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Abstract: Microhabitats can provide thermal niches that affect geographic range shifts of species as
the climate changes and provide refuges for pest and beneficial insect populations in agricultural
regions. The spatial distribution of microhabitats is influenced by topography that can influence local
extinction and recolonization by animal populations. Scaling local temperature-dependent processes
to a regional scale of population expansion, and contraction requires the validation of biophysical
models of near surface temperatures. We measured temperature at 2.5 cm above and below ground
at 25 sites in each of the two regions: southern and northern Utah, USA. Using NichMapR version
3.2.0, we modeled the temperature at these same sites with local slopes and aspects for four years for
the former and eight years for the latter region. Empirical and modeled air temperatures differed by
7.4 ◦C, on average, and soil temperatures differed less (4.4 ◦C, on average). Site-specific additions of
hill shading at 25 m distance or soil parameters did not improve the agreement of the empirical and
modeled temperatures. A hybrid model for air temperature that incorporated soil temperature at
0 cm depth when snow depth exceeded 3 cm resulted in an average improvement of 8% that was
as great as 31%. Understanding biological processes at the regional scale and in projected future
climates will continue to require biophysical modeling. To achieve the widest applications possible,
biophysical models such as NichMapR need to be validated with empirical data from as wide a
variety of altitudes, latitudes, soil types, and topographies wherein organisms currently inhabit and
where their ranges might expand to in the future.
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1. Introduction

Near the Earth’s surface, ambient temperature can vary on very small spatial scales,
and animals exploit microhabitat variations in temperature to find refuge from extreme
temperatures, locate optimum temperatures in spaces that enhance reproduction, and
modify many other key fitness components that are temperature dependent [1,2]. Micro-
habitat variations in temperature have been identified as a means by which organisms can
escape the negative impacts of climate change [3–5]. Refugia from extreme temperatures
are important for the survival and conservation of species in decline (e.g., spittlebugs [6]).
Microhabitats also provide refuges for pest populations and beneficials in agricultural
regions [7,8]. To reduce pest populations, microhabitats can be managed in agroecosystems
(e.g., fruit flies [9]).

Refugia make characterizing the availability of microhabitats on a broad spatial and
temporal scale important. Standard meteorological data are collected at 1.5 to 2 m above
ground to assess historical climate and predict future climate change. However, many
biological processes occur much nearer to the ground level, where the monitoring of
temperatures is sparse [10]. Biophysical models, such as NichMapR [11], use data from
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meteorological stations to broadly estimate temperature and other physical parameters
across space and time that fill gaps in empirical data. Modeled results require valida-
tion in the geographic space and seasons that are relevant to the biological processes
under investigation.

Microclimate is biophysically associated with specific attributes of topography [12],
but the effect of assemblages of topographic attributes on a local climate is much less
studied. For example, topographic variation results in microhabitat heterogeneity that
may modify the climate through local feedback in aggregate (reradiation, water vapor,
evapotranspiration, etc.). As a result, topographically induced climate may be different
from what it would be if similar attributes were found over a wider area, resulting in
greater homogeneity [12].

The expansion and migration patterns of Mormon cricket Anabrus simplex populations
are of particular interest due to their potential dependence on refugia. Cowan [13–15]
hypothesized that Mormon cricket populations persist in topographically variable refuges
(also known as ‘hold-over areas’ or ‘endemic centers’). One effect of topographic variability
on climate is to provide greater microhabitat diversity. Some microhabitats have favorable
conditions and provide refuge when the climate is generally stressful, particularly in areas
with less variable topography. Hence, endemic centers are heterogeneous in microhab-
itats, relative to homogeneous areas that are more directly defined by climate, and are
prone to shifts with climatic extremes. Heterogeneous areas relevant to Mormon crickets
are typically mountain ranges and canyonlands in the western United States, whereas
homogeneous areas are plateaus and valleys. Cowan hypothesized that Mormon cricket
populations persist in heterogeneous areas, from which they migrate to encounter homoge-
neous topography when climate conditions are favorable. This temporal heterogeneity in
climate can lead to periods of population expansion and aggregation into bands, followed
by periods of population contraction and persistence in areas of high topographic variabil-
ity. Coincidentally, homogeneous areas are also more likely to have roads and be suitable
for farming, ranching, and, in modern times, irrigated cropland and tourism, all of which
increase the impacts of Mormon crickets on human activities and the local economy.

