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Abstract: This paper analyzes the performance of the open-source OpenDroneMap image processing
software (ODM) across multiple platforms. We tested desktop and laptop computers as well as high-
performance cloud computing and supercomputers. Multiple machine configurations (CPU cores
and memory) were used. We used eBee S.O.D.A. drone image datasets from Namibia and northern
Finland. For testing, we used the OpenDroneMap command line tool with default settings and the
fast orthophoto option, which produced a good quality orthomosaic. We also used the “rerun-all
option” to ensure that all jobs started from the same point. Our results show that ODM processing
time is dependent upon the number of images, a high number of which can lead to high memory
demands, with low memory leading to an excessively long processing time. Adding additional CPU
cores is beneficial to ODM up to a certain limit. A 20-core machine seems optimal for a dataset of
about 1000 images, although 10 cores will result only in slightly longer processing times. We did
not find any indication of improvement when processing larger datasets using 40-core machines.
For 1000 images, 64 GB memory seems to be sufficient, but for larger datasets of about 8000 images,
higher memory of up to 256 GB is required for efficient processing. ODM can use GPU acceleration,
at least in some processing stages, reducing processing time. In comparison to commercial software,
ODM seems to be slower, but the created orthomosaics are of equal quality.

Keywords: OpenDroneMap; ODM; Web-ODM; cloud computing; high performance computing;
virtual machines; open source

1. Introduction

This paper analyzed the performance of OpenDroneMap (ODM) open-source image
processing software over multiple platforms. These platforms included laptops, desktops,
Linux-based high-performance cloud computing, and supercomputing infrastructures. The
idea of open-source software is not new and is continuously gaining interest [1–5]. This is
more so because of the huge success of widely used open-source software like QGIS, R [6],
and open-source operating systems like Linux [1,7]. In general terms, the idea of open-
source software is such that its development and maintenance are performed collectively
by a community of people with a shared interest [1,2,7]. Open-source software is a strategy
that has been used by many industries for long-term sustainability purposes [8]. Thus,
maintaining the quality of open-source software is important [9–11].

High Performance Computing (HPC) supercomputers have long been used in the
scientific community [12,13]. For example, CSC (the Finnish national IT center for science)
has had HPC machines for the past 40 years. Cloud computing, on the other hand, is a
relatively new concept, which evolved over the last 10 years. Cloud computing offers
instant access to computing resources at different scales based on user needs [14,15]. Cloud
computing and supercomputing provide the ability to run multiple parallel computing
tasks to be processed, saving time and money [14,16,17]. One of the features of cloud
computing is the virtualized framework that provides users access to hardware, software,
and data storage services [18]. With this virtualized framework, users can install multiple
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applications for different purposes [17–19]. The use of virtualization technologies allows
users to deploy multiple virtual machines (VM) in a consolidated data center [17,20,21].
These virtualized frameworks give users administrative privileges to install and run soft-
ware using the host’s resources. In other words, instead of having to buy an expensive
high-performance personal computer, a user can launch a temporal, virtual machine to
perform a specific project [14]. As such, software like ODM can be installed on a cloud
virtual machine where the user has full and sole control (administrator) privileges. On the
other hand, if ODM is installed on a supercomputer, all users will have access to it, which
provides services to a wider user community. On a supercomputer, the user must wait in a
batch queue for processing, which can make a cloud virtual machine more flexible.

The main goal of this study was to test the performance of ODM (version 3) across
multiple platforms using the default settings.

To our knowledge, no peer-reviewed scientific publication has conducted an analysis
of ODM’s performance, a free drone-mapping software. Currently, only a few software
packages are available that facilitate the processing of drone images, most of which are
commercial, such as MetaShape or Pix4D. Therefore, our research not only stands out as
unique and timely but also makes a valuable contribution to the scientific community.

The result of this study will form the baseline for future research in this area. To achieve
this, we used personal laptops, desktops, and CSC’s (the Finnish national IT center for
science) different cloud computing virtual machine flavors (pre-defined core and memory
combinations), and a supercomputer. Specifically, we used the cPouta cloud computing
services and the Puhti supercomputer.

In addition, we tested graphical processing units (GPU) on the Puhti supercomputer
system, as well as on a high-performance desktop and two laptops, all equipped with
NVIDIA GPUs.

