrayals by
Drs. Kai Hu (Jiangnan University) and Qing Luo (Wuhan Institute of Technology). Left (a): authors.
Right (b): concepts.

1.1. SA: An Important Geospatial Synoptic Statistic

Elementary descriptive statistics are important for quantitative analyses because they
condense a numerical dataset’s information content into a few informative summary
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values about those data. Two vital descriptors are the mean and the variance because they
respectively reveal a typical value and the spread of a dataset, even if the mean is a function
of other variables when treated in a multivariate context. SA becomes a third crucial
descriptor for georeferenced data—Goodchild [25] describes it as being endemic—because,
in part, it exposes the presence of inflation in the variance, and, in part, because it represents
redundant information that supplies the “essential economies that allow complex surfaces
to be represented in manageable volumes” [25].

Couching this SA notion within a more technical statistical context, Legendre [28]
emphasizes the commonly cited undermining by SA of the standard statistical analysis
independent observations assumption, mentioning that it most often materializes in a
geographic distribution as patches or gradients. Haining [27] highlights this SA non-
independence feature as being instrumental to geography’s contribution to spatial statistics,
commenting that SA relates to both scale and resolution of geographic data. Cliff and
Ord [14] acknowledge that mis-specified regression models can create spurious residual SA,
a theme discussed in detail by McMillen [29], and in terms of omitted variable beckoning
by Griffith and Chun [34], can introduce omitted variable bias, especially in the presence
of disregarded negative SA [33]. In these two latter multivariate contexts, a response
variable’s mean varies, rather than being a constant (e.g., only an intercept term); SA
contained in a response variable is a function of either that latent in related covariates, or
spatial lag terms appearing in spatial autoregressive model specifications (e.g., conditional
autoregressive (CAR), simultaneous autoregressive (SAR), and autoregressive response
(AR) versions being the most popular) that attempt to usurp missing variable effects.
Meanwhile, Goodchild [25] echoes the sentiment of the preceding paragraph, noting
that SA is “... a monotonically decreasing function of distance [and hence] a fortunate
characteristic of a wide range of spatially distributed phenomena.”

1.2. SA and Geographic Scale/Resolution

Legendre [28] addresses the geographic scale (i.e., geographic landscape size, relating
to increasing domain sampling designs) issue, arguing that SA-related global patterns
across a geographic landscape materializing as gradients arise from spatial (e.g., distance
decay) processes or wide-ranging underlying common factors that elicit the formation
of comparable outcomes in different regions and locations. Likewise, SA-related local
patterns, which, landscape-wide, appear as disjoint patches separated by interstices, elicit
the formation of numerous geographically small concentrations of outcomes at dispersed
locations. Geographic scale provides the perspective that casts a clustering of similar values
as being a gradient or patchiness. Pawley and McArdle [35] partner this scale issue with a
recognition that the target of inference helps determine when SA presents data analysis
complications or an opportunity to achieve additional effectiveness and/or robustness.

The geographic resolution (i.e., size of an areal unit polygon, relating to infill spatial
sampling designs) issue involves some sort of data averaging within polygons: as polygons
increase in size, more geographic averaging occurs, which has an accuracy highly corre-
lated with any latent degree of positive SA. This averaging implies that, in practice, the SA
measurements should change as resolution becomes coarser. Employing regular square
quadrats, Chou [36] finds that SA measures increase in magnitude as resolution becomes
finer, at a logarithmic rate; Zhang et al. [37] essentially corroborate this finding. Rodrigues
and Tenedorio [38] report that the shape of irregular areal unit polygons also impacts SA
measures, with aggregation of such nonuniform shapes varying in size not necessarily
strictly rendering decreasing values with increasing coarseness. Di et al. [39] also detect an
inverse relationship between resolution and SA measurement, while uncovering a tendency
for SA quantifications to decrease in magnitude when irregular replace regular square
shaped areal unit polygons. Describing this situation as the resolution sensitivity of SA,
Mohan et al. [40] show that the aforementioned negative relationship is not necessarily a
monotonically decreasing function—a finding similar to that by Rodrigues and Tenedo-



Geographies 2023, 3 546

rio [38]—devising a resolution correlogram tool based upon popular SA indices to adjust
for this sensitivity.

The principal implication here for the metaphor explicated in this paper is that the
sizes, shapes, and numbers of jigsaw puzzle pieces [41] affect the interface between a puzzle
and SA addressed in the ensuing discussion. It also alludes to the issue of geographic scale
and resolution. If a puzzle’s size is held constant, then increasing its number of pieces
(all of which frequently are alike in total area) is equivalent to changing its geographic
resolution. As geographic resolution increases, visual clues from puzzle pieces become
more obscure; as geographic resolution decreases, clues from border buffer areas becomes
more informative. Although artwork, piece size/shape, and color range can contribute
to the degree of difficulty for solving a given puzzle, its number of pieces tends to be
most strongly directly correlated with its degree of difficulty. As noted in the preceding
paragraph, SA exhibits a similar type of tendency: it tends to increase in magnitude as
resolution becomes finer, at a logarithmic rate.

2. The Jigsaw Puzzle: An Everyday Object Metaphor

In the mid-1700s, Londoner John Spilsbury, a cartographer among other professions,
drew a map of the world on the top of a piece of wood, and then used a fretsaw/saber-saw
tool to cut it into its constituent countries, in order to craft an educational tool [4]: this was
the invention of the jigsaw puzzle. Such a puzzle may be defined as a dissected tiling of
mutually exclusive and collectively exhaustive often weirdly shaped small pieces (tiles
originally cut by a fretsaw machine) coupled with a challenge of reconstructing the initial
tiling by fitting these pieces together to assemble the original complete image or form
the original complete shape. Most jigsaw puzzles comprise interlocking small pieces; the
dissection imposed upon some of these puzzles involves a regular, whereas for others
it involves an irregular, tessellation. Noteworthy characteristics of the pieces include:
tabs, which take area away from, and cut out slots, which forfeit area to, adjacent pieces;
whether or not pieces are fully interlocking (adjacent pieces connect with tabs/slots such
that horizontally/vertically moving one piece results in moving an entire cluster of pieces,
preserving their structural and visual connections); and, similarity of piece shapes (e.g.,
single/uniform shaped pieces have tabs protruding on opposite sides, with corresponding
slots cut into the intervening sides). From shortly after their invention through to today,
jigsaw puzzles are notoriously popular around the world, furnishing an ideal metaphor for
raising the awareness of SA being everywhere.

