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Abstract: This study investigates the mapping of forest community types for the entire state of
West Virginia, United States, using Global Land Analysis and Discovery (GLAD) Phenology Metrics,
Analysis Ready Data (ARD) derived from Landsat time series data, and digital terrain variables
derived from a digital terrain model (DTM). Both classifications and probabilistic predictions were
made using random forest (RF) machine learning (ML) and training data derived from ground plots
provided by the West Virginia Natural Heritage Program (WVNHP). The primary goal of this study
was to explore the use of globally consistent ARD for operational forest type mapping over a large
spatial extent. Mean overall accuracy calculated from 50 model replicates for differentiating seven
forest community types using only variables selected from the 188 GLAD Phenology Metrics used
in the study resulted in an overall accuracy (OA) of 54.3% (map-level image classification efficacy
(MICE) = 0.433). Accuracy increased to a mean OA of 64.8% (MICE = 0.496) when the Oak/Hickory
and Oak/Pine classes were combined into an Oak Dominant class. Once selected terrain variables
were added to the model, the mean OA for differentiating the seven forest types increased to 65.3%
(MICE = 0.570), while the accuracy for differentiating six classes increased to 76.2% (MICE = 0.660).
Our results highlight the benefits of combining spectral data and terrain variables and also the
enhancement of the product’s usefulness when probabilistic predictions are provided alongside
a hard classification. The GLAD Phenology Metrics did not provide an accuracy comparable to
those obtained using harmonic regression coefficients; however, they generally outperformed models
trained using only summer or fall seasonal medians and performed comparably to those trained
using spring medians. We suggest further exploration of the GLAD Phenology Metrics as input for
other spatial predictive mapping and modeling tasks.

Keywords: forest type mapping; forests; phenology; machine learning; digital terrain analysis; Landsat

1. Introduction

Forests are important ecosystems [1–3], as they provide wildlife habitats [4,5], play a
major role in the carbon [6] and nitrogen [7–9] chemical cycles and climate and hydrologic
systems [10–12], and provide a wealth of ecosystem services and resources to support
society [4,13]. Decades of research have documented the ecological importance of temperate
forests specifically, such as those in the eastern United States in general and the Appalachian
region more specifically [14–16]. This importance is demonstrated by the abundance and
variety of organisms they support (e.g., [17–20]) and their roles in local, regional, and
global climate, chemical, and hydrologic systems (e.g., [6,21,22]). Appalachian forests occur
in a humid, temperate continental climate with four distinct seasons and are dominated
by a variety of tree species, including various deciduous genera and species (i.e., oaks
(Quercus), hickories (Carya), maples (Acer), and American beech (Fagus grandifolia)) and
conifers (i.e., eastern hemlock (Tsuga canadensis), white pine (Pinus strobus), and red spruce
(Picea rubens)). Tree species composition and related forest community types vary across
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environmental gradients and are also impacted by disturbance histories and management
practices [14,16,23].

These ecosystems have been and continue to be impacted by land use practices and
anthropogenic landscape change [22,24], global climate change [11,12], resource extrac-
tion [22,25,26], invasive species [27–29], and disease [15,30–32]. From the 1880s to 1920s,
the Appalachian forests were harvested to provide raw materials needed to support societal
expansion; as a result, old-growth forests are now rare in this region and, where present,
tend to occur in small, isolated pockets or small patches [33–35]. Forest composition in the
eastern United States and Appalachia has also been heavily impacted by pathogens, such
as chestnut blight (Cryphonectria parasitica), which nearly eradicated the once abundant
American chestnut (Castanea dentata). Forest management practices have evolved over cen-
turies as humans and society adapted to live within, make use of, and manage the natural
environment. Historically, this can be seen through indigenous community practices and
more recently in state-centric management such as prescribed fires and forest thinning.
Shifting from traditional exploitation that focused on increasing timber production to forest
management (silviculture) and sustainability-based approaches has arisen to meet the chal-
lenges of protecting and sustaining forests and the communities they support. Specifically,
sustainable forest management began in the 1960s and evolved to address deforestation
and biodiversity loss resulting from widescale timber production [2,36,37].

Sustaining forests over time requires detailed and extensive information on a range
of factors that affect forest health. Thus, mapping and monitoring forests in an accurate
and efficient manner is of great importance in sustainability-based forest management,
and multispectral satellite-based remote sensing is a key data source for undertaking this
work [38,39]. As an example of a notable achievement, Hansen et al. [40] generated global
datasets of forest cover and forest cover change between 2000 and 2012 from the Landsat
archive using cloud computing methods at a 30 m moderate spatial resolution. Cloud
computing platforms such as Google Earth Engine, along with hosted data archives and
analysis-ready data (ARD), have greatly improved our ability to efficiently analyze moder-
ate spatial resolution satellite data over large spatial extents [41]. However, key questions
and limitations remain. Although forests can generally be accurately differentiated from
other land cover classes using multispectral data, mapping of specific forest community
types or individual species has proven more challenging [40,42,43] despite several early
efforts to use Landsat data to make these differentiations (see, for example, Beaubien [44]
and Bryant [45]). Derived products that differentiate between forest community types
over broad spatial extents are generally not available. For example, the U.S. National
Land Cover Database (NLCD) products [46] only differentiate three broad forest types:
deciduous, evergreen, and mixed forests; although useful as a very broad classification,
more detailed information is necessary if sustainability is the goal.