2. Materials and Methods
2.1. Data

We used two aerial drone image datasets with varying numbers of images and geo-
graphical settings. One set of images of subtropical forest and floodplain environments
were collected in northeastern Namibia in July 2017. The drone data in Namibia were
collected in six different locations that included lakes (198 images), floodplains (393 images),
forests (913 images), settlements (1039 images), and conservation areas (2747 images). An
additional 7917 images of a northern boreal area were collected in northern Finland in 2019.
The images were collected using a SenseFly eBee Plus (senseFly.com (accessed on 21 March
2023)), fixed-wing drone. The eBee camera model was the SenseFly S.O.D.A. (Sensor
Optimized for Drone Applications). The eBee image dimensions were 5471 × 3648, with
both vertical and horizontal resolution of 72 dpi. The images were traditional three-band
RGB (red, green, and blue) true color georeferenced Tiff digital images.

2.2. Computing Environments for ODM Performance Testing

ODM is an open-source software system for drone mapping and 3D modeling. The
images are obtained by flying a pre-defined overlapping flight path over a study area using
readily available free pre-flight planning software. Once the data have been acquired, they
can be processed using ODM to rectify and stitch the hundreds or thousands of images
into one topographically corrected orthomosaic. ODM produces 3D visualizations and
digital elevation models (DEM) and offers the possibility to calculate volumes of stockpiles.
In addition, ODM supports the processing of images captured using traditional digital
cameras, drone RGB, and multi-spectral cameras. Furthermore, ODM can cut aerial videos
into still images and subsequently produce orthoimages from them [22].

ODM is available for several configurations, and the basic version is used with a
command-line interface or Linux script. A second option is WebODM, which is a server
setup with a graphical user interface where the server can be a remote or local machine. For
distributed computing, NodeODM and ClusterODM are also available. The simplest instal-
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lation of all ODM options is performed using the cross-platform Docker-based environment
(www.docker.com, accessed on 20 April 2023). As such, ODM runs on any computer that
has the Docker environment installed, whether it is running Linux (any distribution that
supports docker), Mac (macOS Sierra 10.12 or higher), or Windows (Windows 7 or higher).
The Docker system uses part of the total available RAM memory, and sometimes swapping
fills up the disk space, which can only be reclaimed by purging everything from the Docker
system. The computer resources used by Docker can be adjusted and fine-tuned using
the Docker settings. In our test environment, we used ODM version 3 for consistency and
ease of implementation. For more information on ODM and its options, please refer to the
project’s web pages (https://opendronemap.org/, (accessed on 20 April 2023)). It should
be noted that, like all open-source software, ODM is constantly evolving, and new versions
are released at a rapid pace, while updated documentation often lags behind.

ODM is designed in a modular fashion (Figure 1) and requires configuring numerous
parameters to optimize the processing environment. ODM is optimized for parallel comput-
ing, resulting in faster execution on machines equipped with multiple CPU cores. Certain
stages of ODM can utilize a graphical processing unit (GPU). The minimum requirements
for running ODM include a computer with a 64bit CPU manufactured in 2010 or after,
20 GB of disk space, and 4 GB of RAM [22]. However, processing large datasets (>1000)
will necessitate a minimum of 32 GB, preferably 64 GB of memory, as well as ample disk
storage space.
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Figure 1. OpenDroneMap (ODM) processing pipeline: Normal processing pipeline (a) and Fast
Orthophoto processing pipeline (b) (Modified with permission from [22]. Copyright 2019, Piero
Toffanin).

For ODM performance testing, we used three different computing environments:

1. Cloud computing virtual machines.
2. A supercomputer
3. A high-end Personal Computer (PC) and two laptops

For cloud computing and supercomputer, we used the computing facilities of CSC—IT
center for science (www.csc.fi, accessed on 20 April 2023). Specifically, we used the cPouta
cloud and Puhti supercomputer, together with the Allas object storage facility (Figure 2).

www.docker.com
https://opendronemap.org/
www.csc.fi
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cPouta is an Infrastructure as a Service (IaaS) cloud platform [23] that is built upon
OpenStack [24]. The cPouta cloud services can be accessed via the internet and used by
clients for various computational needs [23]. The cPouta IaaS offers users the ability to
create and run personal virtual machines (VMs) that simulate the working environment
of a traditional computer [25]. The cPouta environment provides different flavors with
varying computing resources and features for launching virtual machines.

On cPouta, we used two different virtual machine flavor types: hpc4 and hpc5, each
with distinct characteristics (Table 1). These flavors have a fixed number of cores and
memory, which users can launch as virtual machines.

Table 1. cPouta hpc4 and hpc5 flavors arranged in increasing number of cores.