In this paper, we report near surface soil and air temperatures measured in Utah and
Colorado and compare them to modeled temperatures for the same locations and times.
We then investigate the effects of slope and aspect on discrepancies between modeled and
empirical data.

2. Materials and Methods
2.1. Study Sites

In June 2012, we set up five arrays to monitor temperature at each of two regions: a
set of five arrays in the Mineral Mountains near Beaver in southern Utah and a set of five
in the Uintah Mountains near Vernal in northern Utah and Colorado (although two sites
were technically in Colorado, we call the latter region northern Utah; Figure 1). All sites
were rangeland, where livestock graze and where Mormon crickets had been observed
banding within the past five years (Figure 2). Mormon crickets are large (approximately
2 g as adults) omnivorous katydids that do not have functional wings for flight. They
migrate on the ground and lay eggs in soil at approximately 2.5 cm beneath ground level.
Accordingly, we monitored temperatures at approximately 2.5 cm above and below ground
level (Tair and Tsoil, respectively).

In each array, a wooden stake (4 × 2 × 30 cm) was erected at a central location, and a
stake was placed 50 m away from the central stake in each of the four cardinal directions
(Figure 1). Recording Tair and humidity, a hygrochron ibutton (DS1923, Maxim Integrated,
San Jose CA, USA; diameter 15 mm, height 6 mm) on a plastic fob was screwed to the
north side of the stake 2.5 cm above ground level. Recording Tsoil, a thermochron ibutton
(DS1922) on a plastic fob was attached to the stake with a 38 cm wire and buried the length
of the wire away at 2.5 cm beneath the surface. For each stake, latitude, longitude, and
elevation were recorded (Topcon GPS with sub-meter accuracy), the steepest slope of a
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10 × 4 × 165 cm wooden board centered at the stake was measured with an inclinometer
(Ranger 15T, Silva-USA, Sandy, UT, USA), and the aspect of the slope was classified to eight
magnetic compass points (declination ca. +10◦). In total, there were 25 air sensors and
25 soil sensors placed in southern Utah and 25 of each placed in northern Utah. Tair and
Tsoil were logged at 7700 s, the maximum rate to record one year of data before overwriting.
Sensors were downloaded annually in September for five years in southern Utah. Arrays
in northern Utah were downloaded annually for nine years and continue to be monitored.
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northern Utah on the border with Colorado. (b) Two arrays straddling the Utah/Colorado border
(dotted line) in Dinosaur National Monument. Each array had a central sensor for Tair and Tsoil and
Tair and Tsoil sensors in the four cardinal directions from the central ones.
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Figure 2. Four examples of the terrain and vegetation where sensor arrays were set. (a) Gilles Hill
1 and (b) Little Rock knoll of the Mineral Mountains of southern Utah. (c) A knoll in Dinosaur
National Monument (Dinosaur 2) and (d) the valley floor at Upper Rye in the Uintah Mountains or
northern Utah.

A proportion of ibuttons stopped logging each year because of corrosion, battery
failure, and other causes, resulting in loss of the data for the entire year. In 2016, 46% of
the ibuttons had stopped logging, and we did not analyze data for that year because of the
gaps. We also terminated the arrays in southern Utah in September 2016. Occasionally,
stakes broke, or soil monitors came out of the ground, typically due to livestock activities
or thawing. We inspected the data and compared them to neighboring sensors to deter-
mine anomalies indicating when the accident occurred, and, when we felt confident, we
recovered data prior to the accident. As both southern and northern Utah were monitored
between 2011 and 2015, we analyzed data from those years separately from data collected
in 2017–2020 when only northern Utah was monitored.

