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Abstract: This paper aims to explore and evaluate aerial imagery and deep learning technology
in pavement condition evaluation. A convolutional neural network (CNN) model, named PCIer,
was designed to process aerial images and produce pavement condition index (PCI) estimations,
which are classified into four scales of Good (PCI ≥ 70), Fair (50 ≤ PCI < 70), Poor (25 ≤ PCI < 50),
and Very Poor (PCI < 25). In the experiment, the PCI datasets were retrieved from the published
pavement condition report by the City of Sacramento, CA. Following the retrieved datasets, the
authors also collected the corresponding aerial image datasets containing 100 images for each PCI
grade from Google Earth. An 80% proportion of datasets were used for PCIer model training, and
the remaining were used for testing. Comparisons showed using a 128-channel heatmap layer in
the proposed PCIer model and saving the PCIer model with the best validation accuracy would
yield the best performance, with a testing accuracy of 0.97, and a weighted average precision, recall,
and F1-score of 0.98, 0.97, and 0.97, respectively. Moreover, future research recommendations are
provided in the discussion for improving the effectiveness of pavement evaluation via aerial imagery
and deep learning.

Keywords: aerial imagery; convolutional neural network (CNN); pavement condition index (PCI)

1. Introduction

Pavement evaluations (e.g., visual condition surveys, non-destructive testing, de-
structive testing) are conducted to determine functional and structural conditions of a
highway/street section, either for purposes of routine monitoring or planned corrective
action [1–4]. The Pavement Condition Index (PCI) is a numerical value representing roads’
and parking lots’ pavement status [5]. In ASTM D6433, “Standard Practice for Roads and
Parking Lots Pavement Condition Index Surveys,” the PCI has a value from 0 to 100, which
is rated based on visual inspection of pavement distress type, severity, and quantity [5]. The
Flexible Pavement Visual Survey Condition categories include Rutting, Patching, Failures,
Block Cracking, Alligator Cracking, Longitudinal Cracking, Transverse Cracking, Raveling,
and Flushing [5].

Before deep learning-based pavement defect detection emerged in the field, researchers
identified pavement defections, i.e., cracks, through various Digital Image Processing
(DIP) methods, such as thresholding and edge detection, with four steps of preprocessing,
image enhancement, image transformation, and image classification and analysis [6–8].
These procedures focused on standardizing a specific defect, extracting it as a feature, and
performing a rule-based inspection to determine which features are included [9]. However,
in the traditional DIP approach, a person should manually process all the filter tasks
that extract visual features, and then the completed filters are collected and stored as a
banked dataset.
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Convolutional operation transforms the tiresome DIP process into a more straight-
forward process through deep learning. It generates thousands of filters automatically
optimized for targeted data that previously could not be made by human effort. In addition,
a deeper network model can generate more powerful features since it will cover a wide
range of trained datasets with a deeper understanding of complicated abstraction [10,11].
Typically, a Convolutional Neural Network (CNN) model starts with a convolutional layer,
while its hidden layers contain multiple max-pooling layers, convolutional layers, and fully
connected layers (FC or dense layers). To conduct classification tasks, the CNN ends with
an FC layer with a SoftMax activation function to normalize the output of a network to
a probability distribution over predicted output classes [12]. The effectiveness of CNN
models in pavement distress detection and classification has been proven in several studies
and experiment results [12–19].

The ASTM D6433 also scales PCI into several ratings of good (85–100), satisfactory
(70–85), fair (55–70), poor (40–55), very poor (25–40), serious (10–25), and failed (0–10),
which could be treated as a classification task. Therefore, in this research, a feasibility study
of CNN-based PCI estimation was conducted on aerial imagery (Google Earth) to rate the
PCI at the multi-level as well. Compared to ASTM D6433, the proposed method in this
paper skipped the time-consuming and labor-consuming pavement distress type, severity,
and quantity condition survey processes [5].

2. Deep Learning for Pavement Condition Evaluation

The pavement surface of a roadway section is a relatively flat plane, which makes it
feasible to use 2D imagery (e.g., top-view and drone photogrammetric orthophotos [20]) to
represent the pavement’s spectral features (Red, Green, and Blue). In addition, 3D imagery
(e.g., surface-height plot [21], depth map [22], and range image [16,23]) can represent the
pavement’s elevation features. Moreover, 2D and 3D images can be further aligned to the
same pixel coordinates and merged as integrated features [20]. Based on those 2D/3D data
sources, previous studies used the following machine learning and deep learning-based
methods to achieve the pavement condition evaluation objectives.