Given the jigsaw puzzle’s cartographic roots, one of its especially appropriate features
is its relationship to SA (re. Tobler’s First Law of Geography). Analogous to conventional
linear correlation, SA is best described with reference to a bivariate statistics scatterplot,
which is a two-dimensional (2-D) graph portraying plotted paired values for two variables,
X and Y, with reference to its axes (which may be expressed as z-scores; i.e., zi = yi−y

sY
for areal

unit i, where y and sy respectively denote the arithmetic mean and standard deviation of
elementary statistics). However, portraying SA rather than a standard bivariate correlation
scatterplot replaces X with zi for the horizontal axis, and, for the vertical axis, Y with the

sum of neighboring zi values (i.e., using algebraic notation,
n
∑

j=1
cijzj, where cij = 1 when

areal units i and j are, and 0 when they are not, neighbors, perhaps employing the rook
adjacency definition). This modified statistical graphic is the Moran scatterplot, whose
trend line is proportional to a dataset’s Moran Coefficient (MC; this covariation-based
index, arguably the most popular SA quantifier, resembles the Pearson product moment
correlation coefficient)—the scaling constant is n divided by the sum of the entries (e.g., 0 s
and 1 s) in the attached spatial weights matrix (SWM; which is like an Excel spreadsheet
whose row and column labels are the same sequence of areal unit polygons/locations, and
whose cell entries are 1 if row and column areal units are neighbors, and 0 otherwise; this
tabular data quantifies the topological arrangement of areal units forming a map) indicating
which areal units are neighbors. The pattern of the resulting cloud of points, as well as the
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trend line, reveals the nature and degree of any SA present (see Figure 2). Figure 2 portrays
the SA latent in jigsaw puzzles depicted by Figure 3b–d.
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Figure 3. A specimen aggregated High Peak normalized difference vegetation index (NDVI; from [42])
remotely sensed image as a jigsaw puzzle; the green–yellow–red tertile color palate is directly propor-
tional to the NDVI values (i.e., red denotes H, yH, yellow denotes M, yM, and green denotes L, yL,
values). Left (a): the NDVI geographic distribution across a 30-by-30 pixels landscape (rook adjacency
criterion; MC ≈ 0.88, GR ≈ 0.10, n = 900) overlaid with a five-by-five jigsaw puzzle dissection (i.e.,
cutting). Left middle (b): average NDVI values by puzzle piece (mimicking the visualization detected
by an adjacent sight cones cluster in a human’s eye). Right middle (c): a Thiessen polygon overlay
based upon puzzle piece centroids (puzzle piece physical centers computed by ESRI© ArcMap) to
emphasize the tags and slots. Right (d): a random permutation of the (b) average values.

3. What Is SA? Illustrative SA Jigsaw Puzzle Cases

Figure 3b,c exemplify the two essential components for solving a jigsaw puzzle, a
measure of jigsaw piece physical compatibility for adjoining a pair of pieces (re. congruent
shape characteristics, with prominent ones relating to spatial competition notions; in other
words, negative SA facets), and puzzle assembly visual coordination strategy (re. image
continuity across puzzle pieces, with prominent ones relating to spatial synchronization
forming visible map patterns; in other words, positive SA facets). Solving a jigsaw puzzle
often requires analysis of mixtures of shape compatibilities (i.e., fitting the appropriate
tabs, which take away area from a neighboring piece, into their corresponding slots, which
represent forfeited area to a neighboring piece) and image coherency; in other words,
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recognizing positive and negative SA mixtures. This recognition supplements that provided
through the decomposition of SA by quadrant in a Moran scatterplot.

3.1. A Case of Zero SA

Figure 4b,f furnish an example of zero SA. The puzzle solution is a rectangular region
layout composed of P-by-Q (i.e., horizontal-by-vertical) regular square pieces, all of the
same color and shape differentiable at best solely by visibly imperceptible trace random
variations of a single color (e.g., grey). Combinatorial theory [43] states that this jigsaw
puzzle has at most n! (n = PQ square pieces) possible solutions (i.e., P-by-Q arrangements
of the n tile puzzle pieces) for the rectangular region layout alone, all of which here
reconstruct exactly the same blank image (hence, n! repeated arrangements, yielding
(n!)/(n!) = 1 solution; e.g., see https://www.get-digital-help.com/permutations-with-and-
without-repetition/ (accessed on 23 August 2023)); many other non-rectangular polyomino
puzzle layouts also are conceivable (e.g., a linear arrangement or rectangular frame/outline
of tiles, assortments similar to formations such as those visible in the Tetris video game),
with each having only one solution regardless of individual puzzle piece placements. All
puzzle pieces are both the same shape and the same color; therefore, neither pattern (i.e.,
positive SA) nor individual piece shapes (i.e., negative SA) exists to supply assembly clues;
this puzzle does not have a unique constructable image outcome.
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pieces. Bottom right (h): (d) solution.

Rather than the previously mentioned regular polygon shaped (e.g., triangle, square,
hexagon) blank puzzle pieces, such same-shaped pieces might reconstruct a random pat-
terned abstract art image (e.g., selected Janet Sobel or Jackson Pollock drip paintings),
which is extremely difficult to solve even with irregular polygon shapes. The SA for its
uniformly shaped and dimensioned pieces version failing to render a 2-D patterned image
would be near zero.

https://www.get-digital-help.com/permutations-with-and-without-repetition/
https://www.get-digital-help.com/permutations-with-and-without-repetition/
https://minifigs.me/products/draw-your-own-personalised-puzzle-various-sizes-custom-lego-jigsaw-puzzle
https://minifigs.me/products/draw-your-own-personalised-puzzle-various-sizes-custom-lego-jigsaw-puzzle
https:/www.aliexpress.us/item/2255799894529529.html?gatewayAdapt=glo2usa4itemAdapt
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The 0/0 Conundrum

The Figure 4a,f blank square tiles behave like a constant numerical value, say c,
geographically distributed across a map, that when plugged into SA indices—which
are ratios having either covariations or squared paired comparisons in their numer-
ators, and variance in their denominators—yield zero divided by zero (0/0). This
division is an invalid mathematical operation (i.e., its outcome is undefined and/or
indeterminant), violating the fundamental properties and rules of ordinary arithmetic:
0/c = 0 and c/c = 1, if c 6= 0. However, when c = 0, mathematicians and scientists
may assign different context-dependent values (i.e., 0 or 1) or interpretations to its
result—limits in calculus (e.g., the extended real number line a la L’Hospital’s rule),
or other mathematical concepts (e.g., the projected extended real number line so that
division by zero equals ∞)—depending upon their situation (i.e., conceptualizations
and/or needs).