This complexity in differentiating broad community types can generally be attributed
to (1) the difficulty in defining non-overlapping and distinct types, (2) gradational bound-
aries and/or fuzzy definitions between types, (3) co-occurrence of types within environ-
mental and physical landscape regimes, (4) lack of spectral separability, and (5) complex
disturbance histories and logging practices such as “selectively logging” one or two valu-
able species, which then result in temporary, artificial community types [47]. Different
forest types with disparate tree species compositions offer unique environments with vary-
ing ecological, chemical, climatic, and hydrologic conditions; thus, despite the difficulties
noted above, mapping and differentiating forest community types is important in under-
standing the ecological and environmental processes occurring at a location in the context
of sustainable land management and climate change resiliency [1,2,39].

There is a need to explore globally consistent data products for mapping and differ-
entiating broad forest community types at a moderate spatial resolution. Towards this
goal, we evaluate the Global Land Analysis and Discovery (GLAD) Phenology Metrics [48],
digital terrain variables derived from digital terrain models (DTMs) (also referred to as land
surface models (LSMs)), and machine learning (ML) for differentiating broad forest commu-
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nity types for the entire state of West Virginia, United States. Training data are derived from
field plots collected as part of the West Virginia Natural Heritage Program (WVNHP). Both
“hard” classifications and probabilistic outputs are generated, compared, and assessed, and
the value of including terrain variables is explored. The results obtained using the GLAD
Phenology Metrics are compared to other methods of summarizing multitemporal Landsat
data and seasonal patterns.

2. Background
2.1. Remote Sensing for Forest Type Mapping

Table 1 below summarizes studies that have explored the mapping of forest community
types. Note that this is not meant to be an exhaustive cataloging; instead, these studies
are highlighted to make generalizations regarding this specific mapping task. Also, we
intentionally selected studies that used moderate spatial resolution multispectral data from
the Landsat sensors (e.g., Landsat 4 and 5 Thematic Mapper (TM), Landsat 7 Enhanced
Thematic Mapper Plus (ETM+), and/or Landsat 8 Operational Land Imager (OLI)) or
the Sentinel-2A/B Multispectral Instrument (MSI), potentially combined with additional
ancillary data, such as DTM-derived digital terrain variables. Several consistent findings
are notable.

First, using only digital terrain variables generally results in less accurate predictions
in comparison to using only multispectral data (e.g., Adams et al. [49]); however, combin-
ing terrain variables with multispectral data generally improves classification accuracy
in comparison to just using the spectral data (e.g., Liu et al. [50], Pasquarella et al. [51],
and Adams et al. [49]). This is generally attributed to reduced confusion between classes
that may not be well separated based on spectral reflectance within a limited set of bands
in the visible, near-infrared (NIR), and shortwave infrared (SWIR) spectral ranges, but
differ in regard to the topographic positions and conditions they occupy. For example,
Adams et al. [49] note the value of the topographic aspect for differentiating community
types that occupy sites with varying levels of moisture availability, which is correlated with
this terrain variable (i.e., in the mid-latitudes of the northern hemisphere, southwestern-
facing slopes tend to be drier, while northeastern-facing slopes tend to be wetter). Specifi-
cally, including the topographic aspect as a predictor variable improved the separability
of the Dry Oak and Mixed Mesophytic forest types [49]. One complexity is that a variety
of digital terrain variables can be derived from DTMs using variable settings (e.g., differ-
ent moving window sizes and shapes); as a result, it is not always clear what variables
and analysis scales may be of value for differentiating specific communities in different
landscapes [52,53].

Prior studies have also generally documented that either including multispectral
data from multiple seasons or summarizing the seasonality or phenology using a time
series of data generally improves classification performance in comparison to using single-
date imagery (e.g., Pasquarella et al. [51] and Adams et al. [49]). For differentiating eight
forest types across two Landsat scenes comprising the western portion of the state of Mas-
sachusetts, United States, Pasquarella et al. [51] documented that single-date, late-autumn
imagery outperformed early-spring and early-autumn imagery with an overall accuracy of
around 74%, which they attributed to this seasonal timeframe offering the best phenological
differentiation between the defined classes. Furthermore, combining data from multiple
dates representing different seasons consistently outperformed all single-date results. The
best performance was obtained using harmonic regression coefficients derived from a Land-
sat time series to more fully capture the phenology at the pixel location. Adams et al. [49]
similarly suggest that summarizing the Landsat time series using harmonic regression coef-
ficients outperforms models that use multi-date seasonal composites. Harmonic regression
offers a means to summarize time and/or seasonal oscillations of a variable, such as pixel
brightness, greenness, or wetness, by fitting a Fourier series, estimating coefficients, and
using these coefficients as input predictor variables for predictive modeling [54]. More
generally, Wilson et al. [54] argue for and demonstrate the use of harmonic regression
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methods for deriving variables from a time series of multispectral data to estimate a variety
of forest attributes.

