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Abstract: Jamaica, as a Small Island Developing State (SIDS), is highly vulnerable to weather extremes.
As precipitation persistence is a critical factor in determining the susceptibility of an area to risks, this
work assesses the spatial and temporal variations of rainfall persistence in Jamaica from 1981 to 2020,
using satellite-based information. The Hurst exponent (H) and the serial correlation coefficient (SCC)
are used to evaluate the long-term persistence of precipitation and the Persistence Threshold (PT)
concept is introduced to provide a description of rainfall characteristics over short periods, specifically,
the number of consecutive days with precipitation above or below a set threshold value. The PT
method is a novel concept that expands upon the Consecutive Dry Days (CDD) and Consecutive
Wet Days (CWD) methods that only consider a threshold of 1 mm. Results show notable temporal
and spatial variations in persistence over the decades, with an overall increasing trend in high
precipitation persistence and a decreasing trend in low precipitation persistence. Geographically, the
northern mountainous area of Jamaica received the most persistent rainfall over the study period
with an observed increase in extreme rainfall events. The excess rainfall of the 2001–2010 decade is
remarkable in this study, coinciding with the global unprecedented climate extremes during this time.
We conclude that the data used in this study is viable for understanding and modeling rainfall trends
in SIDS like Jamaica, and the derived PT method is a useful tool for short-term rainfall trends, but it
is just one step toward determining flood or drought risk. Further research will focus on developing
drought and flood indices.

Keywords: CHIRPS; precipitation persistence; Jamaica; hurst exponent; serial correlation coefficient;
rainfall thresholds; precipitation trends; flood and drought

1. Introduction

The Intergovernmental Panel on Climate Change (IPCC) has cautioned that global
warming and atmospheric circulation shifts are likely to cause changes in the frequency
and location of extreme weather events [1], making it crucial for the scientific community to
understand rainfall variability and extreme precipitation events in Small Island Developing
States (SIDS). SIDS is a group of 58 small islands in the Atlantic and Indian Oceans,
Caribbean, and Pacific regions highly vulnerable to extreme weather and climate events [2].
Jamaica being a SIDS is particularly vulnerable to changes in precipitation patterns due to
climate change. Over the years, the island has experienced several severe storms, posing
a significant threat to its infrastructure, human life, and economic development [3–6]. To
better understand and identify associated risks, such as floods or droughts in Jamaica, it is
crucial to consider rainfall persistence.

Rainfall persistence, the continuity of precipitation over a given time, is highly affected
by differences in topography, land use, climate patterns, and atmospheric conditions, and
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it is a significant factor influencing the severity of the resultant risk [7–9]. For instance, the
severity of an extreme precipitation event that could pose a flood threat depends on the
high rainfall quantity and its persistence. The same applies to a low rainfall persistence
that could lead to a drought. In both cases, rainfall persistence plays a significant role in
determining the level of risk [10].

Mathematically, high persistence can be defined as the tendency for high values to
follow high values and low values to follow low values [11]. The literature highlights
the Hurst exponent (H), a measure of the long-term memory of a time series or signal,
and the Serial Correlation Coefficient (SCC), a measure of the linear relationship between
a time series and a lagged version of itself, as appropriate procedures to understand
the persistence or trendiness of a rainfall time series [7,8,11–21]. Chandrasekaran et al.
(2019) [7] for example, showed that the Hurst exponent is a good indicator of rainfall
predictability and confirmed that higher H values indicate greater probability using real
and hypothetical data. Pal et al. (2020) [20] also demonstrated that the H exponent is useful
for understanding the long-term rainfall variation during the summer monsoon in northern
India as no persistent forecast was possible and linear regressions over time resulted in bad
fits. Additionally, Velásquez Valle et al. (2013) [21] derived the H exponent using standard
wavelets for daily rainfall data for the Zacatecas State in Mexico. In this case, results
demonstrated that the H exponent helps define the randomness of rainfall behavior for
different climates and aids to identify climate change’s impact on local precipitation records.

Using the SCC, Yeşilırmak et al. (2016) [22] analyzed the changes in precipitation ir-
regularity in western Turkey using daily and monthly precipitation data. Results identified
that the southern part of the region is prone to floods and highlighted the need for measures
to control flooding and droughts. The trend analysis showed a slight tendency toward
more regular precipitation distribution throughout the year. Similarly, Xu et al. (2022) [23]
examined the temporal and spatial distribution attributes of extreme precipitation in the
Pearl River Basin (PRB) in China from 1960–2018. The authors explored the relationships
between extreme precipitation indices (EPI), annual total precipitation, elevation, and
persistence of extreme rainfall. The study found that some EPI, such as RX1day, Rx5day,
SDII, and Consecutive Dry Days (CDD), had increasing trends, while others, such as R95p
and R99p, had decreasing trends. Further, the EPI trends varied among seasons and regions.
Investigating the relationship between rainfall and temperature, Reiter et al. (2012) [24]
examined 88 meteorological stations in the Upper Danube Basin from 1960 to 2006. Results
showed a recent change with significantly increasing temperature trends in summer, spring,
and yearly. The precipitation trends were mixed, with some stations showing increases in
winter and decreases in summer and autumn, but most time series showed no significance
and low trend values.

