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Abstract: Inundation dynamics coupled with seasonal information is critical to study the wetland
environment. Analyses based on remotely sensed data are the most effective means to monitor and
investigate wetland inundation dynamics. For the first time, this study deployed an automated
thresholding method to quantify and compare the annual inundation characteristics in dry and
wet seasons in the Everglades, using Landsat imagery in Google Earth Engine (GEE). This research
presents the long-term time series maps from 2002 to 2021, with a comprehensive spatiotemporal
depiction of inundation. In this paper, we bridged the research gap of space-time analysis for
multi-season inundation dynamics, which is urgently needed for the Everglades wetland. Within
a GIS-based framework, we integrated statistical models, such as Mann–Kendall and Sen’s Slope
tests, to track the evolutionary trend of seasonal inundation dynamics. The spatiotemporal analyses
highlight the significant differences in wet and dry seasons through time and space. The stationary or
permanent inundation is more likely to be distributed along the coastal regions (Gulf of Mexico and
Florida Bay) of the Everglades, presenting a warning regarding their vulnerability to sea level rise.
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1. Introduction

Inundation is the state of land when it is covered with water, either permanent or
transient. Wetlands are the inundated or water-saturated lands characterized by various
kind of vegetation [1], and inspecting inundation dynamics of wetlands is a critical first
step towards understanding their hydroperiod, ecology, and functionality [2–5]. Wetland
inundation dynamics is the key indicator of ecosystem functioning, and has a wide range
of implications for water management and wetland governance [6–8]. However, it is
often poorly understood owing to its complexity [7]. This is due to spatial and temporal
heterogeneity, which creates uncertainties in the extent, timing, and duration of inundation.
Considering the significant input of wetlands to local hydrology [9,10], wildlife habitat and
flood mitigation [11], greenhouse gas emissions [12,13], and other environmental services,
there is an urgent need for monitoring and analyzing the seasonal inundation dynamics
through time and space.

There are several remote sensing techniques to quantify the inundation extents, such
as spectral indices [14,15], regression trees [16,17], and the band ratio method [18]. How-
ever, these methods have been found to be less effective for mapping inundation pixels
separately from non-inundation pixels. For example, using the indices technique, the
normalized and modified normalized difference water index (NDWI and MNDWI, respec-
tively), which were specially developed to extract waterbodies, have the least potential
to classify inundation among the three methods [14]. Although the method relying on a
regression tree is currently favored as it uses multi-scalar input data (such as thematic ancil-
lary information), this model is still cumbersome and expensive as it requires a substantial
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training dataset for calibration and validation [19]. The band ratio method is designed
based on spectral characteristics to discriminate between water and land, but it is heavily
biased to the rainy season with a cloud-free atmosphere to output the best result [20], and
is thus not applicable for all seasons.

Beyond the above-stated techniques, recently, the thresholding method has been the
most successful approach for accurately classifying inundation pixels while considering the
reflectance value of the short-wave infrared (SWIR) band [21–23], especially for moderate
spatial resolution images (~30 m). The threshold-based method shows superior results of
inundation extraction compared to other methods as it deploys optimal uses of the SWIR
band, which is highly sensitive to moisture content [24] and, therefore, can properly dif-
ferentiate inundated areas from non-inundated areas within a dense vegetation cover [19].
Another study [25] also found that the thresholding method shows better accuracy in
mapping inundation than the band ratio method, as it is specifically developed for complex
landscapes, such as densely vegetated areas and shadowy terrain. Therefore, amongst
the existing techniques and their suitability to this research, we rationally adapted the
thresholding method to quantify seasonal inundation dynamics in the Everglades wetland.