Flavor Number of Cores Memory (GB)

hpc.4.5core 5 21
hpc.4.10core 10 42
hpc.5.16core 16 58
hpc.4.20core 20 85
hpc.5.32core 32 116
hpc.4.40core 40 171
hpc.5.64core 64 232

The data volume and subsequent storage requirements grow exponentially with an
increasing number of images, resulting in huge storage demands. To resolve this storage
problem, we stored our data in the Allas object storage system (Figure 2). From our
tests, running 7917 images using the default settings required about 700 GB of storage
space. For this purpose, we used a separate disk volume that was mounted to the cPouta
virtual machine (VM). The cPouta VMs have a default disk storage of only 80 GB, which is
insufficient for most ODM jobs involving more than 100 images.

The Puhti supercomputer has 682 CPU and 80 GPU nodes. Each CPU node has
40 cores, while each GPU node has 40 CPU cores and 4 GPUs. The peak performance
of the CPU partition is rated as 1.8 petaflops and the peak performance of the 80 GPU
partition is rated as 2.7 petaflops [26]. In Puhti, computing resources can be reserved in
many combinations using the SLURM job system. ODM scripts are run as batch jobs using
the SLURM system.
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On Puhti, it is possible to use one or more CPU cores with varying amounts of
memory. However, since ODM can utilize only one node at a time, the tests were limited
to 40 cores. During our testing on Puhti, we conducted experiments utilizing different
core configurations, including 1, 3, 15, 25, 30, and 40 cores (Table 2). When it came to GPU
testing on Puhti, we were limited to 5, 10, and 20 cores due to the high demand and long
queues for GPU cores. The availability of GPU cores was not always immediate, making
them less readily accessible for our experiments.

Table 2. Puhti configurations used in this study.

Number of Cores Memory Per Core (GB)

1 20
3 20
5 20
15 8
20 5
25 8
30 5
40 3

The OpenDroneMap software is installed in Puhti as a non-root Apptainer container,
and in cPouta and laptop personal computers (PC) as Docker containers. Puhti uses the
Lustre parallel storage, with a total space of 4.8 PB, and is configured into three sections:
home (user home directory, 10 GB), projappl (installation of applications, 50 GB), and
scratch (temporary space for script used in testing and running jobs, 1 TiB) [26]. During
our test, we stored the data on the scratch disk.

For permanent storage of data, the Allas service provides a modern general-purpose
object-storage service. It has the S3 and Swift interfaces on CEPH storage. CEPH is a
highly efficient open-source distributed file system that offers the capability to store data as
single files or objects in blocks [27–29]. Not only does CEPH provide superior performance,
scalability, and reliability, but it also ensures efficient data management [27–29]. On Allas,
data is stored as objects in buckets, where the objects can either be a file, image, or packed
(zipped) folder [30].

In addition, we ran tests on three different local Windows computers; a Windows 10
desktop and two Windows 11 laptops. These were High-End I7 and I9 multi-core machines
with 64 GB RAM. A technical summary of all used computing environments is given in
Table 3.

Table 3. Characteristics of used computing environments.

Flavor CPU GPU CPU Cores Memory, GB

cPouta hpc4 Intel(R) Xeon(R) Gold 6148 CPU @
2.40 GHz, hyper-threading - 5–40 21–171

cPouta hpc5 AMD EPYC 7702 64-Core
Processor, boost up to 3.35 GHz - 16–64 58–232

Puhti
supercomputer Intel Xeon Gold 6230 2.1 GHz NVIDIA Volta V100 1–40 1–240

(up to 1500 available)

64-bit laptop W11 11th Gen Intel(R) Core (TM)
i7-11800H @ 2.30 GHz 2.30 GHz NVIDIA T1200 8 64

64-bit laptop W11 11th Gen Intel(R) Core (TM)
i9-11950H @ 2.60 GHz 2.61 GHz NVIDIA T1200 8 64

64-bit desktop W10 Intel(R) Core (TM) i9-7980XE CPU
@ 2.60 GHz 2.59 GHz NVIDIA Quadro P4000 18 64
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2.3. Testing Configuration

We used the 1039 images (subtropical forest) test runs as a benchmark across all the
platforms: local laptops, desktop, cPouta cloud, and Puhti supercomputer. Additionally,
we ran different groups of image datasets (198, 393, 913, 919, 1039, and 2747 images) on
several cPouta VMs.