2.2. Modeling Tair and Tsoil

Tair and Tsoil at each stake were modeled with NichMapR version 3.2.0 [11,16]. For
the base model, we entered the latitude, longitude, elevation, slope, and aspect of each site
into the NichMapR package using the micro_usa() function. For Tair, we set the height to
2.5 cm. Other parameters were set to default values, including no shading by surrounding
topography, hydraulic properties of loam-textured soil, and surface reflectivity of 0.15 [16].
We lacked slope at four sites, which were set to 0. Output included Tair, Tsoil at 0 and
2.5 cm, and snow depth each hour. In order to compare the modeled temperatures with
empirical data that were collected less frequently, we used linear interpolation to estimate
modeled temperature at the empirical time. We then calculated the root mean square
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deviance (RMSDbase) between modeled and empirical data sets. We also applied least-
squares regression to relate empirical to modeled temperatures and report the intercept,
slope, and variance explained (R2). In order to determine whether the two measures of
deviance were directly proportional, we correlated the intercepts with RMSDbase.

2.3. Additions to the Base Model

Using the elevatr() package in R (v. 4.0), we used elevatr::get_elev_raster to collect a
5 × 5 raster around each stake. Digital elevations were extracted from the raster at 1/3 arc
second or approximately 10 m resolution. Vertical accuracy of the digital elevation model
was 0.35 m when compared with LIDAR surveyed points [17]. Slope and aspect were
calculated using these small rasters at each stake with the raster::terrain() command.

Using the same 5 × 5 raster, we adjusted the base model at each stake for topographic
shading by local features. Horizon angle was calculated at each of 36 compass points (every
10◦) using the digital elevation at the stake and the elevation of the surrounding raster
points. From these 36 points, the horizon angles at 24 compass points were interpolated and
added to the ‘hori’ parameter in micro_usa. The RMSD between empirical and modeled
temperatures (RMSDhori) was calculated and compared with RMSDbase.

For each stake, we adjusted the base model for five soil parameters downloaded
for Utah and Colorado (for the two sites in Colorado located a few km east of the Utah
state border) from the SSURGO database of the National Resources Conservation Service
(usda.nrcs.gov). The map unit key (mukey) closest to each stake was extracted using the
soilDB::SoilWeb_spatial_query command. From the nearest soil horizon data, a weighted
mean of each soil parameter for the top 10 cm of the horizon was calculated and added to
nichMapR: albedo (called REFL in micro_usa), bulk density (BD), air entry potential (PE),
saturated conductivity (KS), and Campbell’s soil b (BB). For calculating RMSD with the
soil parameters (RMSDsoil), we focused on one site per array, except for one array, at which
we modeled all five sites. RMSDsoil was compared with RMSD from the base model.

In the base model, roughness length was 0.004 m, which was an intermediate value
for tilled soils (0.002 to 0.006 m [18]). Sagebrush, which was found on all of the arrays in
northern Utah, had a roughness length of 0.02 m [19]. The roughness length for grasses
was also 0.02 m for a canopy of 0.07 to 0.14 m [20], which was a reasonable range of heights
for the grasses that dominate arrays in southern Utah. Hence, we modeled the air and
soil temperatures with a roughness length of 0.02 m, calculated the RMSD (RMSDruf), and
compared these with RMSDbase for both soil and air.

NichMapR accounted for snow depth when modeling Tsoil but not Tair. We created
a hybrid model that replaced Tair at 2.5 cm with Tsoil at 0 cm depth when the snow
depth output from NichMapR was 3 cm or greater (i.e., sufficient to cover the sensor).
RMSD between empirical and modeled temperatures (RMSDhybrid) was then calculated
and compared with RMSD from the base model.

3. Results

For the years 2012–2015, the RMSD between the sensors and the base model (RMSDbase)
was not significantly different from a normal distribution (Shapiro–Wilk W = 0.97, p = 0.0501).
The empirical Tair differed from the modeled Tair (Figures 3–5) by more than the empirical
Tsoil differed from the modeled Tsoil (F1,84 = 148.8, p < 0.0001; average RMSDbase for Tair:
7.4 ◦C, n = 49; for Tsoil: 4.4 ◦C, n = 37; Figures 6–8). Using least-squares regression to
estimate the linear relationship between empirical and modeled air temperatures for each
site (e.g., Figure 4), the RMSDbase was positively correlated with the intercepts (Pearson’s
r = 0.67, p < 0.0001, Table S1).
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Figure 6. Soil temperature at Rock Corral in the Mineral Mountains, southern Utah. Empirical data
(n = 10407) is shown in black and base model data in grey for the years 2012–2015. Modeled snow
depth, which is also a factor in modeling soil temperature, is overlaid as a histogram. The difference
between the two data sets (RMSDbase = 4.53 ◦C) at this site is near average for soil temperature.
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Wilk W = 0.95, p = 0.41). The RMSDDEM was not affected by whether the sensor was in air 
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measured locally (slopeDEM = 2.4 + 0.4 × slopelocal), the modeled temperatures constructed 
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Tempirical = 0.48 + 1.18 × Tmodeled was significantly different from 0 (t = 9.6, p < 0.0001).
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Figure 8. To show daily changes in empirical (black) and base modeled (grey) soil temperatures
across four seasons at Rock Corral (Figure 5), the first two weeks of January (Jan), April, July, and
October (Oct) are plotted from 2014.