The Everglades wetland is a very unique place, the majority of which is dominated
by wet prairie and sawgrass marsh [26]. Thus, it poses significant challenges for coarse
resolution sensors (e.g., MODIS) to sense surface water, which is camouflaged underneath
moderate to dense vegetation. This scenario is prevalent almost throughout the Ever-
glades [27], and means that extraction of inundation characteristics from this wetland
remains difficult using large-scale remote sensing data. However, due to public release of
medium- to fine-resolution data from operational and archival satellite missions, including
Landsat [28] and Sentinel [29,30], it is now more feasible than ever to better scrutinize the
spatial and temporal attributes of surface inundation dynamics.

While frequent and in-depth observations are needed to track dynamic inundation
characteristics in the Everglades area, a very limited number of studies have been con-
ducted to detail the inundation status through time and space. For example, some previous
studies [19,31] examined the inundation attributes of the Everglades or the greater Ever-
glades Depth Estimation Network (EDEN) area; however, they were limited to short-term
time series analysis, and also lacked intra- and inter-annual differentiation in frequency,
duration, and extent of inundation products. Moreover, none of these studies highlighted
the spatiotemporal aspects of seasonal inundation dynamics, which is an essential finding
of wetland research [32]. These studies used convoluted techniques, and mostly relied on
external datasets, subjective interaction via multi-stage segmentation, and collection of
gage data for algorithm development and validation. Hence, there is an urgent need for
spatiotemporal-based research with an efficient approach to study seasonal variation of
inundation dynamics for wetlands, particularly in the Everglades areas of South Florida.

In this research, we utilized the Landsat satellite imagery to create a 20-year time
series of inundation maps for both wet and dry seasons for the Everglades wetland. We
adapted the thresholding algorithm of the SWIR band [14] realized in Google Earth Engine
(GEE), which is automated and reproducible. In this paper, we also provide an in-depth
analysis and season-to-season comparison of inundation dynamics based on the inundation
maps. This paper is the first to offer comprehensive spatial and temporal dynamics of
inundation characteristics for the Everglades wetland based on multi-decadal time series
data. In the near future, observations based on spatial and temporal attributes of wetland
inundation dynamics would be greatly benefited by this research, as it used an efficient
method that is capable of scalability and avoids multi-stage complexity. The findings from
this research could also be important for scientists, stakeholders, planners, decision makers,
and government agencies.

2. Materials and Methods

A schematic framework was proposed in order to monitor and analyze the seasonal in-
undation dynamics of wetlands in the Everglades from 2002 to 2021 based on GEE (Figure 1).
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The whole procedure to accomplish the materials and methodological part of this research
is categorized into four broad sections, namely, study area selection (Section 2.1), data ex-
traction and processing (Section 2.2), deploying the thresholding method to extract annual
inundation characteristics from Landsat images (Section 2.3), and spatiotemporal analyses
to investigate the spatial distribution and seasonal dynamics of inundation (Section 2.4).
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Figure 1. The schematic flowchart displaying the methodology for seasonal inundation dynamics
and spatiotemporal analysis in the Everglades from 2002 to 2021.

2.1. Study Area

Our study area lies in South Florida, United States (US), and comprises two unique
and important national parks, the Everglades National Park and the Big Cypress National
Park (Figure 2). The Everglades region stretches from the southern rim of Lake Okeechobee
(the second largest freshwater lake in the US) to Florida Bay [33]. This research selected the
Everglades wetland as it is a very low-gradient environment [34], with an elevation range
of approximately −0.65 to 5 m from the lowest to highest points [19]. The type of land
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cover encompassing the Everglades falls under the mosaics of open water and wet prairie
with herbaceous plants, shrubs, and forested wetlands [35]. In addition, a major part of the
Everglades is composed of wet prairie and sawgrass marsh [26]; this area has been named
the “river of grass” for a long time [27]. According to National Land Cover Database [36]
products 2019, the upper-most portion of the study area (Big Cypress National Park) is
mostly dense vegetation (forest), whereas the wetlands is the most dominant land type
covering the study area (Figure 2).
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Figure 2. The study area with its land use land cover (LULC).