In terms of proximity to the Caribbean, some studies have investigated the Central
American region. For instance, in an analysis conducted by Casanueva et al. (2014) [25],
three indices were employed to analyze the variability in extreme precipitation over Europe.
(R95pTOT), which represents the number of days that precipitation exceeds the 95th
percentile; Consecutive Wet Days (CWD), which refers to the number of consecutive days
with rainfall over 1 mm; and CDD, which denotes the number of successive days with
precipitation below 1 mm. The study found different patterns of variability for CWD and
CDD in winter and summer, with north-south and east-west configurations, respectively.
The study also found that the North Atlantic Oscillation was associated with opposite
effects in winter and summer. Furthermore, positive correlations were found between the
Atlantic Multidecadal Oscillation and R95pTOT throughout the year. The study suggests
that the association between extreme precipitation indices and large-scale variables could
provide new possibilities for projecting extremes in downscaling techniques [25].

In another study, Anderson et al. (2019) [26] investigated changes in the intensity
and timing of midsummer drought (MSD) in Central America. The authors used a high-
resolution precipitation dataset to examine the spatiotemporal intricacies of the MSD. The
study found spatially variable trends in MSD temporality, rainy season precipitation, total
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dry days, and extreme wet events at the local scale. Moreover, a positive trend in the
duration but not the magnitude of the MSD was found at the regional scale. The study
suggests that a detailed spatiotemporal understanding of MSD variability and trends can
provide evidence-based adaptation planning to reduce the vulnerability in the area [26].

In a study more specific to the Caribbean region, Nakaegawa et al. (2014) [27] simu-
lated changes in annual maximum 5-day rainfall and number of consecutive dry days for
Central America, Mexico, and the Caribbean using three different atmospheric global gen-
eral circulation models (AGCMs) to calculate projections and uncertainty. The study found
that RX5Ds and CDDs were expected to increase in most areas due to global warming, but
consistent changes were limited to small areas. All three AGCMs projected that RX5Ds and
CDDs would increase when averaged overland. Furthermore, Bathelemy et al. (2022) [28]
evaluated the performance of five rainfall datasets in the Greater and Lesser Antilles using
quantitative and qualitative statistical metrics. The rainfall estimates from rain gauge and
satellite observations from the Climate Hazards Group Infrared Precipitation with Stations
(CHIRPS) was recommended for water resources management research and statistical
research on heavy rainfall events.

Focused on a different region, a study by Hsu et al. (2020) [29] analyzed the per-
formance of two satellite precipitation products, CHIRPS, and Integrated Multi-satellitE
Retrievals for the Global Precipitation Mission (IMERG), in representing multiple timescale
precipitation variations over Taiwan. The study found that while IMERG performed slightly
better than CHIRPS in most features examined, CHIRPS performed better in represent-
ing the annual cycle’s magnitude, the spatial distribution of seasonal mean precipitation,
quantitative precipitation estimation of interannual variation of winter precipitation, and
the occurrence frequency of non-rainy days in winter. CHIRPS was able to accurately
depict the temporal variation in rainfall over Taiwan on annual, seasonal, and interannual
timescales with 95% significance, demonstrating its potential use for studying multiple
timescale variations in precipitation.

In another study for the Beles Basin in Ethiopia, Belay et al. (2019) [30] assessed
the spatiotemporal variability of rainfall using CHIRPS data from 1981–2017. Results
showed that CHIRPS slightly overestimates rainfall occurrence in lowland regions and
underestimates it in highland regions. CHIRPS rainfall amount valuations were more
accurate in the highland and improved with longer integration times. The authors also
highlighted an increasing trend of rainfall, high variability of rainfall in certain months,
and the potential of CHIRPS to aid decision-making in poorly gauged areas.

Although various studies that use satellite data, rain gauges, a combination of both,
or climate models have examined extreme precipitation events globally, few have focused
on SIDS like Jamaica due to the lack of data, insufficient temporal and spatial information
availability, technological capacities, and human resources in these regions [2]. This study
is part of a series of analyses on the application of Earth Observations (EO) in SIDS
countries. Avalon-Cullen et al. (2023) being the first of the series [2], identified potential
opportunities, capacity needs, and long-term benefits for the integration of EO in Jamaica
to further enhance and strengthen the national DRR framework. This work follows those
recommendations, builds on the success of the CHIRPS dataset in depicting temporal
variations, examines its viability of use in Jamaica, and aims to identify long and short-term
spatial and temporal variations in rainfall persistence in the country from 1981 to 2020. To
achieve this, the study uses the Hurst and Serial Correlation Coefficient techniques and
proposes a Persistence Threshold (PT) methodology. The PT approach identifies various
thresholds and their corresponding high and low persistence for daily precipitation over the
region. Additionally, the PT methodology is set to serve as the first step toward developing
a flood/drought index in the following study.