Machine learning methods, such as Support Vector Machine (SVM) [20] and Random
Forest (RF) [24], can output numerical values as classification results. In study [20], a set of
spectral features (RGB and mean), textural features (contrast, correlation, energy, and homo-
geneity), and geometrical features (extent, eccentricity, minor axis length major axis length,
and orientation) were generated from the drone photogrammetric orthophoto. The results
showed that using the combination features had an accuracy of 92% in crack/non-crack
classification. Only using textural features had the lowest accuracy of 81%, as cracks are not
significantly different from non-cracks in asphalt pavement. Using spectral and structural
features separately had an accuracy of about 85%, because cracks, in color and shape, are
different from non-cracks [20]. Additionally, an RF classifier could use multiple features to
reach an accuracy of 92.3% in pothole/subsidence/undamaged pavement classification,
where the features were extracted from UAV LiDAR point clouds, and included point cloud
elevation, reflection intensity, multiscale roughness index, multiscale Gaussian curvature,
and several object-oriented geometric features. Moreover, the CrackForest [24], another
RF classifier, also used an integral channel feature (three color, two magnitude, and eight
orientation channels) for road image crack detection.

Deep learning approaches, such as Artificial Neural Networks (ANNs), or Neural
Networks (NNs) can also perform the classification task. NNs have the architecture of
multiple layers, including an input layer, hidden layers, and an output layer. By using
different hidden layers to connect the input and output layers, the NNs can generate
anything from numerical values to free-form elements such as images, texts, and sounds.
Multilayer Perceptron (MLP) is a class of feedforward ANN which typically has 1D vector
input data, such as a GPR trace with 128 samples [25] or 300 samples [26]. The hidden
layers usually are fully connected layers (FC or dense layers), dropout layers, and activation
functions. The output layer contains a SoftMax activation function to generate a 1D binary
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class vector for classification tasks, where the size of the output vector depends on the
number of classes, such as normal signal and abnormal signal-2 classes [25], and pavement
thickness (equal to the samples) of 300 classes [26]. Then, the additional Argmax function
is required to return the index of the maximum value in the binary class vector as the final
numerical value (classification) output [12].

Beyond structured data, the most common type of input data for NNs in the reviewed
studies are 2D imagery data, which results in CNNs and FCNs (Fully Convolutional
Networks) being the most widely used data analysis method for pavement evaluation.
A CNN starts with a convolutional layer, while its hidden layers contain multiple max-
pooling layers, convolutional layers, and FCs. A CNN typically ends with an FC with the
SoftMax activation function for conducting classification tasks, which generates a numerical
value (classification) output, the same as MLP [12]. That is the major difference from FCNs,
because an FCN model typically does not contain FC, but it uses a convolutional layer with
a Sigmoid activation function as the network’s end layer for generating the same-sized
output results as the input images [27]. Furthermore, CNNs can be used with the sliding
window scheme (or overlapping small patches [12,14]) to perform crack and non-crack
binary classification tasks [14–17] and pavement cracking category classification tasks [15]
in each small patch of a large-resolution 2D/3D image. Moreover, when the size of the
window patches is very small, for example, 13 × 13 pixels [14], the CNN-based image
patch classification results would be properly annotating cracks on the large-resolution
images [14,16]. Moreover, a previous study [18] also utilized the bilateral filter to smooth
227 × 227-pixel small patches with cracks, and implemented a k-means clustering-based
image segmentation algorithm to achieve a pixel accuracy of 98.70%.

Therefore, considering the effectiveness of CNN models in pavement distress detection
and classification in the previous studies and experiment results, a feasibility study of aerial
imagery and CNN-based PCI estimation (by rating PCI at a multi-level) was conducted in
this research project. The success of the proposed method can skip the time-consuming
and labor-consuming pavement condition survey processes for pavement distress type
classification, severity determination, and quantity measurement.

3. PCIer: The Proposed PCI Estimator
3.1. CNN Model for Classification and Visualization

The proposed CNN model, named PCIer, is shown in Figure 1, with detailed model
layers and parameters in Table 1. The collected large-dimension aerial images are first
resized down to 256 × 256-pixel images as the model inputs. Then, the inputs are processed
by four 2D convolutional layers and three max-pooling layers; then, the fifth convolutional
layer (named “heatmap layer”) uses the 1 × 1 convolutional operation to reduce the
512 channels feature-maps to small numbers of channels. In this paper, the heatmap layers
are compared in the options of 64 and 128 channels. In addition, the heatmap layer has
a size of 32 × 32 pixels, which is designed to generate the heatmap via the Grad-CAM
(gradient class activation map), a visualization technique for deep learning networks [28].
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Table 1. PCIer: model layers and parameters.