With an annual mean temperature of 25 ◦C, the climate of South Florida is regarded
as maritime subtropical, where summers are long and hot, and winters are mild and
dry [37,38]. According to National Park Service, the Everglades has two seasons, namely,
the wet season, which starts around the middle of May and continues through November,
and the dry season, which ranges typically from December through April [39]. Hence,
the wet season is characterized by intense rainfall and is longer than the dry season. The
historic average rainfall of Florida from 1901 to 2000 was 136.27 cm [40].

2.2. Data Extraction and Processing

This research used remotely sensed data as a primary data source. Most of the satellite
data processing was accomplished using GEE, unless otherwise stated. This research used
images from three different Landsat sensors (Landsat 5 TM, Landsat 7 ETM+, Landsat
8 OLI), which were previously proven as providing effective source data for the study of
inundation dynamics [28,41]. To retrieve the historical inundation characteristics, this study
considered every tier 1 image, which were atmospherically corrected surface reflectance
Landsat scenes captured from 2002–2021 in two seasons: the wet season ranges from May
to November and the dry season from December to April. The Landsat sensors are capable
of capturing scenes with 30 m spatial resolution, and they contain seven (Landsat 5), eight
(Landsat 7), or eleven (Landsat 8) bands, including the SWIR band, which was used in
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this study. Pixels from each scene detected as a cloud or cloud shadow on the Landsat
were masked using GEE’s masking function. As a single sensor’s images do not cover
the examined time bound (2002–2021), this research merged all image collections from
Landsat 5, 7, and 8, and selected the SWIR band accordingly. Then, we used a gap-filling
algorithm referred to as the Neighborhood Similar Pixel Interpolator (NSPI) method [42],
which was developed based on the assumption that the same-class neighboring pixels have
similar spectral characteristics when they are placed around the un-scanned pixels. With
the help of the NSPI method, the masked pixels were filled using the median value for the
pixel from the year before and after the scenes’ date. The median value of the scenes for a
particular year was used to create an annual composite for each year within the time limit.

To validate the accuracy of the classified annual inundation products, we used the
continuous daily record of water depth maps from EDEN [31,43,44]. These datasets are
preserved in 400 by 400 m grids, and all negative water depths were shifted to zero with the
spatial interpolation method. To match the resolution with Landsat images and align with
the time bound, we downscaled 400 m EDEN maps to a 30 m resolution, and derived the
seasonal mean value (half yearly) from daily acquisition. Due to procedural difficulties and
time constraints, we validated annual inundation products from the years of 2011, 2016, and
2021. Although EDEN maps are reliable local datasets for validating inundation products
for our study area, they may have some anomalies due to the interpolation method they
adapted during post-processing of the maps. Consequently, this research used a 10 cm
threshold value of the water depth when we processed EDEN data for validation. The
accuracy assessment of our classified inundation maps with EDEN water depth maps
was based on pixel-to-pixel agreement of inundated and non-inundated areas. The total
number of classified pixels of inundation and non-inundation was almost 4,300,000 in
each participating year; however, we chose 7500 pixels using a random stratified sampling
approach for validation. According to validation results, 2016 achieved the highest accuracy
of 88%, followed by 84% in 2011, and 2021 had the lowest accuracy of 79%. The overall
mean accuracy of annual inundation maps was 83.67% compared with EDEN maps, which
is 12% greater than that of previous research [19].

2.3. Thresholding Method

We deployed the SWIR thresholding method, originally proposed by Wolski et.al [14],
and further modified by Inman and Lyons [45], to transform the composite into annual
inundation maps. Although we borrowed the synergetic version of the thresholding
method from these two existing studies, we also modified and altered this model to fit
in our spatial and temporal context. To apply this thresholding technique, we assessed
and digitized inundated and non-inundated sample areas as polygons. When choosing
typical polygons, we considered an area as inundated if it had contained permanent water
(e.g., permanent swamp or main channels) based on Esri’s high-resolution world imagery.
According to the thresholding method, this study took the median value of the SWIR band
for the inundated (SWIRinundated) and non-inundated (SWIRnon-inundated) areas, and then it
was applied for each annual image composite. The threshold (SWIRthreshold) for a specific
composite was calculated using Equation (1):