To begin with, we provide an overview of the climatological features of Jamaica,
influenced by its location in the Caribbean region. In Section 2, we provide a detailed
explanation of the CHIRPS database. Section 3 outlines the Hurst and SCC approaches and
presents the structure of the PT methodology. In Section 4, we analyze and contrast the
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findings of the three methodologies and offer a range of corresponding maps that illustrate
rainfall fluctuations throughout the region.

2. Study Area and Data
2.1. Study Area

Jamaica, the third-largest island in the Greater Antilles in the Caribbean, experiences
a dry-winter tropical climate characterized by a bimodal seasonal rainfall pattern. The
early season (April–July) and late season (August–November) are divided by a period of
minimal rainfall known as the mid-summer drought (MSD), which is present across the
Intra-American Sea region [31]. The island’s interior is dominated by a series of mountain
ranges, including the Blue Mountains, the longest range, with the highest peak in Jamaica,
rising to 2256 m. The northeastern area of Jamaica receives the highest average rainfall of
more than 400 mm, with the Blue Mountains averaging over 625 mm per year. Jamaica is
also prone to tropical storms, with 11 named storms making landfall between 1988 and
2012, resulting in floods, flash floods, and landslides throughout the island [2]. These
natural hazards have a significant impact on Jamaica’s population, estimated at 2.9 million
people, and lead to significant GDP losses [32]. Figure 1 shows Jamaica’s location in the
Caribbean.
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2.2. Data—CHIRPS

The Climate Hazards Group Infrared Precipitation with Station data (CHIRPS) is a
database created through a collaboration between the U.S. Geological Survey (USGS) and
the University of California, Santa Barbara (UCSB) to support the United States Agency
for International Development Famine Early Warning System Network (FEWS NET). This
multi-source product incorporates various data sources including geostationary thermal
infrared satellite observations, the Tropical Rainfall Measuring Mission’s (TRMM) 3B42
product, the Climate Hazards Group Precipitation Climatology (CHPClim), atmospheric
model rainfall fields from NOAA CFS (Climate Forecast System), and precipitation obser-
vations from national or regional Meteorological Services. The database provides gridded
rainfall time series at a resolution of 0.05◦ with daily temporal scale and quasi-global
coverage from 1981 to the present [33]. The database has been used globally to determine
the hydrological impacts of drought, support hydrological forecast and trend analyses, and
act as a proxy for antecedent soil moisture content to help determine rainfall-triggered
landslide risk in the tropics [34].
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The two-part process of the CHIRPS algorithm, as described in Belay et al. (2019) [30],
begins by creating rainfall estimates using local regressions between Tropical Rainfall Mea-
suring Mission multi-satellite precipitation analysis and Infrared Precipitation cold cloud
duration (CCD) values (<235 K). The resulting value is then converted into millimeters of
precipitation through local regression with TRMM 3B42 precipitation values. In the second
step, the temporal component of the IRP value is multiplied by the spatial component of
the CHPClim values to generate an unbiased gridded estimate, called the Climate Hazards
Group IR Precipitation (CHIRP). Finally, CHIRP data is blended with ground station gauge
data to produce the final product, CHIRPS.

This study employs the CHIRPS dataset to examine the changes in rainfall persistence
and frequency across Jamaica during various periods between 1981 and 2020. The analysis
employs the Hurst exponent (H) and Serial Correlation Coefficient (SCC) methodologies to
understand long-term variability and proposes a novel method that can aid in categorizing
short-term high and low persistence for different daily precipitation thresholds in the study
area. This technique can aid in categorizing the level of wetness and dryness associated
with a given threshold and help in identifying flood or drought risks. The approach is
referred to as the Persistence Threshold (PT).

3. Methods

This section outlines the methodologies used to assess the spatial and temporal vari-
ations of rainfall persistence and frequency in Jamaica using CHIRPS from 1981 to 2020.
To accomplish this, we conducted a thorough analysis of the rainfall data, which included
examining the maximums, minimums, averages, and trends across daily, monthly, seasonal,
and decadal time frames first, using the H exponent and the SCC methods. Then, we
established specific high and low thresholds to investigate the number of consecutive
days with precipitation values equal to or above/below the corresponding threshold for
persistent rainfall, the PT method.

Data were obtained via Google Earth Engine for 364 locations spaced at 0.05◦ over
the island as seen in Figure 2. The information was then subdivided into four decades as
follows: G1 (1981–1990), G2 (1991–2000), G3 (2001–2010), and G4 (2011–2020).
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The Hurst exponent (H) is a measure of the long-term memory of a time series or
signal. It is commonly used in finance, economics, geophysics, and other fields to analyze
the persistence or trendiness of a time series. H is a real number between 0 and 1 that
characterizes the autocorrelation structure of a time series. A value less or equal to 0.5
indicates that the time series has no memory (it is completely random) while a value greater
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than 0.5 suggests that the time series exhibits persistence or long-term memory, which
signifies that the past values of the series have a strong influence on its future values [35].