To create the virtual machines (VMs) on the cloud platform, we utilized the hpc4 and
hpc5 flavors. Each flavor offered different configurations of cores and available memory,
as shown in Table 1. This allowed us to tailor the VM specifications according to our
needs and optimize performance.During the execution of the ODM software, we used
the default settings and the ‘fast orthophoto’ option (Figure 1b) since we only required
the orthomosaic outputs. The orthomosaic images achieved excellent quality, requiring
no further adjustments to the default settings. The ‘fast orthophoto’ option bypasses the
Multi-View Stereo step (Figure 1b), reducing processing time by focusing solely on the
orthomosaic, which suffices for mostly flat areas.

To ensure consistent starting points for all jobs (image loading), we employed the
‘rerun-all’ option, which removes all previously generated results. In certain tests with lim-
ited memory, we employed the ‘split–merge’ option to break down the process into smaller
subareas. While the split–merge option restricts memory usage, it increases processing
time.

Finally, we compiled separately and plotted the results of the hpc4 and hpc5 VM
flavors.

3. Results

The outcome of the cPouta tests is shown in Table 4 and Figures 3a–g and 4, while
those of the Windows desktop, laptops, and Puhti supercomputer are shown in Table 5
and Figure 5. The ODM-processed images are shown in Figure 6. We see in Figure 4
that as the number of images increases, the processing time and the amount of memory
(RAM) increase linearly, as expected. There is not much difference in time duration when
processing a small number of images (Table 4, Figure 3a). For example, when processing
the 198 images, the time ranges from 35 to 45 min and a small difference in processing
time with the increasing number of cores. The 5-core 21 RAM VM took 45 min to process
198 images while the 64-core 232 RAM VM took 38 min (7 min difference). On the other
hand, as the number of images increased to 393 (almost double in this case), the processing
time tripled. The time taken to process the 393 images ranged from 1 h and 48 min to 2 h
and 12 min, excluding the 72 h and 18 min where we used the split–merge option (Table 4,
Figure 3b). This trend is similar for all the processed images, including the 7917 (Table 4,
Figure 3f,g).

Also, the split–merge option has a noticeable effect on the fluctuating increase in
processing time, particularly for limited. For instance, on a 21 GB RAM machine, it took 45
min to process 198 images, but it took 72 h and 18 min for 393 images. The processing time
dropped to 10 h and 28 min but increased to 200 h and 7 min (Table 4, Figure 3b). Similarly,
the 42 GB RAM VM showed a similar trend to the 21 GB VM (Table 4, Figure 3). However,
the effect of the split–merge option was minimal for the VMs with higher RAM (>85 GB).

In addition, the results indicate slight differences in the performance of different VM
flavors for both hpc4 and hpc5. In some cases, processing times were shorter using a
VM with fewer cores compared to those with more cores (Table 4). For example, when
processing the 913 images, the hpc4 40-core VM took 3 h and 3 min, while the hpc5 64-core
VM took 3 h and 51 min. We believe this behavior could be attributed to the differences in
hardware and swap memory processes of the VMs. Furthermore, when processing failed
due to insufficient RAM, we tested the split–merge feature. The columns with numbers
enclosed in brackets are the test runs where we applied the split–merge option. The number
enclosed in brackets indicates the number of images used for each submodel process.



Geographies 2023, 3 452Geographies 2023, 3, FOR PEER REVIEW 8 
 

 

 
Figure 3. The output of ODM tested on cPouta hpc4 and hpc5 Virtual Machine (VM) flavors: 198 
images (a), 393 images (b), 913 images (c), 919 images (d), 1039 images (e), 2747 images (f), and 7917 
images (g). We did not plot the 72 h 18 min time point for the 5-core VM flavor (see Table 4) to make 
this graph more legible. The points in green (c–g) represent the data that we processed using the 
ODM split–merge option (see also Table 4 above). The hpc4 flavor is shown in red line, while the 
hpc5 is in black. 
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Table 4. Results of the cPouta virtual machine flavors. The number of images processed for each
flavor and the time taken are also shown. For the 7917 images, only four VMs were tested with
RAM 85 GB to 232 GB. The numbers in “brackets” indicate the number of images that we used as a
parameter setting with the ODM split–merge feature because of insufficient RAM of the VMs. The
split–merge indicated here corresponds to the green points in Figure 2 below.