Table 1. Example studies that have explored multitemporal, multispectral, and moderate-resolution
datasets for forest type differentiation. Separate experiments included in the same publication are
provided as separate records in the table.

Study Data Study Area Methods Classes Overall
Accuracy

Immitzer et al. [55] MSI Two small extents in
Bavaria, Germany Random Forest 7 64%

Immitzer et al. [55] MSI Two small extents in
Bavaria, Germany

Random Forest;
GEOBIA 7 66%

Liu et al. [50] MSI ~226,000 ha Random Forest;
GEOBIA 8 54%

Liu et al. [50] MSI;
Terrain ~226,000 ha Random Forest;

GEOBIA 8 70%

Liu et al. [50] MSI; OLI; SAR;
Terrain ~226,000 ha Random Forest;

GEOBIA 8 83%

Pasquarella et al. [51] TM; ETM+ Western Massachusetts,
United States

Random Forest;
Late-Autumn 8 74%

Pasquarella et al. [51] TM; ETM+
Western

Massachusetts,
United States

Random Forest;
Multi-Date; 8 79%

Pasquarella et al. [51] TM; ETM+
Western

Massachusetts,
United States

Random Forest;
Harmonic Regression 8 81%

Pasquarella et al. [51]
TM; ETM+;

Terrain;
Ancillary

Western
Massachusetts,
United States

Random Forest;
Harmonic Regression 8 83%

Hościło and
Lewandowska [56] MSI ~380,000 ha Random Forest 8 76%

Hościło and
Lewandowska [56]

MSI;
Terrain ~380,000 ha Random Forest 8 82%

Adams et al. [49] Terrain 17 Counties in Ohio,
United States Random Forest 7 51%

Adams et al. [49] OLI 17 Counties in Ohio,
United States

Random Forest;
Seasonal Composites;

Spectral Indices
7 62%

Adams et al. [49] OLI 17 Counties in Ohio,
United States

Random Forest;
Harmonic Regression 7 66%

Adams et al. [49] OLI;
Terrain

17 Counties in Ohio,
United States

Random Forest;
Seasonal Composites;

Spectral Indices
7 70%

Adams et al. [49] OLI;
Terrain

17 Counties in Ohio,
United States

Random Forest;
Harmonic Regression 7 75%

GEOBIA = Geographic object-based image analysis; SAR = Synthetic aperture radar; TM = Thematic Mapper;
ETM+ = Enhanced Thematic Mapper Plus; OLI = Operational Land Imager; MSI = Multispectral Instrument.

In summary, prior studies have documented the value of incorporating digital terrain
variables derived from DTMs and summarizing multispectral seasonal variability, as
represented by a multispectral time series, for forest type mapping, as opposed to relying
on only single-date imagery. This study attempts to expand upon this prior work by
investigating the GLAD Phenology Metrics as another means to summarize phenology at
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the pixel level from a time series of images. This is of specific value because choosing images,
creating seasonal composites, and/or deriving harmonic regression coefficients can be time-
intensive and computationally intensive, even when cloud computing platforms are used.
As a result, there is value in assessing the utility of other means to characterize phenology,
especially products that already provide globally consistent data that are analysis-ready.

2.2. GLAD Phenology

The Landsat-based spectral data used in this study come from the University of
Maryland’s Global Land Analysis and Discovery (GLAD) laboratory. Specifically, we
used the GLAD Phenological Metrics Type C product, which is based on Landsat surface
reflectance estimates and represents a set of globally consistent metrics to characterize land
surface phenology [48]. This metric set was used alongside Global Ecosystem Dynamics
Investigation (GEDI) light detection and ranging (LiDAR) data to estimate canopy heights
for forests across the entire globe [57]. A full discussion of the methodology used to
generate these metrics is provided by Potapov et al. [48] and is summarized here. Full
documentation is available at the GLAD website (https://glad.umd.edu/ard/glad-landsat-
ard-tools, accessed on 26 June 2022). These variables are provided to the public as Landsat
Analysis Ready Data (ARD).

The process of creating ARD begins with the collection of Landsat 5 TM, Landsat 7
ETM+, and Landsat 8 OLI images from 1997 to the present. These images are then catego-
rized into quality tiers, with Tier 1 data meeting “the highest geometric and radiometric
standards”. This tier is the only one used for ARD processing. Images including seasonal
snow cover are also excluded; thus, this dataset is unsuitable for wintertime image pro-
cessing and surface water extent mapping. The processing chain includes estimation of
surface reflectance, reflectance normalization, and observation quality assessment at the
pixel level. It results in 16-day composites using the best available data. Before generating
summary metrics, gaps in the time series are filled using observations from prior years or
linear regression when quality observations from prior years are not available [48].