3.1. Effects of Digital Elevation Model Estimates of Slope and Aspect

The RMSD with the digital elevation model measurements of slope and aspect
(RMSDDEM) was not significantly different from a normal distribution (n = 20, Shapiro–Wilk
W = 0.95, p = 0.41). The RMSDDEM was not affected by whether the sensor was in air or
soil (ANCOVA, F = 0.3, p = 0.59) and resulted in very little change relative to the RMSD of
the base model (RMSDDEM = 0.20 + 0.98 × RMSDbase, R2 = 0.99, p < 0.0001). Although the
slope derived from the digital elevation model (DEM) increased less steeply than the slope
measured locally (slopeDEM = 2.4 + 0.4 × slopelocal), the modeled temperatures constructed
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with digital elevations measured remotely were not much different than those modeled
with ground measurements of the slope and aspect.

3.2. Shading Effects Due to Surrounding Topography

The RMSD for the horizon modification to the base model (RMSDhori) was signifi-
cantly different from a normal distribution (n = 86, Shapiro–Wilk W = 0.97, p = 0.045). Thr
RMSDhori resulted in very little change relative to RMSDbase for both
Tair (RMSDhori = −0.12 + 1.01 × RMSDbase) and Tsoil (RMSDhori = 0.01 + 0.99 × RMSDbase).

3.3. Effects of Soil Parameters from Empirical Soil Database SSURGO

The RMSD for the soil parameter modification to the base model was not significantly
different from a normal distribution (n = 27, Shapiro–Wilk W = 0.96, p = 0.48). The RMSD
for the soil parameter modification (RMSDsoil) was significantly related to the RMSDbase
(F = 54.2, p < 0.0001) and also affected by the sensor location (F = 13.6, p = 0.0011; air:
8.0, soil: 9.6 ◦C). Incorporating mapped soil parameters made modeled temperatures less
similar to empirical data than the base model, with the relation between modeled soil
temperature and empirical data particularly worsening (on average, Tair models were 19%
poorer, whereas Tsoil models were 86% poorer than the RMSDbase model).

3.4. Effects of Roughness Length

For the years 2012–2015, the RMSD between the sensors and the temperatures modeled
with the roughness length modification (RMSDruf) was not significantly different from a normal
distribution for air or soil (Shapiro–Wilk W = 0.97, p > 0.31). The RMSDruf resulted in very little
change relative to the RMSDbase for both Tair (RMSDruf = −0.23 + 1.07 × RMSDbase) and Tsoil
(RMSDruf = −0.02 + 0.99 × RMSDbase). On average, the RMSDruf was 0.3 ◦C (3.7%) poorer
for air temperature and 0.1 ◦C (1.7%) improved for soil temperature relative to RMSDbase.

3.5. Effects of Snow on Air Temperature

The RMSD for the hybrid modification to the base model (RMSDhybrid), which only
modified Tair, was not significantly different from a normal distribution (n = 49, Shapiro–
Wilk W = 0.99, p = 0.98). The RMSDhybrid was linearly related to RMSDbase and showed
an improvement of 8% on average (RMSDhybrid = 1.09 × RMSDbase −1.23, R2 = 0.82,
p < 0.0001). Forty-two sites saw an improvement between model temperature and empirical
Tair, with the greatest change in the RMSD being 31% (Figure 9), whereas only seven sites
saw agreement between model temperature and empirical Tair worsen, with the greatest by
9% (Figure 10). Both the RMSDhybrid for Tair and the RMSDbase for Tsoil were independent
of the sample size (p = 0.652 and 0.961, respectively). The RMSDhybrid was positively
correlated with the intercept of the regression of empirical temperature on the hybrid-
modeled Tair (Pearson’s r = 0.57, p < 0.0001).