The SA covariation index employs a doubly centered SWM. A rescaling of its
eigenvalues—n quantities from linear algebra theory characterizing matrices—computes
this index. One of these eigenvalues is guaranteed to be zero, with an accompanying
eigenvector proportional to the vector 1. In other words, this neighboring value’s co-
variation standpoint invents a situation in which the definition of 0/0 implies zero
SA; L’Hospital’s rule asymptotically endorses this view. The intuition here is that no
arrangement of loose blank regular square tile jigsaw puzzle pieces has observational
correlation; any tile can be placed anywhere when completing a puzzle. Meanwhile, the
squared paired comparisons index employs the Laplacian SWM version. Copycatting
the covariation formula, a rescaling of its eigenvalues delivers its index values. As
before, one of these eigenvalues is always zero, with an accompanying eigenvector
proportional to the vector 1. In other words, this squared paired comparison of neigh-
boring values stance contrives a situation in which the definition of 0/0 implies perfect
positive SA; the calculus quotient limit theorem endorses this view. The intuition here
is that after organizing a set of loose blank regular square tile jigsaw puzzle pieces into
an arrangement with locational tagging, knowing the tile blankness at any particular
location in this configuration automatically bestows knowing blankness anywhere else
in it. In contrast, L’Hopsital’s rule renders near-zero SA only for typical neighborhood
structures, an inconsistency attributable to some of the GR’s weaknesses. Nevertheless,
both cases are technically singular, necessitating conceptual instead of computational
reasoning for their clarifications.

Therefore, because the metaphor in this paper addresses clues for constructing jigsaw
puzzles, it gives preference to the former of these two contextual interpretations of 0/0: a
pile of blank puzzle pieces denotes zero SA.

3.2. A Case of Pure Positive SA

The preceding zero-SA example emphasizes that positive SA relates to global, reginal,
and local patterns in an image formed by a jigsaw puzzle, regardless of the shape of the
pieces into which a jigsaw puzzle dissects/partitions an image. Figure 4a,e furnish an
example of pure positive SA. The jigsaw puzzle solution does not depend upon shapes of
pieces; all pieces are square tiles of the same size. Rather, it depends upon only matching
patterns especially along the borders of pieces. Synchronization is the solution key. A
unique solution exists, although one could argue that at least four orientation-free identical
solutions exist (rotating the completed puzzle 0◦, 90◦, 180◦, and 270◦). Computational
algorithms for solving jigsaw puzzles exploit this image continuity property [44]; Guerroui
and Séridi [45] supply a brief computer science history of these solutions.

3.3. A Case of Pure Negative SA

If a puzzle’s outline is rectangular and the number of its pieces is known, then shape
recognition can establish the four corners, all of the edge, and the set of center pieces; a
circular outline removes only the corner pieces identification. Consequently, such a puzzle
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can be (nearly) solved by entirely ignoring its image—because its pieces could be put
together into the same configuration as solving this puzzle utilizing its image—and initially
placing all of its pieces facing down (revealing blank pieces); of course, within this context,
piece shape replications promote possible final image errors. As Figure 3c highlights, the
tabs and slots of pieces relate to negative SA. Figure 4c,g furnish an example of this SA
nature. The only information available is polygon shapes. Adjacent pieces annex area
with their tabs, and forfeit area with their slots; these processes are a spatial competition
trademark. If the irregular pieces of a puzzle are unique, then its solution is unique. As
the number of duplicate shaped pieces increases, the number of positions identical shapes
can match increases, and, thus, the number of non-unique solutions increases, requiring
positive SA clues to obtain a unique solution. Computational algorithms for solving jigsaw
puzzles exploit this shape compatibility property, too.

Avoiding erroneously inferring that negative SA solely relates to polygon shape
requires a closer examination of the word metaphor’s definition: a rhetorical account
figuratively, rather than literally, comparing two unrelated entities by highlighting their
similarities to convey a better understanding of the more complex of the two through
simplifying analogy in a vivid, imaginative, and expressive manner. This is the situation
for negative SA and the jigsaw puzzle, which casts it in physical terms: spatial compe-
tition manifests itself via annexing and forfeiting adjacent polygon area. However, this
instrument also symbolizes fantasizing the confiscating and relinquishing of phenomena
housed in areal unit polygons or locations in a way that is reminiscent of economist Adam
Smith’s fictitious “invisible hand in the marketplace” (see Figure 5): unseen hands reach out
from areal units to confiscate (i.e., imaginary tabs), with the penetrated units relinquishing
(i.e., imaginary slots), attribute quantities, changing the global geographic distribution
of interest rather than individual polygon shapes. Mobility and transportation are real-
world colleagues of these invisible hands. This is the premise underlying, for example, the
provision of a designated bundle of goods/services at a particular central place hierarchy
level. The materializing hexagonal checkerboard mosaic (Figure 5c) is an outcome of spatial
competition, but in equilibrium and arising from invisible hands pulling a third of the
uniformly distributed customer demand from each surrounding lower-level hexagon, with
the resultant partially alternating global pattern reducing the maximum possible negative
SA toward −0.5. Eaton and Lipsey [46], paralleling a physical simulation experiment out-
lined and apparently executed by Bunge [47], demonstrate that such equilibria most likely
are hexagonal, or potentially square, checkerboard formations. Furthermore, Perrouxian
growth pole theory declares that core areas compel their economic agglomeration, com-
mandeering economic growth from their hinterlands, once more producing a checkerboard
pattern without tangibly altering geometric outlines of areal units. Agricultural and urban
land use location theory also generates negative SA patterns, but ones that tend to focus
on geographic margins of production (e.g., transition zones of equal or zero location rent).
Nevertheless, the jigsaw puzzle retains its appeal as an enlightening metaphor.