The GLAD Phenology Type C variables are summarized in Table 2. These variables
consist of a set of statistics derived from the blue, green, red, NIR, SWIR1, and SWIR2
bands, along with derived indices calculated using normalized difference ratios between
pairs of bands. The spectral variability vegetation index (SVVI) of Coulter et al. [58] is also
summarized. The SVVI is calculated by subtracting the sum of the standard deviations of
the NIR, SWIR1, and SWIR2 bands from the sum of the standard deviations of all included
bands. Statistics are calculated from the 16-day time series observations using ranks derived
from the band or index of interest or by calculating ranks using a corresponding variable.
Additional phenological measures are calculated from a normalized difference vegetation
index (NDVI) time series relating to the start of the growing season (SOS) and end of
the growing season (EOS), including the value, slope, and amplitude. The Tasseled Cap
Transformation Greenness (TCG) [59,60] metric is also summarized [48].

In this study, it is hypothesized that GLAD metrics will be useful for differentiat-
ing broad forest community types, as they quantify spectral signatures associated with
seasonality and phenology. For example, it is anticipated that Northern Hardwoods will
have a shorter growing season than Mixed Mesophytic and Oak/Hickory types. Red
Spruce forests and other forests that have an evergreen component, such as Hemlock
and Oak/Pine, may show some degree of spectral separation from forests predominantly
composed of deciduous species. Given the large number of variables provided by GLAD
(i.e., 188), it is not clear which may be useful for differentiating forest types and how
metrics may interact within the feature space. As a result, we explore variable selection, as
described below. Given that spectral confusion between community types is anticipated,
we hypothesize that the incorporation of terrain variables will improve separability. For
example, terrain variables may allow for differentiation based on moisture levels (e.g., heat
load index (HLI) and topographic aspect) and temperature ranges and variability (e.g.,
elevation) that impact forest community compositions.

https://glad.umd.edu/ard/glad-landsat-ard-tools
https://glad.umd.edu/ard/glad-landsat-ard-tools
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Table 2. Phenological variables used in analysis and included in the GLAD Type C metric set. Q1
indicates the 1st quartile, Q2 indicates the 2nd quartile (i.e., median), and Q3 indicates the 3rd quartile.
Abbreviations defined in this table are used throughout this paper.

Metrics Based on Ranking of 16-Day Observation Time Series

Spectral Indices Statistics

Blue
Green
Red
NIR

SWIR1
SWIR2

(NIR-Green)/(NIR + Green) (GN)
(NIR-Red)/(NIR + Red) (RN)

(NIR-SWIR1)/(NIR + SWIR1) (NS1)
(NIR-SWIR2)/(NIR + SWIR2) (NS2)

(SWIR1-SWIR2)/(SWIR1 + SWIR2) (SWSW)
SVVI

Tasseled Cap Greenness (TCG)

Minimum (min)
Maximum (max)
Median (median)

Average between min and Q1 (avgminQ1)
Average between Q3 and max (avQ3max)

Average between Q1 and Q3 (avQ1Q3)
Average of all values (avg)

Standard deviation (sd)
Total absolute difference (tad)

Amplitude min to max (avgminmax)
Amplitude Q1 to Q3 (ampQ1Q3)

Amplitude Q2 to max (amp Q2max)

Metrics Based on Ranking of 16-Day Observation Time Series by Value of Corresponding Variable

Bands Corresponding Variables Statistics

Blue
Green
Red
NIR

SWIR1
SWIR2

(NIR-Red)/(NIR + Red) (RN)
(NIR-SWIR2)/(NIR + SWIR2) (NS2)

Brightness Temperature (LST)

Minimum (min)
Maximum (max)

Average between min and Q1 (avgminQ1)
Average between Q3 and max (avQ3max)

Amplitude min to max (avgminmax)
Amplitude Q1 to Q3 (ampQ1Q3)

NDVI-Based Phenology Metrics

Index Phenology Metrics

(NIR-Red)/(NIR + Red) (RN)

Start of season value (RNph_sos)
End of season value (RNph_eos)

Start of season slope (RNph_sos_slope)
End of season slope (RNph_eos_slope)

Start of season amplitude (RNph_sos_amp)
End of season amplitude (RNph_eos_amp)

Growing season average (RNph_ave)
Growing season total (RNph_sum)

2.3. Machine Learning

Within remote sensing and land classification, ML has matured to become an oper-
ational tool for extracting actionable information from large, complex datasets [61–63].
ML serves as a framework for identifying important variables, building accurate predic-
tions, and exploring complex relationships and spatial patterns within a model. These
algorithms tend to produce higher overall classification accuracies than traditional para-
metric classification methods (e.g., Gaussian maximum likelihood), which is attributed
to their nonparametric nature and ability to model complex patterns and relationships
within a complex feature space (i.e., many variables that may be correlated, of different
measurement levels, measured on different scales, and/or not normally distributed) [62,63].