Block Layer Filter and
Size Stride Padding Activation Output Shape

Input - - - - - (256, 256, 3)

Feature
learning

conv2d_1 64, 3, 3 1 Same ReLU (256, 256, 64)

max_pooling2d_1 2, 2 2 - - (128, 128, 64)

conv2d_2 128, 3, 3 1 Same ReLU (128, 128, 128)

max_pooling2d_2 2, 2 2 - - (64, 64, 128)

conv2d_3 256, 3, 3 1 Same ReLU (64, 64, 256)

max_pooling2d_3 2, 2 2 - - (32, 32, 256)

conv2d_4 512, 3, 3 1 Same ReLU (32, 32, 512)

heatmap_layer
(conv2d_5)

128, 1, 1 or
64, 1, 1 1 Same ReLU (32, 32, 128) or

(32, 32, 64)

Classification

flatten_1 - - - - 131,072 or
65,536

dropout_1 0.5 - - - 131,072 or
65,536

dense_1 1024 - - ReLU 1024

dropout_2 0.5 - - - 1024

dense_2 128 - - ReLU 128

dropout_3 0.5 - - - 128

dense_3 16 - - ReLU 16

dropout_4 0.5 - - - 16

Output dense_4 4 - - SoftMax 4
- - - - Argmax 1 (Prediction)

The generated heatmaps have the same size as convolutional outputs; thus, to make
heatmaps’ sizes close to 256 × 256 pixels as in the original CNN inputs, there is no pooling
layer between the fourth and fifth convolutional layers (heatmap layer) in the proposed
CNN (see Figure 1). The resized heatmaps indicate the regions of the image that contribute
to the CNN’s classification results. Moreover, after the heatmap layer, the flatten layer
(operation) converts the 32 × 32 × 128 features to a 1D vector of 131,072 elements (or
32 × 32 × 64 features to a 1D vector of 65,536 elements). Then, the four dense layers reduce
the dimension of the 1D vector to 1024, 128, 16, and 4 features, respectively.

The proposed CNN model has four dropout layers before four dense layers, which are
used to avoid model overfitting. The ReLU activation function is used in the CNN model’s
hidden layers (Feature Learning and Classification Blocks in Table 1), because ReLU is
faster than other activation functions, such as Sigmoid [12,27]. The CNN model’s output
layer uses the SoftMax activation function to generate the probabilities of PCI grades,
such as 1% for Green/Good/Very Good (PCI ≥ 70), 2% for Blue/Fair (50 ≤ PCI < 70), 3%
for Yellow/Poor (25 ≤ PCI < 50), and 94% for Red/Very Poor/Failed (PCI < 25), as the
example shows in Figure 1. Hence, the PCI image datasets of pavement in very poor/failed
condition (PCI < 25), poor condition (25 ≤ PCI < 50), fair condition (50 ≤ PCI < 70), and
good/very good condition (PCI ≥ 70) need to be prepared, in which images are set with
the class label of 0, 1, 2, and 3, respectively.

3.2. Data Augmentation

The proposed Data Augmentation (DA) strategies aim to obtain a well-trained CNN
using a limited number of datasets. Figure 2 illustrates the proposed DA strategies, which
integrate image transformations of scaling (in a range of 0.5 to 1.5), stretch (scaling in either
width or height direction), rotation, flipping, and reflection. The ratios of scaling and stretch
are randomly generated. When ratios are larger than one, only the central regions are kept.
When ratios are less than one, the small-sized images are padded with reflection operations
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(alternative to constant padding). In addition, the image color adjustments are randomly
determined in the adjustments of brightness, contrast, saturation, and sharpness [29].
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3.3. Evaluation Metrics

The following metrics are used to measure the classification performance of the pro-
posed CNN model and DA strategies:

Accuracy Equation (1), the ratio of number of correct predictions to the total number of
testing images.

Accuracy =
Number o f Corrected Prediction

Total Number o f Predication Made
(1)

Precision Equation (2), the number of correct positive results divided by the number of
positive results predicted by the CNN model.

Precision =
True Positive

True Positive + False Positive
(2)

Recall Equation (3), the number of correct positive results divided by the number of all
relevant images (all images that should have been identified as positive).

Recall =
True Positive

True Positive + False Negative
(3)

F1 Score Equation (4), the harmonic mean between precision and recall. The range
for the F1 Score is between 0 and 1, which indicates how precise the CNN model is (how
many images it classifies correctly), as well as how robust it is (it does not miss a significant
number of images).