The Hurst coefficient is calculated using the Rescaled Range method as follows:
For the daily precipitation series,

Pi, i = 1, 2, . . . , N,

where N is the number of observations
A series of mean adjusted values, Y, is created by subtracting the expected value E,

Yi = Pi − E(Pi) , i = 1, 2, . . . N (1)

Then a series of cumulative deviate Zj is generated,

Zj =
j

∑
i=1

Yi, i = 1, 2, . . . N (2)

Following, the range series Rk is calculated,

Rk = max(Z1, Z2, . . . . . . Zk)−min(Z1, Z2, . . . . . . Zk) (3)

Then, the standard deviation series is estimated,

Sk =

√√√√(1
k

) k

∑
i=1

(Pi − Pk) (4)

After which the rescaled range series is computed,

Rk
Sk

, k = 1, 2, . . . .N (5)

Lastly, the Hurst coefficient is determined by the linear fitting of

E
(

Rk
Sk

)
= C kH (6)

where E is the expectation of Rk
Sk , and C is a constant.

3.1. Serial Correlation Coefficient (SCC)

The SCC, also known as the autocorrelation coefficient or lagged correlation coefficient,
is a measure of the linear relationship between a time series and a lagged version of itself.
In other words, it measures the correlation between a time series and its past values. The
SCC is a useful tool for checking the independence of a time series. When a time series is
entirely random, the population auto-correlation function will be zero for all lags except
zero. At zero, it will be one, as all data sets are perfectly correlated with themselves. In
such cases, the sample serial correlation coefficients will deviate only slightly from zero
due to sampling effects [36].

The lag-k SCC can be mathematically expressed as:

rk =
∑N−k

i=1 [(Pi − E(Pi)(Pi+k − E(Pi)]

∑N
i=1(Pi − E(Pi))

2 (7)

where E(Pi) is the expectation value of Pi.
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Where rk is the lag-k serial correlation coefficient that relates the precipitation value at
day t to that of day t + k. Since this measure is a statistical measure, we test its significance
using the well-known Anderson’s limits at 95% confidence intervals:[

−1.96√
N

,
1.96√

N

]
,

where N is the number of observations
The daily precipitation SCC up to a 365-lag is calculated for all locations in Jamaica.

However, as a measure of persistence, in this study, we consider the SCC from the number
of significant sequential lags up to the first non-significant lag.

3.2. Persistence Threshold—PT

Expanding on the concepts of Consecutive Dry Days—CDD, and Consecutive Wet
Days—CWD, the PT notion is introduced to describe the rainfall characteristics over finite,
short periods by examining the number of consecutive days with precipitation above or
below a set threshold value. These detailed thresholds, in addition to other factors, can be
useful in determining whether an area is susceptible to drought or flooding.

For example, droughts can occur during a sustained period of low precipitation,
resulting in devastating environmental consequences such as crop and ecological damage
and water resources scarcity. The severity and duration of a drought depend on various
parameters that include temperature and humidity, but also on the amount and frequency
of rainfall. A key indicator of drought is the persistence of low precipitation, which can be
measured by a combination of rainfall amounts and consecutive days without significant
rainfall. If the quantity of rainfall falls below a specified threshold for an extended period,
it can lead to a state of low persistence.

The threshold value used to measure low persistence can vary depending on the
location and climate, but generally, the lower the threshold, the more consecutive days
with low precipitation are required to meet the criteria for low persistence. For instance,
in arid regions, a low persistence threshold may be set at a relatively low rainfall value,
such as 1 mm per day, and may require several consecutive days without any significant
rainfall to qualify as low persistence. Conversely, high persistence of precipitation can
lead to flooding, which occurs when there is excessive rainfall over a short period, often
resulting in overflowing waterways and environmental damage. The duration and severity
of flooding can vary depending on the amount and intensity of precipitation, as well as the
terrain and soil conditions.

For these reasons, the selection of an association of thresholds and consecutive days
should be based on the objective of the application. For instance, a region with specific
topography and hydrological properties would have a different flooding threshold/day
relationship than any other area. Similarly, the drought threshold/day event should be
determined based on the water consumption for the intended use.

Because there is no specific flood or drought application in this study, high and low
threshold definitions were derived from evaluating daily rainfall patterns in the data. Since
approximately 99% of the rainfall frequency over the island occurs between 1 and 50 mm, as
shown in Table 1, values below 50 mm are assumed for setting low persistence thresholds,
while values above 50 mm are considered for selecting high persistence thresholds.