We initially experimented with several machine learning methods as a means to select
an algorithm for use in this study. Ultimately, random forest (RF) was selected due to its
classification performance in comparison to the other algorithms tested (support vector
machines, k-nearest neighbors, and single decision trees). RF is an ensemble decision tree
method proposed by Breiman [64]. Decision trees use recursive binary partitioning to split
the data into more homogeneous subsets and generate rulesets to perform classification.
In order to determine decision rules, the Gini impurity metric is used, which is a measure
of how often a random element from the dataset is incorrectly labeled. Each tree in the
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ensemble uses a subset of the training samples, which are selected using bootstrapping
(i.e., random sampling with replacement). Also, only a subset of the predictor variables is
available for splitting at each decision node. The goal of using a subset of the training data
and variables is to reduce the correlation between trees and minimize overfitting. In other
words, a set of weak classifiers is collectively strong and generalizes well due to reduced
overfitting. The final classification is determined based on the majority vote amongst the
trees in the ensemble, and probabilities for each mapped class can be obtained based on the
relative proportion of class votes [64]. As highlighted in Table 1 above, RF has been applied
to forest type mapping in several prior studies.

3. Materials and Methods
3.1. Study Area and Field Plots

The entire state of West Virginia, United States, was investigated in this study (Figure 1).
Forests are the dominant land cover type in the state; specifically, an analysis of the NLCD
2019 land cover product [65] suggests that roughly 80% of the state is forested, which is
equivalent to over 5 million hectares of land area. Dominant forest community types vary
among the three physiographic provinces within the state. Furthest west, the Allegheny
Plateau, which is the largest province in the state and is situated between the Ohio River
to the west and the mountainous Allegheny Highlands to the east, is characterized by
oak–pine, oak–chestnut, floodplain, and cove hardwoods or mixed mesophytic forests.
This landscape is underlain by flat to gently dipping sedimentary rock units and has a high
degree of local relief due to dissection by a dendritic stream network. The second division
is the Allegheny Highlands section, which includes a northeast-to-southwest-oriented
mountain range dominated by the red spruce and northern hardwood community types
at the highest elevations. This area contains the highest elevations in the state, generally
receives the highest annual rainfall, and has the shortest growing season. The Ridge and
Valley province, immediately east of the Allegheny Mountains, is generally the driest and
lowest-elevation section of the state and is dominated by oak–hickory–pine community
types. The landscape is characterized by structurally controlled linear ridges and valleys
(i.e., a highly eroded folded mountain belt) and a trellis drainage network [23].

Species composition data came from the West Virginia Division of Natural Resources’
(WVDNR) Natural Heritage Program [66]. The WVDNR’s Natural Heritage Program is
responsible for collecting and maintaining field-based ecological community data. Specifi-
cally, the database includes information associated with vegetation structure, plant species
composition, environmental characteristics, and location. The primary uses of these data
are to support classification and characterization of vegetation in the state as needed for
conservation purposes. Forest community types are determined based on field observa-
tions. Plots range in size from 25 to 400 m2 (i.e., smaller than a Landsat pixel). The dates of
collections are variable, ranging from 1963 to 2012 [66]. As described below, we excluded
any plots that were not mapped as forest or woody wetland in multiple dates of the NLCD
land cover products. So, it was assumed that if a plot was mapped as forested in the NLCD
products, its forest type had not changed since the time of the field collection.

To reduce the number of categories of different community types and to limit the analysis
to classes with a sufficient number of samples, the Hill Country Deciduous Forest and Succes-
sional classes were omitted. Additionally, Calcareous Forests and Woodlands, Oak/Hickory,
and Dry/Mesic Oak Forests were merged into an Oak/Hickory class. Dry Rocky Pine/Oak
Forests and Woodlands and Oak/Pine Forests were merged into an Oak/Pine class. Further-
more, based on an intersection of land cover datasets with the point coordinates associated
with the plots, any plots that were not mapped as forested or woody wetland in the 2011, 2013,
2016, and 2019 NLCD land cover products [46,65] were excluded from the analysis. The num-
ber of available samples by class is summarized in Table 3. A total of 2216 samples, grouped
into seven classes, were used in the study. Due to confusion between the Oak/Hickory and
Oak/Pine classes, these classes were also merged into an Oak Dominant class to explore the
differentiation of six classes as a separate component of the study.
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Table 3. Forest community types mapped and the associated number of available field plots.