F1 Score = 2 × Precision × Recall
Precision + Recall

(4)
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4. Experiments and Results
4.1. Dataset Preparation

The City of Sacramento (California, CA, USA) rated and mapped the condition of
the streets with the following standards: a PCI score of 70 to 100 is considered “Excel-
lent/Good”, 50 to 69 is “Fair”, 25 to 49 is “Poor”, and 0 to 24 is “Very Poor” [30]. One-
hundred images were collected from the Google Earth web version for each PCI grade
via a Google Earth Screenshot Tool developed in the previous research [11]. Table 2 lists the
collected PCI images (and parameters) from five streets in Sacramento. An example of the
collected PCI image is shown on the left of Figure 1. The prepared training and testing
datasets can be accessed in [31]. For each PCI grade, 80 images were used for CNN model
training, and the remaining 20 images were used for CNN model testing. By applying the
proposed DA for one time, an original image would be transformed into eight styles, as
shown in Figure 2. By running the random DA for ten rounds, the original image would be
extended to 80 (=1 × 8 × 10) images. Thus, the collected 320 (=80 × 4) images generated a
training dataset with 25,600 (=80 × 320) images.

Table 2. CNN model training and testing dataset.

Street Name PCI Grade Collected Image Training Testing Original Image Size Image Size

College Town Dr Very Poor (PCI < 25) 55 45 10 1408 × 1024-pixel 256 × 256-pixel
Main Avenue Very Poor (PCI < 25) 45 35 10 1408 × 1024-pixel 256 × 256-pixel

Florin Perkins Rd Poor (25 ≤ PCI < 50) 100 80 20 1408 × 1024-pixel 256 × 256-pixel
Freeport Blvd Fair (50 ≤ PCI < 70) 100 80 20 1408 × 1024-pixel 256 × 256-pixel
Power Inn Rd Good (PCI ≥ 70) 100 80 20 1408 × 1024-pixel 256 × 256-pixel

4.2. Model Training

Since the expected output is the probabilities for the four PCI grades of Very Poor,
Poor, Fair, and Good, the loss function “categorical_crossentropy” was used in CNN model
training. In addition, the “validation_split” was set at 0.20, which means 20% (5120)
samples were used for validating the model, and another 80% (20,480) samples were used
for model training. The maximum training epoch (an epoch is one full cycle through
the entire training dataset) was set at 50 epochs. To avoid model overfitting, the training
process was stopped early via monitoring validation accuracy (closer to one is better) where
it had not been improved in the previous five epochs.

The plots of accuracy and loss (closer to zero is better) are shown in Figure 3. They
indicate that both models (one model has 64 channels in the heatmap layer and another
model with a 128-channel heatmap layer) stopped training earlier than the maximum epoch
due to activation of the early stopping as described previously. In detail, the 128-channel
model stopped at the 14th epoch with a “final” validation accuracy of 0.9846 and the “best”
validation accuracy of 0.9979 at the 9th epoch. The 64-channel model stopped at the 19th
epoch with a “final” validation accuracy of 0.9836 and the “best” validation accuracy of
0.9936 at the 14th epoch.
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4.3. Model Testing

The “best” model (at the best validation accuracy epoch) and the “final” model (at
the end epoch) were both saved and tested using the collected testing dataset (which has
20 images for each PCI grade and a total of 80 images) with the selected performance
evaluation metrics.

The testing results are listed in Table 3 for the four CNN models (including the 128-
channel final model, 128-channel best model, 64-channel final model, and 64-channel
best model) and the four PCI grades of Very Poor, Poor, Fair, and Good. In addition, the
confusion matrices in Figure 4 indicate the detailed classification results, where the label
“Red 0” is the “Very Poor”, “Yellow 1” is the “Poor”, “Blue 2” is the “Fair”, and “Green 3”
is the “Good” PCI grade.
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Table 3. Comparison of CNN testing results.

PCI Grade
128-Channel Final Model 64-Channel Final Model 128-Channel Best Model 64-Channel Best Model

Support
Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score

Very Poor 0.79 0.95 0.86 0.69 0.90 0.78 0.95 0.95 0.95 0.70 0.95 0.81 20
Poor 1.00 0.95 0.97 1.00 0.90 0.95 0.95 1.00 0.98 1.00 0.90 0.95 20
Fair 0.94 0.85 0.89 0.90 0.90 0.90 1.00 0.95 0.97 0.94 0.85 0.89 20

Good 1.00 0.95 0.97 0.94 0.75 0.83 1.00 1.00 1.00 0.94 0.80 0.86 20
accuracy 0.93 0.86 0.97 0.88 80

macro avg 0.93 0.93 0.93 0.88 0.86 0.87 0.98 0.97 0.97 0.90 0.88 0.88 80
weighted avg 0.93 0.93 0.93 0.88 0.86 0.87 0.98 0.97 0.97 0.90 0.88 0.88 80