3.4. A Positive–Negative SA Mixture Case

A vast majority of jigsaw puzzles enable both image continuity and shape compatibility
of pieces to solve them, meaning replicated shapes do not automatically yield multiple
puzzle solutions. In other words, a mixture of positive and negative SA provides clues
to guide solutions, as alluded to by Figure 4d,h. Figure 6 furnishes an additional jigsaw
puzzle example. Its solution primarily begins with negative SA information (i.e., the four
corners and the borders of the region: two rows and two columns of the puzzle). Its
completion primarily relies upon positive SA information (i.e., the patterns formed by
the internal two-by-three set of pieces), supplemented by some negative SA information
(tab/slot conformities). Both steps also utilize the other nature of SA (i.e., pattern continuity
and tab/slot compatibility to assemble the correct juxtaposed pieces). In other words, a
mixture of positive and negative SA guides the jigsaw puzzle solution, although one or the
other nature of SA may regulate a given assembly of local clusters of pieces.
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Figure 6. The 2010 geographic distribution of Box–Cox transformed percentage of occupied houses
across the Dallas–Fort Worth (DFW) Metroplex census tracts. Left (a): 20 (i.e., four rows by five
columns) jigsaw puzzle pieces (constructed using BookWidgets: https://www.bookwidgets.com/
widget-library/jigsaw-puzzle (accessed on 23 August 2023)). Right (b): the assembled jigsaw puzzle
(MC ≈ 0.63, GR ≈ 0.37; rook adjacency definition).

3.5. Some Necessary Remarks about SA

The contemporary history of quantitative geography, geostatistics, and spatial statis-
tics/econometrics reveals that establishing an understanding of SA tracks a rather me-
andering timeline. This history almost exclusively focuses on positive SA, mentioning
negative SA solely for coverage completeness when introducing the topic (and frequently
in terms of the two-color pattern on a checkerboard). Established interpretations give many
faces to SA. A controversial one essentially relegated to the dustbin of history is SA as a
nuisance, a georeferenced data distinction that must be accounted for in a data examination,
even though inference about it is not of interest. A mean tends to be the parameter of
interest; therefore, this definition can classify most other parameters as nuisances, even the
variance. The preceding jigsaw puzzle discussion counters this nuisance assertion, as does
the realization that all data have both a geographic location and a time stamp, whether

https://www.bookwidgets.com/
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or not they are recorded; relationships between response variables, quantitative analysis
findings, and location always merit being of inferential interest, especially when SA con-
stitutes substantive phenomena derivable from conceptual frameworks (e.g., juxtaposed
agricultural or urban land uses), and particularly when the goal of a study is prediction
(e.g., kriging). An extreme interpretation affiliated with this debatable perspective is that
SA is superfluous [48] promotes this argument in the context of showing that SA may
fail to impact noticeably upon multivariate statistical research outcomes such as principal
components or factor analysis, whereas Diniz-Filho et al. [49] debunk claims that SA is a
red herring.

For the most part, the nuisance understanding of SA may be removed from its sundry
explanations [26], in part because it is everywhere [2] (e.g., a broadcasted television picture
would be unintelligible without SA, an occurrence when static/snow/white noise appears
due to the loss of, for example, a cable or terrestrial transmitter signal) with the preceding
jigsaw puzzle discussion replacing this specific depiction with that of positive–negative
mixtures. SA is everywhere, and more often than not as a simultaneous combination of
positive and negative correlation.

4. Materials and Methods: Yet More Faces of SA

Over the years, spatial analysts conveyed an assortment of nuanced SA interpreta-
tions [26], a number of which the stated definition in the introduction of this paper reflects
in part or in its entirety: self-correlation (e.g., the conversion of a scatterplot into a Moran
scatterplot), map pattern (e.g., Figures 3–5), redundant information (e.g., Figure 3), a spatial
spillover effect (e.g., house prices/valuations), an indicator of areal unit demarcation appro-
priateness (e.g., the modifiable areal unit problem (MAUP)), a nuisance (see the preceding
section), an omitted variables surrogate [34], and a functional misspecification diagnostic
tool (i.e., Eire data example in [14,29]). The jigsaw puzzle discussion implies two additional,
more focused interpretations: a simultaneous mixture of positive and negative correlated
data, commonly a combination in which positive SA dominates; and, the tendency for fine
geographic resolution remotely sensed data to display a marked degree of positive SA (e.g.,
MC ≈ 0.9+), and for coarser geographic resolution socio-economic/demographic data to
display a moderate degree of positive SA (e.g., in a preponderance of cases, MC ∈ [0.4, 0.6]
due to its negative-positive SA mixture)—a wealth of additional evidence reported in
the literature, including the aforementioned concerning SA and geographic resolution,
supports this latter contention.

In terms of spatial autoregressive methodology, Kao and Bera [50] argue that replacing
a spatial autoregressive, such as the SAR, with a, for example, SAR-moving average (i.e.,
SARMA) model specification can capture positive SA with its SAR term while accounting
for any residual negative SA with its moving average (MA) term. One difficulty with
the SARMA specification is that its two SA parameter estimates, respectively ρ̂ and θ̂ in
this paper, can be nothing more than a nonlinear numerical trade-off occurring in maxi-
mum likelihood estimation, resulting in a problematic high correlation of |rρ̂,θ̂ | ≥ 0.95.
Fortunately, Moran eigenvector spatial filtering (MESF, [51,52]) furnishes an alternative
specification for this very same conceptualization without this correlated-parameters trade-
off impediment. The MESF mathematical foundation is beyond college algebra (see [52]
for mathematical details), and, hence, daunting for many. Fortunately, its recent pub-
licly available ESF Tool (the latest Version 1.0.5 of this software, currently available at
https://github.com/esftool/esftool (accessed on 23 August 2023)), is a user-friendly Mi-
crosoft Windows MESF implementation whose fundamental structure integrates DotSpatial
and R using C#, is an abridged version of Spatial Analysis using ArcGIS Engine and R
(SAAR) by Koo, Chun, and Griffith [53] with ArcGIS Engine replaced by DotSpatial com-
ponents (i.e., it has no proprietary software components requirement) implementation
software simplifies computational complexities when handling SA; Griffith et al. [51]
demonstrate the use of this freeware. However, due to a need to selectively work with out-
put of certain MESF calculations in order to report targeted results, this paper implemented