Number of Images Processed for Each Time Column

VM
Flavor Cores RAM Time (hours and minutes)

198 393 913 919 1039 2747 7917

hpc4 5 21 0:45 72:18
(100)

10:28
(100)

200:07
(100)

151:44
(100)

25:11
(100) —

hpc4 10 42 0:38 2:12 4:42
(200)

192:53
(200)

80:02
(200)

13:14
(600) —

hpc5 16 58 0:35 1:53 3:27 115:31
(400)

82:02
(400)

12:12
(700) —

hpc4 20 85 0:37 1:50 3:29 4:51 4:52 10:40
(1000)

65:32
(1500)

hpc5 32 116 0:35 1:59 3:41 3:39 4:48 12:00 46:37
(500)

hpc4 40 171 0:36 1:48 3:03 4:46 4:23 10:21 61:33
(500)

hpc5 64 232 0:38 2:06 3:51 3:18 4:50 11:50 50:57
(500)

Figure 3a–g indicates the order in which the images were processed, from the lowest
(198) to the highest (7917). Both hpc4 and hpc5 flavors show a similar trend: low-RAM
VMs take longer times to complete processing, while high-RAM VMs are faster.

The benchmark result for 1039 images across various platforms are shown in Table 5
and Figure 5. Without using GPU, the i7 laptop (8-cores 64 GB RAM) took 3 h and 27 min to
process the images, while the i9 laptop (8-cores 64 GB RAM) and i9 desktop (18-cores 64 GB
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RAM) took 8 h and 28 min and 5 h and 40 min, respectively. With the GPU option, the i7
laptop showed better performance, processing the images in 2 h and 47 min, compared to
4 h and 41 min for the i9 laptop and 4 h and 49 min for the i9 desktop. The speed gains
were 19%, 45%, and 15% for the i7 laptop, i9 laptop, and i9 desktop, respectively.

On the other hand, processing the 1039 images on Puhti showed varying processing
times, ranging from 3 h and 20 min to 11 h and 48 min. The longest time processing time
was observed with the one-core 60 GB RAM setup, taking 11 h and 48 min, while the
shortest time was with the 20-cores 100 GB RAM setup, taking 3 h and 20 min. The 25-core
200 GB RAM setup took 3 h and 33 min, the 30-cores 240 GB RAM setup took 3 h and
34 min, and the 40-cores 120 GB RAM setup took 3 h and 36 min to process the same set of
images. The 20-core 100 GB RAM setup with GPU showed a speed gain of 15%.

Table 5. Results of ODM Tests on Windows Desktops, Laptops, and Puhti Supercomputer (Full
Specifications in Table 1).

System Type Cores Memory (GB)
Time

(Hours and Minutes)
Speed Gain with

GPU, %

No GPU With GPU

64-bit, i7 (Laptop) 8 64 3:27 2:47 19
64-bit, i9 (Laptop) 8 64 8:28 4:41 45

64-bit, i9 (Desktop) 18 64 5:40 4:49 15
Puhti supercomputer 1 60 11:48 - -
Puhti supercomputer 3 30 6:17 - -
Puhti supercomputer 5 100 5:03 4:24 13
Puhti supercomputer 10 100 4:41 3:02 35
Puhti supercomputer 15 120 3:58 - -
Puhti supercomputer 20 100 3:20 2:50 15
Puhti supercomputer 25 200 3:33 - -
Puhti supercomputer 30 240 3:34 - -
Puhti supercomputer 40 120 3:36 - -
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Additionally, we performed a comparison by testing the same 1039-image dataset on
an 18-core I9 Desktop computer using MetaShape Agisoft version 2.0.0.15597 (https://www.
agisoft.com/, accessed on 20 April 2023), which is a commercial-grade software package.
The processing time for the images using MetaShape was 1 h and 43 min (including aligning,
meshing, and ortho-mosaic steps), faster than the 4 h and 49 min with ODM software on
the PC and 2 h and 47 min on the newer i7 laptop (Table 5). It is noteworthy that the GPU

https://www.agisoft.com/
https://www.agisoft.com/
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chip type significantly affects the processing time. However, the orthoimage produced by
ODM is of equal quality compared to that produced by MetaShape.
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4. Discussion

The results indicate that adding excessive cores only marginally decreases the pro-
cessing time for ODM. However, the processing time difference is more significant when
using a smaller number of cores. The optimum number of cores depends on the number
of images, typically around 20 cores for a 1000-image dataset. Even with a larger dataset
(7917 images), there was little improvement beyond 20 cores.