5. Discussion
5.1. Performance Comparison

With the training, validation, and testing results, it is safe to conclude that the proposed
CNN model with a 128-channel heatmap layer (average testing accuracy of 0.95) performs
better than the 64-channel model (average testing accuracy of 0.87), and the “best” model
(average testing accuracy of 0.925) has better performance than the “final” model (average
testing accuracy of 0.895). In addition, as shown in Table 3, the testing has an accuracy of
0.97, and weighted average precision, recall, and F1-score of 0.98, 0.97, and 0.97, respectively.
Thus, the PCIer with a 128-channel heatmap layer is recommended for PCI grade estimation
for future applications. The detailed model layers and parameters are shown in Table 1.
Moreover, saving the well-trained model with the best validation accuracy can further
improve PCIer performance.

5.2. Limitations

Examples of PCI grade prediction results are shown in Figure 5, where the well-trained
CNN model’s (PCIer, 128-channel in heatmap layer) predictions are all matched with the
ground truths. The Grad-CAM visualization results are shown in Figure 5 as well. For
the Poor (Figure 5b) and Good (Figure 5d) PCI grades, the heatmap generated by the
Grad-CAM indicates that the street pavement contributes to those PCI grade classification
results. In addition, a demonstration video of real-time PCI estimation and Grad-CAM
visualization results of the Power Inn Rd (Sacramento, CA, USA) can be accessed in [31].
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However, for the Very Poor (Figure 5a) and Fair (Figure 5c) PCI grades, the heatmap
contains the vegetation zone that contributed to the PCI grade classification results (see the
annotation in Figure 5a,c). Hence, for future applications, the vegetation zones’ affection
could be reduced by the following approaches:

(1) Collect more images for CNN model training to reduce the impact of non-street object
obstruction on the classification results. In this approach, additional convolution
layers (and channels) and dense layers may need to be added to the proposed CNN
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model for feature learning. Then, the complicated model might discard the vegetation
zone.

(2) Remove non-street (pavement) surfaces from the collected image. In this approach,
the vegetation zone would be cropped, and only the street surface would show in the
input images for the proposed CNN model.

5.3. Recommendation

The reviewed previous studies with CNN modeling are either input spectral features
(red, green, blue, RGB imagery) or input elevation features (3D imagery) [32]. Then,
convolutional layers are used to generate complex feature maps based on the input images.
However, the traditional methods, such as SVM [20] and RF classifiers, are preferred to
input structured combination features and reach high accuracy performance. Thus, for
future application of the proposed CNN models, concatenating RGB three-channel and an
elevation one-channel to form a four-channel input image may have better performance in
PCI estimation. Since considering the elevations, the impacts of vegetation zones would be
eliminated as well.

Additionally, this research assumed the Google Earth images are up-to-date high-
resolution aerial images (or existing commercial high-resolution aerial imagery) for the
target road project or network. The pavement condition evaluation would be more ef-
ficient with them by skipping the time-consuming and labor-consuming aerial imagery
acquisition operations by the infrastructure management agency-self. Otherwise, another
feasible approach would program drones to automatically capture top-view images of the
targeted street or highway section, or extract keyframes from a drone’s video. Then, the
photogrammetric orthophoto (which provides the spectral features) and point cloud (that
provides the elevation features) would improve the PCIer performance.

6. Conclusions

This paper developed a CNN and Google Earth-based PCI estimation and visualization
method, which is named as PCIer, and presented the feasibility study results. In the
experimental evaluations, the ground truth PCI datasets via the ASTM D6433 pavement
distress protocols were collected from the publicly published pavement condition report
by the City of Sacramento, CA [30]. The aerial image datasets of five streets in Sacramento,
CA were collected via the Google Earth Screenshot Tool [11]. The performance comparisons
showed that using a 128-channel heatmap layer for the developed PCIer model and the
saved model with the best validation accuracy has the best performance of testing accuracy
of 0.97, and weighted average precision, recall, and F1-score of 0.98, 0.97, 0.97, respectively.

Compared to ASTM D6433, the developed PCIer can quickly generate PCI estimations
and avoid the time-consuming and labor-consuming pavement condition survey processes
for the classification of distress type, determination of distress severity, and measurement
of distress quantity. Local infrastructure management agencies can use publicly accessible
aerial images for the initial pavement condition evaluation and then send crews to check the
likely poor-condition sections. In addition, the developed PCIer can also process the oblique
images captured by vehicle-mounted cameras. Infrastructure management agencies can
easily deploy the PCIer for their pavement evaluation projects with their own datasets of
historical PCI data and the associated images.
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