As the hybrid model resulted in a substantial improvement in the simulated Tair data,
we investigated the effects of aspect and slope on model and empirical data agreement using
the RMSDhybrid for Tair and the RMSDbase for Tsoil. The aspect was categorized into four
compass points: 316–45◦ = N, 46–135◦ = E, 136–225◦ = S, and 226–315◦ = W. For 2012–2015,
the RMSDbase was directly proportional to slope, whereas the RMSDbase did not vary
among aspects (ANCOVA: slope F1,21 = 10.8, p = 0.0035; aspect F3,21 = 0.67, p = 0.578; after
interaction p = 0.39 was pooled with error). The addition of flat areas as a fifth category did
not change the result qualitatively (slope F1,29 = 8.6, p = 0.0064; aspect F4,29 = 0.58, p = 0.678,
interaction pooled with error). The RMSDhybrid was independent of slope, whereas it
was significantly affected by the aspect (ANCOVA: slope F1,30 = 0.34, p = 0.567; aspect
F3,30 = 4.50, p = 0.010; after interaction p = 0.58 was pooled with error). The post hoc
multiple comparison of the means indicated that the empirical and modeled Tair agreed
best on the northern aspects and worst on the eastern aspects (Ea = 7.8, Wa = 7.2, Sa = 6.9,
Nb = 5.8 ◦C). The addition of flat areas resulted in the RMSDhybrid being independent of
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the slope and aspect (ANCOVA: slope F1,39 = 0.54, p = 0.468; aspect F4,39 = 2.52, p = 0.056;
interaction pooled with error).
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Figure 9. Air temperature for the years 2012–2015 at Dinosaur National Monument, Utah (Dinosaur 1).
Empirical data (n = 7547) is shown in black and base model data in grey. The hybrid model substitutes
soil temperature at 0 cm depth in red for the base model data when snow depth was 3 cm or greater.
The hybrid model (RMSDhybrid = 4.10) improved the agreement between empirical and modeled
data by 31% at this location (e.g., nearly coincident red and black tracings in winter of 2012–2013).
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Figure 10. In contrast to Figure 9, which shows the location where the hybrid model improved the
fit to empirical data the greatest, the hybrid model worsened the fit of the base model to empirical
data at Upper Rye in northern Utah the most (RMSDhybrid = 7.81 vs. RMSDbase = 7.18, n = 4095).
As in Figure 9, empirical data in black, base model data in grey, and soil temperature data in red
substituted for the base model when snow depth was 3 cm or greater.

For 2017–2020, the RMSDhybrid model showed improvement over the RMSDbase at 22
of the 25 sites (RMSDhybrid = 1.10 × RMSDbase − 1.42, R2 = 0.92, p < 0.0001). By combining
aspects into four compass points, we found that neither the RMSDbase for Tsoil nor the
RMSDhybrid were significantly affected by slope or aspect (ANCOVA, RMSDbase: slope
F1,14 = 0.27, p = 0.849, aspect F3,14 = 0.02, p = 0.882, interaction p = 0.404 pooled with error;
RMSDhybrid: slope F1,14 = 0.57, p = 0.642, aspect F3,14 = 1.87, p = 0.192, interaction p = 0.702
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pooled with error). The addition of flat areas as a fifth class did not qualitatively alter
these results.

For 2012-2015, the RMSDhybrid was significantly different among the topographic
assemblage as defined by the array of sensors (F9,39 = 2.16, p = 0.0469). Little Rock had the
greatest RMSDhybrid and Dinosaur 2 the least (Figure 11). The arrays were significantly
different in the RMSDbase for Tsoil (F9,27 = 3.67, p = 0.0041), with Gilles Hill 2 having the
greatest RMSD and Dinosaur 2 the least (Table 1). For 2017–2020, there was no significant
relation between the RMSDhybrid and the array (F4,20 = 1.42, p = 0.265), but the arrays were
significantly different in the RMSDbase for Tsoil (F4,20 = 3.85, p = 0.0187). Upper Rye had the
greatest RMSD and Lower Rye the least (Table 1).
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Figure 11. For the years 2012 to 2015, RMSDhybrid for air temperature (a) and RMSDbase for soil
temperature (b) were significantly different among arrays. Little Rock in southern Utah had the
greatest discrepancy between empirical and modeled air temperature, whereas Dinosaur 2 in northern
Utah showed the least difference. Gilles Hill 2 in southern Utah had the greatest discrepancy between
empirical and modeled soil temperature, whereas Dinosaur 2 showed the least difference.
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Table 1. RMSDhybrid for air temperature and RMSDbase for soil temperature for two four-year time
periods are compared among arrays located in Utah.