To determine the frequency of high threshold-based rainfall persistence at each loca-
tion and threshold, we estimate the number of events for L consecutive days where the
precipitation is equal to or exceeds the specified threshold, NdexceedsThk,L,j as follows:

NdexceedsThk,L,j = L number o f executive days where Pri,j ≥ Thk

where, Pri,j is the precipitation of day i, at location j.
and where, i = 1 . . . , Number of Day observations.
j = 1 . . . , 364 Number of locations
L = 1 . . . , Number of Days exceeding Threshold
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Thk = Precipitation Threshold k
k = 1 . . . , Number of Thresholds selected.
and,

αhThk,L,j
=

NdexceedsThk,L,j

NY
× 100 (8)

where, αhThk,L
is the yearly normalized percentage of high rain persistence for a

threshold Thk with NdexceedsThk,L,j = L, at location j, and where NY is the Number of
Years.

Table 1. Number of event occurrences for twelve precipitation intervals. Interval lower and upper
limits are selected to cover the full range of precipitation data over Jamaica for the whole dataset
(1981–2020).

Range G1 G2 G3 G4 All Period All Period
%

0–50 1,317,822 1,314,359 1,307,031 1,316,767 5,255,979 98.9
50–100 8995 11,693 17,591 9484 47,763 0.9

100–150 1694 1992 3303 1956 8945 0.2
150–200 367 599 685 515 2166 0
200–250 61 221 205 163 650 0
250–300 18 57 87 52 214 0
300–350 3 22 38 14 77 0
350–400 3 10 14 12 39 0
400–450 1 6 5 1 13 0
450–500 0 3 5 0 8 0
500–550 0 1 0 0 1 0
550–600 0 1 0 0 1 0

To determine the occurrence of low threshold-based rainfall persistence for each
location and threshold, we employed a similar methodology. Specifically, we estimated the
number of events for L consecutive days where the precipitation is equal to or less than the
specified threshold, denoted as NdlessThk,L,j and explained as follows:

NdlessThk,L,j = L number o f executive days where Pri,j ≤ Thk

where, Pri,j is the precipitation of day i, at location j.
and were, i =1 . . . , Number of Day observations.
j = 1 . . . , 364 Number of locations
L =1 . . . , Number of Days less than Threshold
Thk = Precipitation Threshold k
k = 1 . . . , Number of Thresholds selected.
and,

αlThk,L,j
=

NdlessThk,L,j

Ny
× 100 (9)

where, αlThk,L
is the yearly normalized percentage of low rain persistence for a threshold

Thk with NdlessThk,L,j = L, at location j.

4. Results
4.1. Average Temporal Rainfall Variability

Figure 3 shows the average of the monthly sums of rainfall variability over the four
decades and Table 2 shows the t-test results after comparing the annual precipitation means
between the four sub-sample groups over the 40 years. The corresponding t-test p-values
are greater than 0.05, indicating that there are no significant differences in the annual means
of precipitation between the four sub-samples over the entire period. Suggesting that the
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mean annual precipitation levels in Jamaica remained relatively stable over the 40 years
under investigation.
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Table 2. Change on annual precipitation means over Jamaica for decadal groups (1981–2020).

Groups t-Test for Means p-Value

G1-G2 −0.383 0.711
G1-G3 −1.982 0.072
G1-G4 0.207 0.841
G2-G3 −1.465 0.177
G2-G4 0.456 0.659
G3-G4 2.221 0.053

The seasonal mean variability based on the average monthly sums shown in Figure 4
and the corresponding t-test p-values in Table 3 do not show significant differences in the
mean precipitation over the region on a seasonal wet/dry basis in the area.
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Table 3. Seasonal wet/dry t-test for mean precipitation (1981–2020)—Dry (December, January,
February, March), Early Wet Season—EWS (April, May, June, July), Late Wet Season LWS (August,
September, October, November).

Groups EWS p-Value Dry p-Value LWS p-Value

G1–G2 −0.57 0.61 −0.03 0.98 0.14 0.90
G1–G3 −1.88 0.16 1.59 0.21 −3.11 0.05
G1–G4 −0.64 0.57 1.85 0.16 −0.27 0.80
G2–G3 −2.10 0.13 2.43 0.09 −1.02 0.38
G2–G4 0.30 0.78 1.74 0.18 −0.40 0.72
G3–G4 5.12 0.06 −0.69 0.54 1.07 0.36

Extreme Temporal Rainfall Variability

Figure 5 shows the total rainfall quantities recorded during the decades. Notably,
this figure highlights that May through October in the third decade were characterized by
higher rainfall over the study area. The observed difference in rainfall quantities during this
decade could be attributed to various factors, including the natural variability in the North
Atlantic Oscillation (NAO) or the La Niña/Southern Oscillation (ENSO) phenomenon that
was prevalent during this period in the Caribbean region and the world [37]. Previous
studies in the northeastern Caribbean have indicated that during the wet season, there
is a 14% increase in precipitation during La Niña years compared to El Niño years [38].
Moreover, it is important to highlight that the 2001–2010 decade was the warmest since the
start of modern measurements in 1850, with the world experiencing unprecedented climate
extremes during this time [39]. Nonetheless, further analysis is required to establish the
exact causes of this observed trend and the implications for future rainfall patterns.
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4.2. Spatial Rainfall Variability