The results also demonstrate that the processing time can be reduced by using the
GPU-accelerated version of ODM. Depending on the computing environment (as shown in
Table 5), the processing times were 15–45% faster with GPU. The total time of processing
with different GPUs ranged from 2 h and 50 min to 4 h and 49 min for the 1039-image dataset.
The variations can be attributed to the different GPUs used (as shown in Table 1). These
findings align with Shiva’s study [31], which reported that using a GPU can greatly benefit
certain stages of ODM processes, resulting 3 to 10 times faster processing, depending on
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the type of GPU graphics card used. Shiva’s study tested 4- and 8-core machines using both
CPU and GPU. Similarly, the study by Chang et al, 2021 [14], found that GPU performance
is closely related to the type of graphic card, and they also noted that in a cloud-computing
environment, proper virtual machine setup can improve performance and gains.

Optimal processing times for ODM are highly dependent on memory [22], and this
study confirms that finding. Larger input datasets require more memory. With large
datasets, using fewer cores (1 to 5) results in longer processing times, significantly increasing
the overall processing time (as shown in Table 4). Additionally, as the number of images
increases, the processing time also increases (as shown in Figure 4). We also tested the
split–merge functionality of ODM, which allows for the of less memory by dividing images
into smaller chunks and combining the outputs of submodels in the final phase. However,
using this split-merge option comes at the expense of significantly longer processing time.

Comparing our results on cPouta with the official recommendations on the ODM
website shows a generally good agreement [32]. For instance, while ODM officially recom-
mends 128 GB memory for processing 2500 images, we were able to process 2747 images
with 116 GB using 32 cores (as shown in Table 4 and Figure 3f). Similarly, we processed
4000 images with 171 GB memory and a 40-core VM (result not included here), compared to
the recommended 192 GB memory by ODM [32], for processing 3500 images. For datasets
up to a few thousand images, 64 GB of memory appears to be sufficient, but larger datasets
up to 8000 images require 256 GB memory to process.

There seems to be little or no difference in processing time between the script-based
ODM and WebODM. This is expected since WebODM only adds a web browser graphical
user interface, while using the same processing engine. In general, our findings align with
Shiva’s report [31], which stated that doubling the number of cores can bring potential
benefits but also increases the required amount of memory, leading to some positive
impacts.

However, when utilizing WebODM, the graphical user interface of ODM, we achieved
remarkable results by processing up to 3000 images on a Windows 11 laptop with an
8-core I9 processor and 64 GB of memory. Notably, these findings deviate from the official
recommendations for processing 2500 to 3500 images on a PC laptop. This difference could
potentially be attributed to advancements in technology.

5. Conclusions

Based on our observations, we have concluded that the ODM software produces good
quality orthomosaics. Both the script-based ODM and the web-browser-based WebODM
graphical user interface are easy to use. ODM can be run on a personal computer or laptop
for datasets up to several thousands of images.

To ensure fast processing, having sufficient memory is crucial. The split–merge
option of ODM allows running larger datasets with limited memory. However, this option
noticeably slows down processing time. ODM also offers a split–merge feature with parallel
processing using ClusterODM and NodeODM, although it was not tested in this study.
Additionally, having sufficient hard drive space is important for larger datasets

Adding a GPU processor to the system configuration clearly benefit ODM, as shown
in Table 5, where the processing time improvement ranged from 15% to 45%, depending on
the GPU chip. In supercomputing and cloud-computing environments where GPUs are
significantly more expensive, this difference is still too small to give economic benefits, but
with laptops and PCs, the GPU option proved to be extremely useful.

According to our tests, ODM benefits from increasing the number of cores. For CPU
efficiency, 1 to 5 cores would be optimal; however, for processing time, using 10 to 20 cores
would be optimal, as adding more than 20 cores does not increase processing speed. Adding
excessive cores slows down processing time due to increased overhead. Conversely, using
too few cores (1 to 5) increases processing time due to limited computing resources.

The main limitation of this study was the inability to thoroughly explore various ODM
settings that could impact the software performance. For instance, it is well known that
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increasing the quality of the generated output will increase processing time. Also, there is a
need to perform robust monitoring of the hardware, cores, and available memory and how
these are affecting the overall performance of the software. Additionally, the slow reading
and writing speeds of cPouta and Puhti are some of the limiting factors that need to be
addressed. Another aspect that needs to be considered is how the programming language
used to write ODM could contribute to the performance of the software. Other issues, such
as virtualization and containerization, as shown by Shah et al. 2021 [15], could also be a
limiting factor in this study.
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