https://github.com/esftool/esftool
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MESF with Statistical Analysis System (SAS) software procedures; a shortcoming of accom-
plishing this execution control is a need to be well trained in spatial statistical theory and
methodology. Nevertheless, MESF essentially extracts synthetic global, regional, and local
SA variates from the specified version of a SWM appearing in the MC, and inserts them
as covariates into a standard regression specification. ESF Tool computes these orthogonal
and uncorrelated SA variates, chooses significant ones with a stepwise regression selection
procedure, and then constructs an ESF that accounts for residual SA using the estimated
regression coefficients for these variates. One available package option is to produce a
constructed ESF map in order to visualize SA latent in a georeferenced dataset. Another is
to save selected SA variates for subsequent linear regression analysis.

Griffith [54] provides insights into understanding SA mixtures here, such as those
characterizing jigsaw puzzles, proving that the synthetic SA variates for a square tessellation
SWM are exactly the same for both its rook and queen (i.e., polygons sharing both zero and
non-zero length boundaries) geographic adjacency definitions (with the queen definition
generating nearly twice as many geographic linkages as the rook definition in this setting);
each corresponding pair of synthetic SA variate Moran scatterplots is identical for these
two cases. What differs is their matching SA measures represented by their map patterns.
Consequently, some natures and a majority of SA degrees change for map patterns between
these adjacency definitions. In other words, negative SA may be hidden by the definition
of a SWM, with an appearance that positive SA accounts for nearly all of a response
variable’s geographic variance. Switching to a queen’s definition SWM for an autoregressive
specification fails to address this complication without a modification such as replacing
a SAR with a SARMA specification. The MESF mechanics of this change arises from the
expected value of the linear regression residual MC statistic, which ESF Tool calculates by
default (after [55]): the expected value of linear regression residuals is minus the sum of
the K + 1 individual regression covariate MC values divided by (n–K–1). In other words, in
the presence of positive SA, the expected value of the residual MC calculation is negative,
converging on zero from below as the number of degrees of freedom (dfs; i.e., n–K–1) goes
to infinity. However, selected synthetic SA variates representing negative SA (and hence
having MC < 0) would move this value toward zero for smaller dfs numbers, and even
could cause it to become positive. Accordingly, for a positive–negative SA mixture, the
addition of negative SA covariates shrinks a positive SA residual MC value toward zero.

4.1. Remotely Sensed Data Results: The Case of Strong Positive SA

Numerous georeferenced phenomena studied to date display mostly or exclusively
positive SA; therefore, spatial scientists almost always overlook and neglect negative
SA [31]. Given that repetitious contrasts materializing in map patterns exhibiting negative
SA tend to be elusive as well as confined in contiguous geographic landscapes, unable to
materialize as easily as positive SA in more synchronized geographically continuous data,
repeatedly negative SA is hidden, masked by dominant positive SA. Remotely sensed data
illuminate this situation in a very interesting way through their regular square tessellation
configuration. The original spatial resolution geographic distribution version of the preced-
ing High Peak NDVI data (Figure 3a;) is across a 30-by-30 pixel mesh (i.e., a regular square
tessellation forming a complete rectangular region). A simple SAR model specification
description of these data, namely, for areal unit i,

yi = ρ
n

∑
j=1

wijyj + (1− ρ)µ+ εi(i = 1, 2, . . . , n),

where y denotes NDVI, µ denotes the population mean of y, wij is the row-standardized ver-
sion of cij (the most commonly used spatial weights specification in autoregressive models),
and ε denotes a standard independent and identically distributed statistical random error
term, produces two notable results: for a binary 0–1 cij rook definition of adjacency, a SA
parameter estimate, ρ̂, of 0.989 (sρ̂ ≈ 0.005), which is >0.9+, and an approximate residual
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MC of 0.172 (sMC ≈ 0.024; MCmax = 1.02) and GR of 0.813 (sGR ≈ 0.053)—computed as
ei = ε̂i = yi − [ρ̂∑n

j=1 wijyj + (1 − ρ̂)µ̂]—implying the continued presence of more than trace
positive SA in the spatial regression residuals, ei; and, for a cij queen definition of adjacency,
a SA parameter estimate, ρ̂, of 0.990 (sρ̂ ≈ 0.005), which again is >0.9+, and an approximate
residual MC of 0.156 (sMC ≈ 0.017; MCmax = 1.03) and GR of 0.810 (sGR ≈ 0.051), once more
implying the continued presence of more than trace positive SA in the spatial regression
residuals, ei. This comparison implies that the remaining residual SA is not a function of
the SWM definition.

Extending the SAR to the SARMA specification for the High Peak NDVI exam-
ple, namely,

yi = ρ
n

∑
j=1

wijyj+(1− ρ)µ+ θ
n

∑
j=1

wijεj + εi(i = 1, 2, . . . , n),

the rook adjacency-based parameter estimates become ρ̂ ≈ 0.966 (sρ̂ ≈ 0.009), a slight
decrease in its magnitude, with an accompanying MA parameter estimate, θ̂, of −0.389
(sθ̂ ≈ 0.042)—indicating positive SA because the sign of a MA parameter is the opposite of
its SA nature—and an approximate residual MC of 0.013 (sMC ≈ 0.024) and GR of 0.971
(sGR ≈ 0.053), implying the presence of only a trace amount of residual SA for this second
specification. These estimates confirm that positive SA is in excess of 0.9 (the average lag-1
spatial correlation is roughly 0.93). Furthermore, the queen adjacency-based parameter
estimate becomes ρ̂ ≈ 0.949 (sρ̂ ≈ 0.014), a slight decrease in its magnitude, with an accom-
panying MA parameter estimate, θ̂, of −0.684 (sθ̂ ≈ 0.072), and an approximate residual
MC of 0.014 (sMC ≈ 0.017) and GR of 0.948 (sGR ≈ 0.051), again implying the presence
of only a trace amount of residual SA for this second specification. These estimates also
confirm that positive SA exceeds 0.9 (the average lag-1 spatial correlation is roughly 0.92).
In other words, for these remotely sensed data, neither a SWM nor a model specification
extension uncovers a negative SA component (i.e., no detection of a mixture); rather, these
extensions further emphasize that the degree of positive SA latent in remotely sensed
images tends to be marked.