Various methods and measures can be employed to evaluate the persistence of a time
series, including the Hurst exponent (H) and the serial correlation coefficient (SCC). These
tools allow us to identify the degree of long-term persistence in daily precipitation and
provide a valuable characterization of the dynamics of the precipitation patterns in Jamaica.
However, these measures provide insight into long-term persistence without including
a threshold value. In this section, we overview such measures for the long-term rainfall
variability over Jamaica and introduce a novel methodology for identifying short-term
persistence that is associated with a specific rainfall threshold, referred to as the Persistence
Threshold (PT). To further explore rainfall variability in Jamaica, we present an overall
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spatial analysis of examining the long-term persistence measures mentioned above and the
newly developed short-term persistence threshold measures. All measures (H, SCC, and
PT) of decadal spatial frequency of occurrence are calculated using a MATLAB code and
then normalized for comparison between decades using maps in ArcGIS 10.7.

4.2.1. Hurst Exponent (H)

An H value of 0.5 indicates that the time series has no memory (it is completely
random) while a value greater than 0.5 suggests that the time series exhibits persistence or
long-term memory. This signifies that the past values of the series have a strong influence
on its future values. Hmax changes throughout each decade, with values at 0.67, 0.53, 0.54,
and 0.67, respectively. Figure 6a,b shows the normalized H spatial distribution for the
four decades G1, G2, G3, and G4, where in G1 and G2, rainfall persistence is observed in
the north and southeastern areas of Jamaica. This pattern expands towards the center of
the island during the second decade G2. However, the spatial variation of precipitation
persistence differs in G3, covering the entire northern and middle parts of the country and
it is less prominent in the southern regions. Finally, in G4, precipitation persistence returns
to a similar pattern to that of G1, and G2.
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Figure 7 provides an overview of the Hurst coefficient spatial distribution over Jamaica
for the entire study period. Persistent precipitation is observed primarily in the northeastern
side of the country.
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4.2.2. Serial Correlation Coefficient (SCC)

The SCC helps assess periodicity and correlation memory over time, providing in-
sights into long-term persistence. Here, the number of significant lags starts at lag-1 and
continues to the first insignificant lag, then disregards any significant lag after that. To
determine significance, we consider any lag with an SCC greater than Anderson’s limits
as significant. SCCmax varies across these decades, with values of 51, 58, 38, and 62,
respectively. Figure 8a,b shows the normalized SCC spatial distribution of the maximum
number of significant lags of the coefficient for the four decades G1, G2, G3, and G4. In
the first decade (G1), high precipitation memory is observed in small areas located in the
southwest and central-south regions. This is indicated by the long number of lags in the
persistence of zero consecutive daily precipitation. Then, in G2, this zero-precipitation
persistence is present over most of the southern area expanding toward the center of the
island. This behavior is heightened in G3 but with a different spatial distribution, having
the highest values in the south and gradually decreasing towards the north, covering a
very large area. The spatial variation in G4 is similar to that of G1 and G2.
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Figure 9 displays the maximum number of significant lags of the serial correlation
coefficient for the entire four-decade period. A maximum value of 77 is observed in a small
area in the southwest, gradually decreasing towards the north of the island. This indicates
that the variation in the number of consecutive dry days (non-rainfall days) is highest in
the southwest region and gradually decreases towards the northern area of the country.
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4.3. Rainfall Persistence Thresholds

As described in the methodology section, the low and high rainfall thresholds pre-
sented here are chosen based on their frequency in the data. Values below 50 mm are
considered low thresholds, with 1, 5, 10, 20, and 50 mm representing the rainfall amount
and 30, 20, 15, 10, and 5 the consecutive days. Similarly, values above 50 mm are considered
high and are represented by 50, 60, 80, 100, and 120 mm because the frequency of these
values is most prominent in the data. The number of consecutive days is also selected
based on the frequency of occurrence. For instance, a greater than 100 mm rainfall event
only occurs as a one-day event in data; a 60 mm and 80 mm event in two straight days;
and the 50 mm event in the lapse of three successive days. Table 4 provides details of the
daily precipitation thresholds and the number of consecutive days used for the analysis. As
described in the Methods section, the decadal spatial frequency of occurrence for each event
is calculated using a MATLAB code and normalized for comparison between decades using
maps in ArcGIS 10.7. Three low and high threshold maps are presented for illustration
purposes in the Results and Appendix A sections.

Table 4. Selected daily precipitation thresholds and corresponding consecutive days (1981–2020).