SWIRthreshold = SWIRinundated + 0.3 × (SWIRnon-inundated − SWIRinundated) (1)

where SWIRinundated and SWIRnon-inundated denote the median reflectance for the SWIR
band in the inundated and non-inundated areas, respectively. SWIRthreshold is the threshold
output value, which defines inundated and non-inundated pixels within the study area.
Pixel values below the SWIR threshold are classified as inundated, otherwise they are
classified as non-inundated. As recommended by Wolski et al. [14], Equation (1) uses
the multiplier of 0.3, which represents the required value for calculating the appropriate
threshold to classify a pixel as inundated with a 50% inundation fraction. We also confirmed
that using 0.3 as a multiplier in the threshold equation was appropriate due to different
Landsat images used in this research.
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2.4. Spatiotemporal Analysis

The spatiotemporal evaluation was conducted for seasonal inundation dynamics in
terms of five aspects, namely, annual inundation distribution, overlapping and inundation
dynamics, trend analysis, total inundation occurrence, and inundation variances. The
detailed procedures and explanations are as follows:

1. Annual inundation distribution: To obtain an overview of the inundation extent,
it is essential to summarize the temporal change patterns of inundated areas. The
areas were quantified using the pixelArea function in GEE and organized by year and
season. To better compare and extract larger or smaller areas over the 20-year time
span, this product is illustrated as bar charts for both dry and wet season.

2. Overlapping and inundation dynamics: To inspect the temporal dynamics of inunda-
tion, an in-depth analysis was undertaken by overlapping and comparing the maps
of inundation in the subsequent years [46,47]. A total of 19 comparison results were
generated from the annual maps from 2002 to 2021, where inundated pixels in the
previous year appearing as non-inundated pixels in the latter year were defined as
a decrease event, and as an increase event in the reverse cases. Moreover, the pixels
appearing as inundated/non-inundated in two consecutive years were regarded as
an unchanged event. To better understand the temporal dynamics, the pixels were
converted to area in km2, and summarized as bar charts with three events (decrease,
increase, and unchanged) annually and seasonally. Beyond that, this dynamic com-
parison was performed between the annual maps of every four years (2002–2006,
2006–2010, 2010–2014, and 2014–2018), except 2018–2021, which was conducted with a
3-year interval due to data constraints. The result of this part (focusing on spatial dis-
tribution) was visualized on maps in three events (decrease, increase, and unchanged)
for wet and dry seasons. The spatial patterns illustrated by the generated maps reveal
significant spatiotemporal traits, in which pixel values assigned to 1 contributed to
increase, −1 contributed to decrease, and 0 contributed to unchanged inundation.

3. Trend analysis: An integrated nonparametric approach was used in this study to
examine and assess if there is a trend within the inundation dynamics over time. This
kind of approach is widely used in the GIS community [48–56]. Our research used
the Mann–Kendal test [57,58] to investigate whether the seasonal inundation area
follows any trend that is statistically significant (when p-value is less than 0.05). If it
consists of any statistically significant trend, this study used Sen’s slope estimator [59]
to determine whether the trend runs through the downward or upward direction. To
summarize the temporal trend of inundation dynamics, the annual inundation area
from two seasons was applied, and the results were tabulated accordingly.

4. Total inundation occurrences: An in-depth investigation was carried out based on
the occurrence map by summing up the binary images from all of the 20 years. This
was accomplished in GEE Code Editor using the sum function for image collection.
As a result, the values of the pixels on the inundation occurrence map varied from
0 (without inundation occurrence) to 20 (always inundation occurrence). Based on
the pixel value, the inundation occurrence can be categorized as very high (17–20),
high (13–16), moderate (9–12), low (5–8), and very low (0–4). The spatial distributions
of inundation can be obtained and compared in wet and dry season from this map.