This simple autoregressive (i.e., SAR) residual SA removal failure typifies many re-
motely sensed datasets, in part because they contain such extremely high positive SA levels.
Getis and Ord [56] provide another publicly available empirical example reproducing this
situation, a 16-by-16 specimen image with a single remotely sensed variable, the grey scale
value (i.e., integers in the closed interval [20 − 1, 28 − 1] = [0, 255]) for each pixel. Its
simple SAR model specification coupled with a rook adjacency definition yields the SA
parameter estimate ρ̂ ≈ 0.964 (sρ̂ ≈ 0.014), which, again, slightly decreases to 0.891 by
including a companion MA parameter, whose estimate is θ̂ ≈ −0.654 (sθ̂ ≈ 0.061). The
accompanying approximate residual MC decreases from 0.221 (sMC ≈ 0.046) to 0.013, with
the corresponding GR increasing from 0.801 (sGR ≈ 0.100) to 1.011, implying nothing more
than a trace amount of residual SA being present in this second specification, and again
confirming that marked positive SA tends to characterizes remotely sensed data.

A rational supposition is that vegetation reflected in NDVI values should be accom-
panied by a positive–negative SA mixture hypothesis. Vegetation engages in geographic
competition for sunlight, moisture, and soil nutrients, among other factors, implying a
negative SA linkage for it; remotely sensed image pixels resemble Figure 4a,e, but engage
in an abstract (e.g., seizing/squandering nearby moisture) rather than concrete tabs-and-
slots type of spatial competition. Vegetation also simultaneously engages in synchronous
geographic behavior by types of vegetation clustering due to seeding processes, accom-
panied by similar biological needs for geographically patterned sunlight, moisture, soil
type, and soil nutrients, among other factors, implying a positive SA linkage for it. There-
fore, the geographic distribution of NDVI should be characterized by a positive–negative
SA mixture. The preceding autoregressive analyses fail to uncover this mixture, in part
because sometimes positive SA is so dominant that negative SA becomes hidden [57].
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Using MESF methodology, and retaining the rook definition of geographic adjacency, yields
a 267-eigenvector SA description (from a candidate set of 434 vectors) for the Box–Cox
transformed High Peak NDVI response variable that accounts for 98.4% of its geographic
variance across 900 pixels. As with the preceding autoregressive residuals, the MESF linear
regression specification, namely

yi = µ + ESFPSA,i + ESFNSA,i + εi (i = 1, 2, . . ., n),

where ESFPSA and ESFNSA respectively denote the positive and negative SA ESF (i.e.,
weighted sums of synthetic SA variates) components, renders residuals containing more
than trace SA (its null hypothesis zMC ≈ 5.7 and zGR ≈ −3.0). Replacing the SWM in this
probe with one defined by a queen’s adjacency definition results in MC = 0.84 (MCmax = 1.03)
and GR = 0.13, converting 53 of the selected eigenvectors to ones representing negative rather
than positive SA, although they account for a mere 1.2% of the NDVI geographic variance; an
important consequence of this definitional change is the presence of only trace residual SA (its
null hypothesis zMC ≈ −0.6 and zGR ≈ −0.5). This MESF finding confirms the existence of a
positive–negative SA mixture, with the negative SA component hidden. Figure 7 displays
selected akin ESF Tool output for this data analysis; these results require some post-processing
to match their SAS counterparts reported in this paragraph (Step 1: save the 338 eigenvectors
selected by the “Eigenvector Spatial Filtering Regression” option. Step 2: use the first 267 of
these eigenvectors in a “Linear Regression” option, testing the residual SA with the binary
0–1 rook SWM. Step 3: repeat Step 2 testing with the binary 0–1 queen SWM).
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Figure 7. High Peak Box–Cox transformed NDVI SA computation results. Top left (a): a binary (i.e., 
0–1) rook SWM Moran scatterplot. Top right (b): output from ESF Tool. Bottom left (c): a binary 
queen SWM Moran scatterplot. Bottom right (d): output from ESF Tool based upon the first 267 
MESF linear regression selected eigenvectors, using binary rook and queen SWMs. 
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4.2. Socio-Economic/Demographic Data Results: The Case of Moderate Positive SA

Figure 8 furnishes a socio-economic/demographic data example, portraying the Box–
Cox transformed population density geographic distribution, with n = 1314 census tracts;
the two DFW subcenters are somewhat conspicuous in this graphic. Urban economics
conceptualizations and theory postulate that such metropolitan population density should
contain positive SA, in part because similar land uses cluster in geographic space; it also
postulates that metropolitan population density should contain negative SA, due to land
use competition (a la von Thünen/Alonso). Output for this example is consistent with these
expectations. Employing a SWM rook adjacency definition, the SAR model specification
description of these transformed population density data produces a positive correlation of
roughly 0.5, and implies the presence of little more than trace SA based upon its residual
MC (Table 1). SARMA and a queen adjacency definition (which increases its SWM number
of linkages by approximately 20%) fail to alter this more parsimonious conclusion. The GR,
which statistically is less powerful than the MC, suggests that a small amount of SA may
remain in the autoregression residuals; the SARMA estimates indicate that any residual SA
remaining indeed is negative. In other words, a positive–negative SA mixture characterizes
these Box–Cox transformed population density data, with the positive dominating the
negative SA component.
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Left (a): 200 (i.e., 20 rows by 10 columns) jigsaw puzzle pieces (constructed using BookWidgets: https:
//www.bookwidgets.com/widget-library/jigsaw-puzzle (accessed on 23 August 2023)). Middle (b):
the assembled jigsaw puzzle (MC ≈ 0.46, GR ≈ 0.41). Right (c): the rook adjacency definition MESF
approximation reproduction of (b).