Persistence Threshold mm, Consecutive Days

low (1,30), (5,20), (10,15), (20,10), (50,5)
high (50,3), (60,2), (80,2), (100,1), (120,1)

4.3.1. Persistence Threshold High (PTH)
PTH1 3-Days ≥ 50 mm

The number of occurrences of the event of 3 consecutive days of persistent rainfall
greater than or equal to 50 mm over the four decades G1, G2, G3, and G4 varies for
each decade with maximum values of 5, 7, 9, and 14, indicating a general increase in
the persistence of this event. Figure 10a,b shows the normalized spatial variability of
these events. In the first decade (G1), the occurrence range is low over most of Jamaica,
moderate over the north and mid-to-east regions, and high in the mountainous areas in
the northeastern region. The spatial distribution in G2 is similar to that of G1 but with
increased occurrence over the northeastern mountain area. The occurrence distribution
for G3 exhibits sizable changes in areas and the number of occurrences, with no dominant
value covering most of Jamaica but with a noticeable shift toward the western area of the
island. The spatial variation for G4 is similar to G1 and G2, with one or two occurrences
(low persistence) values dominating large areas. The northeast region experiences the most
significant increase in persistence over decades.

PTH2 2-Days ≥ 80 mm

Appendix A, Figure A1 shows the normalized spatial variation of the number of
occurrences of the event of 2 consecutive days of persistent rainfall equal to or greater than
80 mm in Jamaica for the four decades G1, G2, G3, and G4. Each decade exhibits a different
number of occurrences with maximum values of 5, 9, 14, and 14 respectively, indicating a
general increase in the persistence of this event. There is a low degree of occurrence of this
event over most of Jamaica and a moderate number over the mountainous area in the first
decade (G1). There is a slight spatial variation in G2 with an extension of occurrence over
most of the northern region of Jamaica and an increase over the northeastern mountain area.
For the G3, the spatial distribution changes further with occurrences covering most of the
north and mid (east-west) areas. Last, the spatial variation of persistence in G4 is similar to
that of G2 covering a wider area over the northern regions of Jamaica. The northeastern
mountain area shows the most significant increase in persistence over the decades.
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PTH3 1-Day ≥ 120 mm

Appendix A, Figure A2 shows the normalized spatial variation of the number of
occurrences of the event of 1 day of persistent rainfall equal to or greater than 120 mm.
Although 1-day is not a measure of continued persistence, this threshold is significant as it
has the potential to cause flooding in some areas. The maximum number of occurrences of
this event is almost constant for G1, G2, and G4 with 25, 25, and 27 occurrences respectively.
Nevertheless, there was a significant increase in the number of occurrences of this event
during G3. Like the previous PT events (and all data), this observation indicates that G3
exhibited different spatial behavior than the other three decades.

Overall, PTH1 is most frequent in the northern areas of the country, with low frequency
over the southern area. PTH2 is less frequent in most of the country, except for the
northeastern areas. PTH3, the flood event, is also most common in the north and with
increasing occurrence on the northeastern side of the island.

4.3.2. Persistence Threshold Low
PTL 30-Days ≤ 1 mm

Figure A3 shows the spatial variation of the number of occurrences of the event of
30 days of persistent rainfall equal to or less than 1 mm for the four decades, the maximum
number of event occurrences for G1, G2, G3, and G4 are 5, 11, 5, and 4 respectively, with no
clear spatiotemporal trend except for the significant increase in G2. The occurrence of this
event was predominantly low for the first decade in the western half of the island, with a
gradual increase toward the east and the southeast. In contrast, the G2 shows an increase
in the number of occurrences of this event over the entire country. G3 shows a decrease in
occurrences (more rain), similar to G4, except for an increase in the western side.

PTL 10-Days ≤ 15 mm

Figure A4 shows the maximum number of event occurrences for each decade are 11, 10,
11, and 13, respectively, indicating no clear trend in the persistence of this event. During the
first decade, this event is concentrated over the northern part of the island. In contrast, in
decade G2, most occurrences are found in the eastern area. During G3, the spatial variation
of occurrences is similar to that of G1, while for decade G4, most occurrences are similar
to G2.

PTL 5-Days ≤ 50 mm

Figure A5 shows the spatial distribution of the number of occurrences of the event
of 5 consecutive days of rainfall that is less than or equal to 50 mm over Jamaica for
the four decades. The maximum number of occurrences of this event is 6, 7, 7, and
3, respectively. There is no noticeable trend in the variation of this event, except for a
decrease in its occurrence in the fourth decade. The northeastern part of Jamaica shows the
highest occurrence of this event during G1. This is similar in G2 but with a more eastern
distribution. Most of the country areas, except for these areas of higher occurrence, show
low occurrences for G1, G2, and G4. However, G3 exhibits a different pattern, with a larger
spatial distribution.

Overall, PTL1 is most frequent in the southeast and some areas in the west of the
country. PTL2 is highly frequent over the northern half of the country. PTL3 is low
frequency over most parts of the country, except for the northeastern region.

5. Discussion and Conclusions

There are various techniques and metrics to assess the persistence of a time series, such
as the Hurst exponent and serial correlation coefficient. Although these methods are helpful
for prediction modeling, they may not be entirely suitable for a range of applications, such
as flood management, planning, and analysis of wet and dry periods.