5. Inundation variance: As we had each year’s inundation map from 2002–2021, we
considered measuring the seasonal inundation dispersion from its mean inunda-
tion. The important insight of this variance map is the location of the hotspot of
continuous inundation deviation within the study area. As with the total inundation
occurrence map, this map was also produced in GEE Code Editor with the help of
the variance function. The pixel values on the inundation variance map vary from
0 (without variance) to 0.25 (maximum variance). Based on the pixel value, the in-
undation variance can also be categorized as high (0.19–0.25), moderate (0.13–0.18),
low (0.07–0.12), and very low (0–0.06). The inundation variance map was produced
for season-to-season comparison.
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3. Results and Discussion

The results and discussion are based on the analysis from the output maps and graphs,
and they are elucidated and analyzed in this section. This section is divided into two
broad sections: temporal dynamics of inundation (Section 3.1), and spatial dynamics of
inundation (Section 3.2).

3.1. Temporal Dynamics of Inundation

Examining the annual inundation distribution over the years is a key analysis to
retrieve the temporal change pattern of inundation. Figure 3 illustrates the extent of the
inundated area for each year in wet and dry seasons from 2002 to 2021. The average
inundated area per year is greater in the wet season (1484.81 km2) than in the dry season
(1373.33 km2). However, analysis of the dispersion of inundation by season showed that
the dry season signals more variability, with a standard deviation of 386.49 km2, compared
to the wet season, which had a standard deviation of 292.88 km2. This comparison im-
plies that the dry seasons from 2002–2021 were more active than wet seasons in terms of
inundation dynamics. To further analyze annual inundation distribution, we explored the
peak inundation years between the two seasons, and therefore present the longest ever
time series of inundation extent in the study area. The observation from Figure 3a shows
that the largest inundation extent (2076.31 km2) in the wet season was recorded in 2015,
followed by 1929.92 km2 in 2002. The largest peak inundation was almost two times that
of the smallest one (1006.69 km2) recorded in 2012. The effect of the strongest El Nino
episode in 2015 [60] could be one of the probable factors triggering this exceptionally large
inundation extent compared with other years. However, other weaker El Nino events, such
as the 2010 and 2020 episodes [61,62], presented a less remarkable change, which was also
echoed in our study. The dry season (Figure 3b) recorded the highest inundation extent
(2156.40 km2) in 2007, and this was roughly three times that of the smallest inundation
extent (816.90 km2), recorded in 2009. The second highest inundation (1916.89 km2) in the
dry season was measured in 2010.
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To inspect the probable factors responsible for controlling the temporal distribution
of inundation in the wet season, we looked at the historical dataset of rainfall occurrence
and storm events during this time period (May-November) [63,64]. According to Figure 3a,
the wet season in 2015 contained the highest inundated area; this is linked to the effects
of Hurricane Danny and tropical storm Erka [65,66], which both occurred in August.
According to the Florida Climate Center [67], the entire month of August 2015 witnessed
high winds, hail, storm damage, and heavy rains across the state due to various convective
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and sea breeze thunderstorms. The long and substantial rainfall occurrence in South Florida
is normally associated with tropical storms and hurricanes, which appeared between June
and November [68]. Hence, the dry season in South Florida experiences less rainfall than
that of the wet season unless there are exceptions during this time. According to Figure 3b,
the dry season contains a less inundated area, as opposed to the wet season, in the overall
observations. However, the dry season in 2007 witnessed increased inundation compared
to the wet season in the same year, and this could be attributed to the off-season tropical
storm Olga, which hit South Florida in December 2007 [69].