Table 1. Box–Cox transformed 2010 DFW population density (Figure 8b) spatial autoregressive
estimation results.

Feature
Rook Adjacency Definition Queen Adjacency Definition

SAR SARMA ‡ SAR SARMA ‡

ρ̂ (sρ̂) 0.820 (0.017) 0.954 (0.014) 0.844 (0.017) 0.940 (0.018)

θ̂ (sθ̂) 0 0.498 (0.061) 0 0.383 (0.075)

rρ̂,θ̂ 0 0.812 0 0.826

Average lag-1 spatial correlation 0.56 0.62 0.56 0.61

pseudo-R2 0.643 0.647

Residual zMC; residual zGR −2.0; 1.8 1.7; 0.5 −1.0; 0.9 1.5; 0.1
‡ NOTE: the MA SA parameter sign is the opposite of its nature, in keeping with Box–Jenkins notation (also
see [58]).

Table 2 corroborates this positive–negative SA mixture verdict. Positive SA rook
adjacency outcomes (Figure 8c) imply the presence of little more than trace residual SA, with
essentially consistent MC and GR inferences. Adding a negative SA component accounts for
very little additional geographic variance, at a cost of poorer residual SA diagnostic statistics.
However, these deteriorated statistics build upon a −0.06 observed MCf, whose expected
value is −0.10; especially this observed MC magnitude substantively is inconsequential.
Switching to the queen adjacency definition renders comparable outcomes.

https://www.bookwidgets.com/widget-library/jigsaw-puzzle
https://www.bookwidgets.com/widget-library/jigsaw-puzzle
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Table 2. Box–Cox transformed 2010 DFW population density (Figure 8b) MESF estimation results.

Feature
Rook Adjacency Definition (SWM Elements

Sum = 7074; MCmax ≈ 1.175)
Queen Adjacency Definition (SWM Elements

Sum = 8494; MCmax ≈ 1.125)

Y PSA NSA PSA +
NSA Y PSA NSA PSA +

NSA

# eigenvectors 0 204 (385) 66 (400) 270 (785) 0 186 (365) 41 (366) 227 (731)

MC 0.64 0.89 −0.42 0.81 0.59 0.84 −0.38 0.78

GR 0.37 0.21 1.48 0.27 0.37 0.21 1.48 0.25

R2 0 0.750 0.052 0.802 0 0.730 0.038 0.768
Residual zMC 37.8 −1.0 2.2 38.6 0.8 3.2
Residual zGR −14.3 0.7 −1.2 −14.5 −0.3 −2.0

NOTE: # denotes “the number of”; PSA and NSA respectively denote positive and negative SA; the candidate
positive SA eigenvectors set size is the calculation result from [51]; rook MCPSA+NSA ≈ 0.93(0.89) + 0.05(−0.42)
≈ 0.81 and GRPSA+NSA ≈ 0.93(0.21) + 0.05(1.48) ≈ 0.27; queen MCPSA+NSA ≈ 0.94(0.84) + 0.03(−0.38) ≈ 0.78 and
GRPSA+Nesdf ≈ 0.94(0.21) + 0.03(1.48) ≈ 0.25.

Likewise, geography of crime conceptualizations allow for crime rates to contain a
mixture of positive and negative SA, the former correlating with locational attributes that
attract crime to places, and the latter correlating with displacement of crime to nearby
places due to local law enforcement. Griffith [31] presents a county level (n = 1412) spatial
statistical reanalysis of homicide rates across the southern United States (US). He discovered
in his evaluation that the omitted variables surrogate covariate—a random effects term—he
included contains a mixture of positive and negative SA. MESF methodology furnishes the
foundation for his published treatment. Table 3 summarizes output from its autoregressive
assessment counterpart, which corroborates the positive–negative SA mixture uncovered
by the MESF analysis.

Table 3. Spatial autoregressive estimation results for homicide rates across the US South [31].

Feature

Rook Adjacency Definition (SWM
Elements Sum = 7700; MCmax ≈

1.111)

Queen Adjacency Definition
(SWM Elements Sum = 8096;

MCmax ≈ 1.152)

SAR SARSM ‡ SAR SARSM ‡

ρ̂ (sρ̂) 0.585 (0.025) 0.988 (0.005) 0.593 (0.025) 0.988 (0.005)

θ̂ (sθ̂) 0 0.880 (0.022) 0 0.877 (0.022)

rρ̂,θ̂ 0 0.808 0 0.805

Average lag-1
spatial
correlation

0.31 0.38 0.31 0.39

pseudo-R2 0.326 0.326

Residual zMC −2.4 −0.1 −2.3 −0.1

Residual zGR −0.2 −1.1 −0.4 −1.3
‡ NOTE: the MA SA parameter sign is the opposite of its nature, in keeping with Box–Jenkins notation (also
see [58]).

4.3. Case Studies Discussion

SA already has a plurality of faces. Of the eight renditions widely acknowledged at
present, for all practical purposes, arguments in this paper dismiss the nuisance interpre-
tation because SA matters (as most quantitative geographers and other spatial scientists
recognize today), replacing it with a newly emerging interpretation that often latent SA
in georeferenced data is a mixture of positive and negative SA, and supplementing it
with an additional interpretation that moderate positive (net) SA epitomizes most socio-
economic/demographic, whereas very strong positive (net) SA epitomizes most remotely
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sensed image, geographic distributions. The jigsaw puzzle metaphor demonstrates this
former conjecture, whereas empirical evidence encapsulated in the preceding section sup-
ports this latter conjecture, with implications about solving more difficult jigsaw puzzles
(e.g., more pieces, and/or more highly complex pictures).