In this document, we overview such measures for the long-term rainfall variability
over Jamaica and introduce a novel methodology for identifying short-term persistence.
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The Persistence Threshold (PT) considers both high precipitation persistence, referring to
the number of consecutive days with precipitation greater than or equal to a threshold, and
low precipitation persistence, referring to the number of consecutive days with rainfall less
than or equal to a threshold. Understanding these variations can provide valuable insights
for decision-makers, helping them to prepare for potential impacts on agriculture, water
management, and other critical sectors. To further explore rainfall variability in Jamaica,
we also present an overall spatial analysis of the long-term persistence measures (H, SCC),
and the newly developed short-term PT method.

Results demonstrate notable temporal and spatial variations in persistence dimensions
over the study period. The long-term measures, H and SCC, indicate an overall increasing
trend in high precipitation persistence and a decreasing trend in low precipitation persis-
tence. While the newly developed short-term PT agrees with these measures, it reveals
meaningful frequency variations at the regional level. For instance, three days of consecu-
tive rain that amounts to 50 mm or more are frequent in the northeastern region. Conversely,
southeastern areas could exhibit less than 1 mm of rainfall for 30 days. Furthermore, PTH1
and PTH2 demonstrate increasing maximum rainfall over the decades, and the one-day
flood event, PTH3, became heightened during the third decade. Furthermore, this rainfall
anomaly during the 2001–2010 decade is observed with all measures in this study (H,
SCC, and PT). These findings coincide with the warmest period on record that introduced
various global climate extremes. Further analysis is required to establish the exact causes
of this observed trend and the implications for future rainfall patterns over Jamaica.

Geographically, the northern mountainous area of the country receives the most
persistent rainfall over the study period. This can be attributed to orographic lift due
to the location of the Blue Mountains and the path of the moisture-rich winds from the
Caribbean Sea. However, there is an observed increase in extreme rainfall events in this
area, where flood events such as PTH3 also become more prominent. This could have
potential implications for cascading events such as floods and landslides. Similarly, the
driest occurrences are most frequent in the southeast and some regions in the west of the
country. This is particularly important because Kingston, the capital and largest city of
Jamaica, Spanish Town, Portmore, and Mandeville, the second, third, and fifth largest cities
respectively, are located in the southeastern-central regions of the island.

Being the second of a series of studies on the application of EO in SIDS countries,
this work helps demonstrate that CHIRPS is a viable satellite precipitation product for the
understanding and modeling of spatial-temporal rainfall variations in Jamaica. CHIRPS
information has been available daily for the past four decades providing a significant
temporal advantage over in-situ precipitation measurements that can be unreliable and
are often limited in their availability. Moreover, while CHIRPS spatial resolution is 0.05◦,
this study demonstrates that it is reliable and useful to understand and model rainfall
parameters at the regional level within SIDS like Jamaica. These findings have important
implications for the use of satellite-derived precipitation data in SIDS countries. Given the
unique challenges that they face, including limited resources and vulnerability to natural
disasters, implementing satellite data can provide valuable insights into environmental
processes and help inform decision-making strategies related to disaster risk reduction,
water resource management, and agricultural planning.

It is important to highlight that while the PT method presented here is a useful
tool for satellite based short-term rainfall trends, (1) it is entirely data-driven and (2), it
is just one step toward determining flood or drought risk. Other parameters such as
evapotranspiration, infiltration, runoff, soil moisture, and groundwater storage must also
be considered to develop a comprehensive index for both. These indices can prove very
useful in SIDS countries. Developing such indices will be the next step in this series of
documents dedicated to the Island of Jamaica.
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Figure A1. Normalized Persistence Threshold for high threshold event 2 (2-days with 80 mm of 
continued rainfall). (a) PTH2 (1981–1990); (b) PTH2 (1991–2000); (c) PTH2 (2001–2010); (d) PTH2 
(2011–2020). 
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(2011–2020).
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Figure A2. Normalized Persistence Threshold for high threshold event 3 (1-day with 120 mm of 
continued rainfall). (a) PTH3 (1981–1990); (b) PTH3 (1991–2000); (c) PTH3 (2001–2010); (d) PTH3 
(2011–2020). 

 
Figure A3. Normalized Persistence Threshold for low threshold event 1 (30-days with less than 1 
mm of continued rainfall). (a). PTL1 (1981–1990); (b) PTL1 (1991–2000); (c) PTL1 (2001–2010); (d) 
PTL1 (2011–2020). 
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Figure A4. Normalized Persistence Threshold for low threshold event 2 (10-days with less than 15 
mm of continued rainfall). (a) PTL2 (1981–1990); (b) PTL2 (1991–2000); (c) PTL2 (2001–2010); (d) 
PTL2 (2011–2020). 

 
Figure A5. Normalized Persistence Threshold for low threshold event 3 (5-days with less than 50 
mm of continued rainfall). (a) PTL3 (1981–1990); (b) PTL3 (1991–2000); (c) PTL3 (2001–2010); (d) 
PTL3 (2011–2020). 
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