The results of overlapping comparison detailing the areas of three events, namely,
increase, decrease, and unchanged inundation by year and season, are portrayed in Figure 4.
Taking a closer look at the annual average area of decreased, unchanged, and increased
inundation, it follows the ratios of 494:4514:532 in the wet season and 586:4327:627 in the
dry season. Based on this ratio calculation, it is evident that the annual average area of
inundation increased for the last 20 years in the dry season, and increased more than that
of the wet season by approximately 18%. This is also true for the inundation decrease,
where the annual average area in the dry season increased by 92 km2, which is roughly 19%
greater than that of the wet season. The annual average area of unchanged inundation, in
which inundation/non-inundation pixels appeared in two consecutive years, was found
to be almost stable in both seasons, although the area of the wet season was 4% greater.
The results of overlapping comparison mirror the findings from Figure 3. In that case,
2007–2008 in the dry season had an exceptionally high active inundation (Figure 3b), which
is reflected in the highest decrease event in Figure 4b from 2008 to 2009. For the wet season
comparison between Figures 3a and 4a, there is a drastic decrease in inundation from 2015
to 2016 in Figure 3a, which is confirmed by Figure 4a from 2015 to 2016. The increase
and decrease in inundations are interchangeable in most years, and therefore the overall
number of pixels or converted area of inundation/non-inundation did not significantly
change for a long period of time [47].
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Based on the annual inundated area (Figure 3), this study assessed the evolutionary
trend of seasonal inundation dynamics using the Mann–Kendal test and Sen’s slope estima-
tor [48–56]. The results are presented in Table 1, including for the wet and dry seasons. In
the Mann–Kendall test, the p-value less than 0.05 is sufficient to reject the null hypothesis
(the trend does not exist) and accept the alternative hypothesis (the trend exists), whereas
a positive value in Sen’s slope estimator results in an upward trend and a negative value
indicates a downward trend. According to Table 1, the inundation patterns of both wet
and dry seasons fall under a statistically significant trend. Because Sen’s slope estimator
yielded a negative value in both seasons, the inundation trend follows a downward di-
rection. Overall, the findings from trend analysis anticipate that, during the last 20 years
(2002–2021), the whole study area witnessed a gradual decline in inundation, indicating
less rainfall and precipitation occurrence in the Everglades and nearby regions.

Table 1. The evolutionary trend of inundation in the study area for the wet season and dry season
from 2002 to 2021.

Season p-Value Sen’s Slope

Wet 0.0215 * −25.86

Dry 0.0349 * −37.99
Note: * p < 0.05 level.

3.2. Spatial Dynamics of Inundation

To extract the spatial scenario of inundation characteristics, the total inundation
occurrence is a useful feature, and is illustrated in Figure 5. According to the map, the
wet season (Figure 5a) presents more inundation features than the dry season (Figure 5b).
Taking a closer look at the map, it is evident that a very high level of inundation clusters
(pixel value 17–20) coincide along the coast of the Gulf of Mexico and Florida Bay. The
area of the largest inundation cluster of the wet season (colored in blue) was approximately
0.39 km2, and the second largest area was roughly 0.33 km2. The dry season featured the
largest cluster with an area of 0.35 km2, and the second largest area was roughly 0.29 km2.
Overall, the largest inundation cluster in the wet season was greater than that of the dry
season by roughly 10%, and all these large inundation clusters situated along the coast could
be a scientific resource for future coastal research. Based on the season-to-season spatial
dispersion of inundation features, the wet season contains larger inundation clusters than
the dry season, indicating large drenched surfaces are prevalent from May to November.
By contrast, high-level inundation clusters (pixel value 13–16) are witnessed mostly in the
dry season, and these are predominantly distributed in the northern part of the study area.