Community Type Plot Count

Floodplain 495
Hemlock 167

Mixed Mesophytic 249
Northern Hardwoods 153

Oak/Hickory 648
Oak/Pine 396

Red Spruce 108

Total 2216
Geographies 2021, 1, FOR PEER REVIEW 9 
 

 

 
Figure 1. West Virginia, United States, study area map including WVNHP plot locations, physio-
graphic regions, and county boundaries. Physiographic boundaries are represented using Major 
Land Resource Areas (MLRAs) as provided by the United States Department of Agriculture (USDA) 
Natural Resource Conservation Service (NRCS) [67]. 
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3.2. Predictor Variables

Table 4 lists the number of predictor variables calculated for each set of features
explored and the associated abbreviations used in this study. GLAD 16-day composites
were downloaded using Perl [68] scripts provided by the GLAD laboratory. The metric sets
were also calculated using provided Perl scripts relative to the year 2019, which required
downloading all 16-day composites for that year plus all composites from the prior four
years in order to fill data gaps [48]. GLAD makes 16-day composites available, and metric
sets must be generated using the provided scripts relative to a certain year, in this case
2019, using composites from that year plus data from prior years to fill data gaps. A total of
188 GLAD variables relative to 2019 were included. Figure 2 provides examples of GLAD
spectral and digital terrain variables used in this study.

Table 4. Metric sets and associated abbreviations and the number of variables.

Feature Set Abbreviation Number of Variables

GLAD Phenology Type C G 188
Digital Terrain Variables T 17

Harmonic Regression Coefficients H 32
Summer Sm 10

Fall Fall 10
Spring Spr 10

Geographies 2021, 1, FOR PEER REVIEW 12 
 

 

 
Figure 2. Example spectral and digital terrain predictor variables. (a) False color composite showing 
GLAD Phenology Type C average spectral values between the 1st and 3rd quartiles for SWIR1, NIR, 
and green. (b) Slope, TPI, and SEI digital terrain variables. (c) Extent of (a,b) within West Virginia, 
United States. 
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Figure 2. Example spectral and digital terrain predictor variables. (a) False color composite showing
GLAD Phenology Type C average spectral values between the 1st and 3rd quartiles for SWIR1, NIR,
and green. (b) Slope, TPI, and SEI digital terrain variables. (c) Extent of (a,b) within West Virginia,
United States.

To compare results obtained using the GLAD Phenology Metrics to other means
by which to summarize spectral data, we also used Google Earth Engine [41] and the



Geographies 2022, 2 500

gee_subset Python library [69] to extract all Landsat 8 OLI observations from the Level 2,
Collection 2, Tier 1 archive that were collected between January 2013 and December 2022 at
each sample location. The quality flags were then used to extract only clear observations
not predicted to be contaminated by clouds, cloud shadows, or cirrus clouds. From the
original image bands for each observation, we then calculated the normalized difference
vegetation index (NDVI) [69] and the brightness (TCB), greenness (TCG), and wetness
(TCW) Tasseled Cap Transformations [59]. For the blue, green, red, NIR, SWIR1, and
SWIR2 bands and the NDVI, TCB, TCG, and TCW derivatives, we calculated the median
values over seasonal time periods including summer (June, July, and August) (Sm), fall
(September, October, and November) (Fall), and spring (March, April, and May) (Spr). We
did not include winter median values due to the likelihood of snow cover. This process
resulted in a total of 10 variables for each season (Table 4). Lastly, we calculated harmonic
regression coefficients using a third-order Fourier series fitted using ordinary least squares
and the rHarmonics [70] package within the R data science environment [71]. Specifically,
harmonic regression coefficients were calculated from the NDVI, TCB, TCG, and TCW
measures, resulting in a total of 32 variables (Table 4).

Statewide DTM raster data were obtained from the National Elevation Dataset (NED) [72]
at a 1/3-arc second (approximately 10 m) spatial resolution. From these elevation data,
17 digital terrain variables were generated to characterize the local terrain, as summarized
in Table 5. Other than elevation (Elev) and in order to characterize local relief and rugosity,
calculated variables include slope (Slp); mean slope within a moving window (SlpMn);
topographic position index (TPI); mean (CrvMn), profile (CrvPro), and tangential (Crv-
Tan) surface curvatures; topographic position index (TPI); topographic roughness index
(TRI); topographic dissection index (TDI); surface area ratio (SAR); and surface relief ratio
(SRR) [52,53,73–76]. Variables relating to moisture content and local incoming radiation
that were used include linear aspect (LnAsp), cosine aspect transformation (AspCos), sine
aspect transformation (AspSin), topographic radiation aspect index (TRASP), heat load
index (HLI), and site exposure index (SEI) [52,53,74,76]. These 17 metrics were used because
they may correlate with forest community type distributions, characterize different aspects
of the terrain surface, and can all be derived using only a DTM.

Table 5. Digital terrain variables calculated from a digital terrain model (DTM) and used in this study.