Region Array Mean RMSDhybrid
2012–2015 *

Mean RMSDbase
2012–2015 *

Mean RMSDbase
2017–2020 *

Northern Utah Dinosaur 1 5.66 b 4.21 a,b,c 5.12 a,b

Northern Utah Dinosaur 2 5.63 b 2.93 c 5.37 a,b

Northern Utah Lower Dinosaur 6.54 a,b 3.83 b,c 5.76 a,b

Northern Utah Upper Rye 7.36 a 4.07 a,b,c 6.69 a

Northern Utah Lower Rye 7.27 a 4.83 a,b,c 4.04 b

Southern Utah Gilles Hill 1 6.90 a,b 4.45 a,b,c

Southern Utah Gilles Hill 2 7.64 a 6.67 a

Southern Utah Crater 6.75 a,b 5.54 a,b,c

Southern Utah Little Rock 7.88 a 5.14 a,b,c

Southern Utah Rock Corral 7.47 a 5.00 a,b

* Different superscripts indicate significant differences among the means in post hoc comparisons.

4. Discussion

Many organisms are affected by temperatures within 2.5 cm of the Earth’s surface both
above and below ground [21,22]. Physical modeling of near-surface temperature between
weather stations is logistically feasible, but we found that empirical data from two regions
of Utah and Colorado differed from temperature data modeled with NichMapR by an
average of 7.4 ◦C for air temperature and 4.4 ◦C for soil temperature. The modification of
default parameters resulted in little improvement in error, suggesting that the modeled
temperatures were remarkably insensitive to changes. The incorporation of snow cover
into the modeled Tair generally made the modeled data more similar to the empirical
temperatures (an average difference of 6.9 ◦C). These hybrid models were the most effective
when NichMapR accurately modeled snow depth. In addition to regional variation in
snowfall, snow depth was also affected by drift and other sources of wind-induced error.
Topographic variation undoubtedly affected snow accumulation and melting.

The difference between the empirical and modeled temperatures was larger in Tair
than Tsoil. In early morning and late evening hours when the air sensor was not in the
shade provided by the stake, heating of the silver metal sensor housing by sunlight [23]
would introduce error to the empirical Tair but not Tsoil and potentially contribute to the
2.5 ◦C difference in RMSD between the hybrid model for Tair and that for Tsoil. As an aside,
ground surface temperatures can be extremely inhospitable to an insect. In the tracking of
a migratory band of Mormon crickets in Nevada in June 2008 [24], surface temperature,
measured with an Omega thermocouple thermometer, exceeded 50 ◦C when the ambient
temperature at 1.5 m above ground was only 28.3 ◦C and reached 59.6 ◦C when ambient
temperature was 31.8 ◦C. These hand-collected data support the maximum temperatures
recorded by the air sensors in Utah, which occasionally exceeded 60 ◦C (Figures 3, 4 and 10).

For the years 2012–2015, the empirical and modeled Tair were most alike on the
northern aspect, where shading was greatest. In contrast, errors in Tsoil increased with
slope, which might have resulted from some loss of soil over the sensor due to erosion.
Contrarily, these differences may have been due to the adverse effects of the slope and
aspect on the accuracy of the modeled data themselves. Differential effects of the slope and
aspect on Tsoil and Tair, whether modeled or empirical, may explain why the RMSDbase for
Tsoil was not associated with the RMSDhybrid for Tair (n = 36, r = 0.264, p = 0.12).