With the help of annual inundation maps from 2002 to 2021, the inundation variance
map was generated and is demonstrated in Figure 6. The pixel values on the inundation
variance map range from 0 (without variance) to 0.25 (maximum variance). Figure 6a
displays the wet season, where high inundation variances (pixel value 0.19–0.25) are wit-
nessed in the south-eastern part of the study area, which is adjacent to Miami-Dade County
and the Water Conservation Area (WCA3B) [70]. Figure 6b, the dry season, also shows
an almost similar distribution of inundation variances, with the exception of high-level
variance in the upper region, and a slant cluster, located diagonally from the south-western
part to the south-eastern part of the study area. One common attribute of inundation
variances for both dry and wet seasons is that the two west coasts (Gulf of Mexico and
Florida Bay) are characterized by less inundation variability, whereas the northern part,
featuring Gator Lake and West Lake, and the south-eastern part, featuring Miami-Dade
County and Tamiami canal, are identified as having a substantial change in inundation.
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to 2021.

The spatial distribution of inundation information and its variability have a critical
role to play in wetland management systems. As such, this research could be a potential
resource to help the Comprehensive Everglades Restoration Plan (CERP), which aims to
enhance freshwater storage, improve water quality and restore the natural water flow
through the greater Everglades ecosystem [71]. By presenting a detailed depiction of
total inundation occurrences (Figure 5) and inundation variances (Figure 6) maps, we
attempted to enhance the spatial understanding and dynamic nature of inundation within
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the Everglades area. The results shown in Figures 5a and 6a indicate that a very high level of
inundation occurrence (pixel level 17–20) and very low level of inundation variance (pixel
level 0–0.06) almost overlap in the same coastal territory of the study area. This observation
suggests that the coastal region of the Everglades stores permanent water from inland to a
certain level throughout the wet season, therefore leaving less room for the dynamic nature
of inundation. This kind of scenario indicates that the coastal area is vulnerable to the
effects of sea level rise [43], which also means more tidal flats are converted to permanent
water. Furthermore, the mangrove forest located along the southern Florida coast has been
rapidly lost due to climate change [72], which calls for a meticulous awareness and further
protection of the coastal environment of the Everglades.

This research investigated the possible factors that influenced the inundation occur-
rence and variance throughout the study area. To do so, firstly, we explored the elevation of
the study area, which is regarded as one of the factors affecting the inundation events [73].
The long-term and recurrent inundation in both dry and wet seasons occurred at a low
elevation of −0.65–1.4 m [19,74]; this area is mostly located beside the coast of the Gulf of
Mexico and Florida Bay. This accounts for roughly 30% of the total study area, where the
results from Figure 5 show that areas belonging to low altitudes have a greater likelihood
of being inundated throughout the year. Consequently, these areas need special attention
of stakeholders and policymakers as flood and storm surges often strike in areas that have
lower topographic elevation and downgraded streamflow [73]. The Big Cypress National
Park, which constitutes the upper-most portion of the study area, has the highest elevation,
ranging from 1.9 to 4.4 m [34], and therefore recorded less inundation compared to the
lower part of the study area. Secondly, according to the LULC map of the study area
(Figure 2), Big Cypress National Park is dominated by dense vegetation (forest), which
accelerates the evapotranspiration process in this area, resulting in less inundation [74].
However, it is also possible that high forest cover can increase the precipitation rate over
an area by importing evaporated moisture from the ocean [75].

To further analyze the spatial dynamic characteristics of inundation, we produced
spatial distribution maps of overlapping comparisons between the inundation maps of
every four years, and the comprehensive results are provided in Figures 7 and 8 for the wet
season and dry season, respectively. In the wet season, the areas of unchanged inundation,
which account for the largest portion of the study area, are 5170 km2 in Figure 7c, 5251 km2