Variable Abbreviation Description/Equation

Linear Aspect AspLn 270 − 360
2π × arctan2

(
∂z
∂x , ∂z

∂y

)
Cosine Aspect Transformation AspCos Cos(Aspect); measure of eastwardness

Sine Aspect Transformation AspSin Sin(Aspect); measure of northwardness

Topographic Radiation Aspect
Index TRASP 1−cos (( π

180 )×(Asp −30))
2

Elevation Elev Bare-ground surface height

Slope (Degrees) Slp Arctan

(√(
∂z
∂x

)2
+
(

∂z
∂y

)2
) (

180
π )

Mean Slope SlpMn Calculates slope within a moving window

Mean Curvature CrvMn Average of minimum and maximum curvatures

Profile Curvature CrvPro Curvature in direction of maximum slope

Tangential Curvature CrvTan Curvature in direction tangent to contour line

Topographic Position Index TPI z − zmean

Topographic Dissection Index TDI z−zmin
zmax−zmin

Topographic Roughness Index TRI σ2(z)
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Table 5. Cont.

Variable Abbreviation Description/Equation

Surface Area Ratio SAR Cell Size2

Cos(Slope in Degrees)

Surface Relief Ratio SRR zmean−zmin
zmax−zmin

Heat Load Index HLI Index for annual direct incoming solar radiation based on
latitude, slope, and aspect

Site Exposure Index SEI Slope × cos
(
π

Aspect −180
180

)
For variables that require defining a local moving window, a circular window with a

radius of 5 cells, or 50 m, was used. All terrain derivatives were rescaled from a 10 m to a
30 m spatial resolution using pixel aggregation and the mean value from the original 9 cells
within the new, larger cell to match the spatial resolution of the Landsat-derived metrics.
This process was undertaken using ArcPy [77] and the ArcGIS Pro [78] software.

Once all the predictor variables were calculated, cell values at the plot locations were
extracted using either the Extract Multi-Values to Points Tool [79] in ArcGIS Pro [77,78] or
the raster package [80] in R. The resulting data table was used as input for all subsequent
modeling and assessment.

3.3. Feature Selection, Hyperparameter Optimization, and Model Training

The randomForest [81] and caret [82] packages in the R data science environment [71]
were used to optimize and train the RF algorithm using the different feature spaces investi-
gated. RF requires the user to define the number of trees in the ensemble (ntree) and the
number of random predictor variables from which to sample at each node (mtry). The
number of trees used in the RF model was set at 1000, which was large enough to produce
stable results. It has been shown that it is best to use a large number of trees and that
increasing the number of trees in the ensemble will not result in overfitting [64]. The mtry
hyperparameter was optimized using 10-fold cross-validation and a grid search over a set
of candidate values. Once the optimal mtry parameter was selected, 50 training replicates
were run using different training and testing partitions in order to quantify the variability
in the classification results. Training and testing partitions were selected using a bootstrap
method in which 70% of the data were used to train the model while the remaining 30%
were used to assess the model performance, with each model run being provided with a
different data partition. To combat class imbalance, classes were weighted relative to the
inverse of their abundance in the WVNHP plots used in the study.

Due to the larger number of variables included in the GLAD Phenology dataset
and in order to combat potentially reduced classification performance due to the Hughes
phenomenon (i.e., “curse of dimensionality”) [83], a recursive feature elimination process
was employed to select a subset of the available features in any models in which the GLAD
metrics were included in the feature space. This algorithm was implemented in R [71] using
the rfUtilities package [84], which uses the RF algorithm. We tested the top sets of variables
from 100% to 10% with a step size of 10%. The parsimony parameter, which allows for
a smaller and simpler feature set to be selected if only a slight decrease in accuracy is
recorded, was set to 0.05. In other words, a more parsimonious model was selected if the
accuracy was not substantially reduced. Variable selection was not implemented when
the feature space being assessed did not include the GLAD Phenology Metrics, as the
remaining sets did not include a large number of variables.

3.4. Model Assessment and Comparison

For each of the 50 model replicates using each feature space, trained models were
used to predict the withheld validation data and generate confusion matrices. From these
confusion matrices, we calculated overall accuracy (OA) (i.e., the percent of the validation
samples that were correctly classified) and class-level user’s (UA) (1—commission error)
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and producer’s (PA) (1—omission error) accuracies [85–87]. In order to aggregate the class-
level metrics, we calculated the average class user’s (aUA) and producer’s (aPA) accuracies
and also combined the metrics into an average F1-score (aF1). F1-score is the harmonic
mean of the user’s and producer’s accuracies [88]. It should be noted that the relative
proportion of classes in the confusion matrix represents those from the WVNHP plots
used in this study, which may not align with the true proportions of the landscape. Thus,
confusion matrices represent a population confusion matrix relative to the used plots but
may not represent a true population confusion matrix for the mapped landscape [89–92].

Because the commonly used Kappa statistic has come under scrutiny and its use
in remote sensing is now discouraged [93,94], we did not calculate this metric. Instead,
we calculated map-level image classification efficacy (MICE) [95], which only uses the
reference class margin totals as opposed to both the reference and classification margin
totals to adjust OA for chance agreement. This method has been suggested to be robust to
accuracy inflation due to chance agreement and meaningful when the number of samples
per class is imbalanced while not suffering from the logical flaws of Kappa [95]. Lastly, we
also calculated the percent of the validation samples in which the correct classification was
within the top three predicted class probabilities (top 3) as a means to assess how often the
correct class is included amongst the classes predicted with the highest likelihood.