The shading from vegetation may have also contributed to differences between the
empirical and modeled temperatures. In addition to the modeled temperatures, assuming
0% vegetation cover that we reported, NichMapR generated an output for 90% vegetation
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cover. However, most of the sites that we sampled were sparse in vegetation and were
much nearer to the assumption of 0% cover. Even sagebrush and juniper (e.g., Figure 2)
were spaced so that the canopy over the sensors was typically open. The average area of
bare ground in a 50 × 50 cm square encompassing the air and soil temperature sensors
in northern Utah was 81% (Figure 12). Although the temperature for vegetation cover
in between 0 and 90% cover could be calculated by interpolation, the addition of any
vegetation cover would decrease the modeled temperature and thus increase the RMSD
between the modeled and empirical temperatures. The canopy photos that track the sun’s
path provided precise measurements of incident sunlight, but we did not deem those to be
necessary in the sparse vegetation.
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Figure 12. The proportion of bare ground at this site in Lower Dinosaur National Monument was
85%, which is close to the average for 25 sites measured in northern Utah. Yellow ear tags mark where
Mormon cricket eggs are buried on either side of the wire connecting the soil sensor to the stake.

In understanding the role of topography in climate refugia, modeled data would be
the least biased if slope or aspect had no effects on their agreement with the empirical
temperatures. Differences between empirical and modeled data for the years 2017–2020
were not affected by slope or aspect. Similarly, when flat areas were included in the
empirical and modeled data for the years 2012–2015, neither slope nor aspect affected the
RMSDhybrid or RMSDbase, respectively. Hence, over a broadened topography, modeled
temperatures were unbiased by slope and aspect in two discrete, four-year time spans.

For the years 2012–2015, the difference between the empirical and modeled soil tem-
perature was greatest at Gilles Hill 2 and least at Dinosaur 2. These two sites also had
significantly different RMSDhybrid, with Dinosaur 2 being the lesser. The two topographic
assemblages were very different: Gilles Hill 2 is a mountain grassland on volcanic soil in
southern Utah, whereas Dinosaur 2 is a rocky outcropping on sedimentary soil in Dinosaur
National Monument. The sites at Gilles Hill 2 face north or south, with steep slopes between
20 and 21◦, whereas those in Dinosaur 2 face north or south, with shallower slopes ranging
between 0 and 8◦. For the years 2017–2020, Upper Rye had the greatest difference between
empirical and modeled soil temperature, and Lower Rye had the least. However, these
two topographic assemblages are very similar; both are relatively flat (facing east, south, or
west from 0–7◦ for Lower Rye and facing east or south from 0–6◦ for Upper Rye), dark-soil
grasslands interspersed with sagebrush on the Diamond Plateau in northern Utah, which
makes the difference in the RMSDbase difficult to explain.
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Despite the differences in the modeled and empirical temperatures that we high-
lighted over a nearly ten-year time period in Utah, the advantages of the modeled data
far outweighed the inaccuracies when modeling demographics, range shifts, and other
events on a regional scale. For example, the Mormon cricket outbreak of the first decade
of this century encompassed 7.2 million acres, an area the size of West Virginia, spread
over six states in the western United States [25,26], and it is not yet possible to measure
near-surface microclimate on that broad a spatial scale. However, an understanding of
biological phenomena will be much more accurate with empirical measures of Tair and
Tsoil by an array of sensors on a local scale and the near-surface empirical data expanded to
landscape and regional scales with the remote sensing of topography [27]. For example,
we are currently investigating the egg diapause of Mormon crickets, which can be pro-
longed for several years (Figure 12, [28,29]), while simultaneously measuring Tair and Tsoil
with the sensor arrays in northern Utah and Colorado described in this paper. Empirical
temperatures give the most accurate measurements of heat accumulation over time for
predicting temperature-dependent biological processes, such as degree days for egg devel-
opment in soil. Despite differences with empirical temperatures, temperatures modeled
with nichMapR at the height of the organism are much more accurate than simply using
temperatures from weather stations at 1.5 to 2 m above the ground surface for calculating
degree–day accumulation.

Future projections of spatial and temporal variations in microclimate availability can
only be modeled from macroclimate projections. In order to understand the ecological
consequences of climate change, biophysical models that downscale climate to ecologically
relevant spatial and temporal scales need to be created to understand changes in niche
structure [30]. To achieve the widest applications possible, biophysical models need to
be validated with empirical data from a wide variety of altitudes, latitudes, soil types,
topographies that organisms currently inhabit, and where their ranges might expand to in
the future. This study of two regions of Utah contributes to that effort.
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