in Figure 7d, and 5148 km2 in Figure 7e. The majority of these large shares of unchanged
inundation are detected in the central to upper parts of the study area, and this scenario
indicates that the detected areas (colored in gray) have more stable or less active inundation
activities than the other areas. In the dry season, Figure 8c–e also show the largest areas of
unchanged inundation, which were 4812, 4965, and 4745 km2, respectively. However, in
the dry season, the location of unchanged inundation clusters shifted towards the lower
parts of the study area, and the upper parts were occupied by inundation increase (colored
in blue) to a significant extent. Regarding inundation increase, Figure 7b shows the largest
shared area of 863 km2, followed by Figure 7a, which covers an area of 773 km2 in the wet
season. In the dry season, Figure 8c shows the largest shared area of inundation increase
(837 km2), followed by Figure 8a (759 km2). The largest shared area of inundation increase
in the wet season is 3% greater than that of the dry season. Although the spatial distribution
of inundation increase is mostly found in the central and northern parts of the study area
(Figure 7a,b) in the wet season, the distribution of inundation increase in the dry season
tends (Figure 8c,d) to be mostly in the southern part of the study area. When the area of
decreased inundation is compared between dry and wet seasons (colored in red), the dry
season experienced the largest inundation decrease (863 km2), and it was distributed nearly
throughout the study area (Figure 8b). The wet season experienced the highest inundation
decrease, with an area of 539 km2, and this is also distributed roughly across the study area,
with a higher concentration in the south-eastern part (Figure 7a). From the findings of this
research, it is evident that the northern portion of the study area, which features Big Cypress
National Park, is dominated by a dynamic increase in inundation. That means that this
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area had an active participation with inundation dynamics throughout the year. Another
active area is the south-eastern portion of the study area, where it showed a significant
inundation decease in the last 20 years, which is a warning sign of an environmental crisis.

Although it is hard to pinpoint the exact causes of inundation differences, the existing
literature [76] suggests the differences may arise from short-term agents and long-term
consequences. Short-term agents causing coastal inundation include storm surges and high-
tide flooding, while long-term causes result in relative changes in local and/or global sea
level. As one of the driving forces of coastal flooding [77], sea level rise inundates low-lying
wetlands and dry lands, causes shoreline erosion, and contributes to the influx of saline
water into estuaries and nearby groundwater aquifers. Moreover, coastal infrastructures
are more vulnerable to the damage arising from higher sea level rise caused by storms.
Based on several previous studies, including those of the US Environmental Protection
Agency (EPA) [78–82], inundations have become frequent along the US coastline since
the 1950s, and the resultant sea level rise is affecting human activities in coastal areas. In
the past decade (2011–2020), the coast of Florida facing the Gulf of Mexico experienced
extended inundation that was above the local threshold limit for flooding along US coasts.
In particular, the two sites of St. Petersburg and Cedar Key, within or adjacent to our study
area, were inundated for an average of 15 days per year due to coastal flooding [80].
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4. Conclusions

This research deployed an efficient thresholding of the SWIR band method and pro-
duced annual inundation maps from long-term time series of Landsat images (2002–2021)
in the Everglades. Our study conducted several spatiotemporal analyses on the produced
inundation maps to investigate the dynamic inundation in terms of annual and seasonal
aspects. The inundation results highlight the significant differences in wet and dry seasons
in time and space, where the wet season was found to be more stationary and less active
than the dry season in terms of inundation dynamics. Although the permanent inunda-
tions are more distributed along the coastal regions (Gulf of Mexico and Florida Bay) of
the Everglades, the results highlight their vulnerability to an environmental crisis, and
therefore call for a higher level of precaution and protection.

The detailed spatiotemporal background and season-to-season comparisons with
analytical reasoning of inundation dynamics are the key contributions of this study. In
this paper, we fulfilled the research gap of space-time analysis for multi-season inundation
dynamics, which was urgently needed for the Everglades wetland. We anticipate that these
periodic and accurate inundation products, along with comprehensive spatiotemporal
depictions, could be used by land managers, researchers, and other stakeholders who
require access to high-resolution inundation maps. With this research, we showed that
GIS-based quantitative analyses are more powerful than conventional techniques, and
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therefore could be used to better inspect and accurately portray the dynamic changes of
geographic events on large spatiotemporal scales. Although this study implemented the
thresholding method to depict the seasonal inundation dynamics in the Everglades, this
could be applied with minimal adaptation in other wetland studies.
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