Figure 9 further illuminates the positive–negative SA mixture notion, accentuating
that positive SA can mask negative SA; all three Moran scatterplots, which in their standard
form fail to differentiate between positive and negative SA, highlight that the negative
SA component spans the second and forth quadrants (i.e., H-L and L-H pairings) while
concentrating around each graph’s origin. As the High Peak empirical example shows,
although a mixture’s negative SA is hidden sometimes (the corresponding linear regression
line slope in Figure 9a is nearly zero), overlooking it in an analysis produces poor diagnostic
statistics (e.g., omitted variables bias). The DFW and US South empirical examples show
that as a scattering of points disperses further into the second and fourth quadrants, the
prominence of its negative SA component increases.
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and negative SA component trend lines and 95% prediction ellipses (respectively denoted by red
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Perhaps the most crucial and profound revelation the jigsaw puzzle metaphor moti-
vates is construction of positive and negative SA Moran scatterplot trendline pairs, which
serendipitously demonstrates graphically for the first time that the negative SA slopes
typically are much shallower than their positive SA accompaniments in these mixtures;
negative SA almost always is weaker and therefore tends to be much less salient. This is a
critical fact from the omitted variables bias perspective, especially when many covariates
have enhanced pairwise correlations due to SA. Even a variable that does not have a strong
relationship with a model’s response variable itself can cause big issues when it is omit-
ted and there is some degree of correlation between it and several of the other variables
included in the model. Hopefully the jigsaw puzzle metaphor can spawn other insights.

5. Summary, Conclusions, and Implications

SA is everywhere, and its constant encountering requires a keener awareness as well
as an improved understanding of it. In turn, improved SA comprehension can contribute to
such endeavors as “develop[ing] and offer[ing] new strategies, visions and proposals on the
role of sustainability and resilience related to urban and rural contexts” [1], such as spatially
adjusted analytical techniques, or “help[ing] policy-makers to manage the new chances set
up by a particularly complex and dynamic socioeconomic scenario worldwide” [1], such as
furnishing appropriate tools for monitoring and evaluating sustainability progress. To these
ends, this paper makes the following two contributions: (1) establishing the jigsaw puzzle
metaphor for explaining in relatively simple and intelligible terms the concept of SA; and,
(2) the additional interpretation of SA as frequently being a mixture of positive and negative
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local geographic relationships (supplementing [32,33]). Within the confines of this second
knowledge advancement, this paper presents a conjecture that positive SA dominates the
vast majority of geographic distributions, characterizing most remotely sensed images with
marked degrees, and characterizing most socio-economic/demographic phenomena as
having moderate degrees. Spatial statistical tools uncover evidence corroborating these
contentions, uncovering hidden negative SA among marked positive SA in remotely sensed
images, and exposing negative residual SA among moderate positive SA in population
density and homicide rates.

One drawback of the jigsaw puzzle metaphor is that it limits a discussion to mutu-
ally exclusive and collectively exhaustive 2-D area dissections of geographic landscapes,
partitionings largely artificial (e.g., administrative boundaries) in the real world. A variety
of other metaphors show potential, at least in terms of supplementing the jigsaw puzzle.
The 2-D 4-by-8 grid layout synchronized black-orange-red metronomes experiment (e.g.,
https://www.youtube.com/watch?v=5v5eBf2KwF8 (accessed on 24 August 2023)) em-
phasizes the connection between synchronization and positive SA, supplies a common
factor source of SA as well as point location attributes, and illustrates a positive SA range
extending from near zero to near one. Insect behavior, such as the flashing lights pattern
of synchronous fireflies (e.g., https://insidescience.org/news/how-synchronize-fireflies
(accessed on 24 August 2023)), provides a spatial interaction source of SA, again ranging
from near random (initial flashes) to near perfect (flashings appears to occur at the same
time) SA. Noteworthy here is that Heckscher [59] discovered a new firefly species by recog-
nizing deviations from the well-known SA flashing pattern, demonstrating the power of
SA. Reminiscent of the Schelling [60,61] model, which deals with a mixture of point and
polygon areal units, The Economist [62] notes that positive SA rather than a random mixture
of household opinions, tends to characterize places:

The north [of England] has wealthy suburbs, like South Wirral, west of Liverpool.
They vote Labour. The south has impoverished pockets, like north-east Kent.
They vote Conservative. It is as though political opinions derive from the air
people breathe.

Recent scholarly inquires reporting that, for example, US households often migrate to
places matching their politics [63], and anti-vaccine sentiment tends to geographically
concentrate [64], corroborate this geographical clustering contention. Artistic paintings
deliver yet another conceivable metaphor (e.g., [65]; the fourth in a sequence of papers
about this topic that spans five years): SA is latent in the red–green–blue (RGB) spectral
band color channels of artists’ paintings, with MESF methodology capable of producing
painting replications that visibly are nearly indistinguishable from their original artwork.
This incomplete review of possible alternative metaphors exemplifies that: (1) many more
metaphors exist, but apparently solely for the most common case of positive SA; (2) other
potential metaphors appear to be inferior to the one furnished by jigsaw puzzles because
they fail to illustrate negative or mixtures of SA; and, (3) the jigsaw puzzle, from its
inception through to its many contemporary and sometimes subtly different versions (e.g.,
tangrams, slider puzzles), furnishes a fathomable metaphor for understanding SA.

Therefore, one conclusion is that the jigsaw puzzle metaphor furnishes a superior and
ideal pedagogic tool for comprehending SA. A second conclusion is that autoregressive
and moving average parts of a SARMA model specification usually are highly correlated,
although they fail to reach the troublesome level of±0.95, at least for the empirical examples
presented in this paper; nevertheless, particularly because this threshold comes from
time series practice, the interval (0.8, 0.9) may well raise some concerns for spatial series
practice. Otherwise, an alternative conclusion suggested by the SARMA results is that
the degree of positive SA in economic/demographic phenomena also is marked, with a
considerable amount of it offset by its (near-)universal accompanying negative SA when
indexed by a single quantifier, rendering a perceptible moderate degree of net SA. Another
prominent conclusion is that negative SA merits substantially more study attention by
spatial scientists [31].

https://www.youtube.com/watch?v=5v5eBf2KwF8
https://insidescience.org/news/how-synchronize-fireflies
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Finally, a critical implication is that zero SA rarely exists, except in a net positive–
negative mixture. Accordingly, Figure 9 implies that the utility of the Moran scatterplot in
its present form may be seriously compromised. An additional implication is that MESF
methodology allows a more efficient and effective investigation of positive–negative SA
mixtures than is afforded by autoregressive methodology, alone. These various implications
warrant subsequent research consideration.
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