All the metrics discussed above are based on classification results in which the class
with the highest predicted probability is compared to the reference class. However, because
we also wanted to assess the probabilistic products, measures that consider probabilities
at varying decision thresholds were also calculated. These metrics include the area under
the receiver operating characteristic curve (AUC ROC) and area under the precision-recall
curve (AUC PR). The ROC curve takes into account only the class producer’s accuracy
(1—omission error) at varying decision thresholds and can be overly optimistic when
classes are imbalanced. In contrast, the precision-recall curve considers the producer’s and
user’s (1—commission error) accuracy relative to the positive case and can be especially
informative when classes are imbalanced because the user’s accuracy is impacted by class
proportions [88,96–100]. Also, because this classification task was not a binary classification
problem, multiclass versions of the metrics were used as implemented in the multiROC
R package [101]. Specifically, micro-average AUCs were calculated by stacking all groups
together, which is more sensitive to class imbalance than the alternative macro-averaging
method not used in this study [101].

4. Results and Discussion
4.1. Results Using GLAD Phenology Metrics and Terrain Variables

Table 6 provides the accuracy assessment results for the models that made use of the
GLAD Phenology Metrics. The first two rows correspond to the prediction of seven classes,
whereas the last two rows relate to the models in which the Oak/Hickory and Oak/Pine
classes were combined into an Oak Dominant class, resulting in a total of six classes. The
mean overall accuracy calculated for 50 model replicates for differentiating the seven forest
community types using only variables selected from the 188 GLAD Phenology Metrics
was 54.3% (MICE = 0.433). The accuracy increased to 64.8% (MICE = 0.496) when the
Oak/Hickory and Oak/Pine classes were combined.

Once selected terrain variables were added to the model, the mean overall accuracy
for differentiating the seven classes increased by 11.0% to 65.3% (MICE = 0.570), while the
mean accuracy for differentiating the six classes increased by 11.4% to 76.2% (MICE = 0.660).
Furthermore, variable importance estimates provided by the RF models generally suggested
that the 10 most important variables in the G + T models were all terrain variables. Thus,
our results highlight the value of including terrain variables as predictor variables for
differentiating forest community types. This is in support of prior studies that have
documented the importance of terrain variables for forest community differentiation (e.g.,
Liu et al. [50], Pasquarella et al. [51], Hościło and Lewandowska [56], and Adams et al. [49]).
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Table 6. Accuracy assessment results for models with selected GLAD Phenology Metrics as predictor
variables. Average values are based on 50 model replicates. G = GLAD Phenology Metrics, and
T = Digital Terrain Variables.

Set Number of Classes OA MICE Top 3 aUA aPA aFS AUC ROC AUC PR

G 7 0.543 0.433 0.886 0.484 0.547 0.497 0.875 0.579
G + T 7 0.653 0.570 0.938 0.587 0.637 0.601 0.930 0.730

G 6 0.648 0.496 0.933 0.501 0.601 0.527 0.906 0.698
G + T 6 0.762 0.660 0.966 0.615 0.673 0.631 0.953 0.837

Generally, classes were mapped with a higher PA than UA, which suggests that
commission errors were generally more prominent than omission errors. This is also
reflected in the average multiclass micro-AUC ROC and micro-AUC PR results, in which
AUC ROC was generally higher than AUC PR. As noted above, the precision-recall curve
and associated AUC metric consider both UA and PA and are generally less positively
biased than AUC ROC when classes are imbalanced [97,98], as is the case in this study.
Thus, these results further highlight the impact of commission errors.

As highlighted by the top 3 metric included in Table 6, even if the correct class was
not selected, it was commonly one of the top three classes predicted to have the highest
probability of occurrence. For example, the correct class was in the top three highest
predicted probabilities for 93.8% of the withheld samples on average for the seven-class
G+T model. Furthermore, the AUC ROC and AUC PR results generally suggest stronger
performance than the associated “hard” classification metrics (i.e., OA and MICE). This
highlights the value of the probabilistic predictions. We argue that probabilistic output
can be especially informative for classes that may not be well differentiated or have fuzzy
definitions or gradational boundaries on the landscape.

Figure 3 shows an example hard classification for a model that used GLAD Phe-
nology Metrics and terrain predictor variables selected from the larger set using the
feature selection process of Murphy et al. [84] and implemented in the rfUtilities R
package [84]. This output, and the probability surfaces shown in Figure 4, were gen-
erated by predicting to each pixel within each GLAD processing tile then merging the
results into a state-wide product. Within the state extent, Northern Hardwoods and
Red Spruce forests are predicted predominantly at high elevations in the Allegheny
Highlands, whereas Oak/Hickory and Oak/Pine types dominate in the drier Valley
and Ridge physiographic region. Forest types in the Allegheny Plateau are generally
differentiated at a finer, hillslope spatial scale, and the impact of the topographic as-
pect is evident. The Mixed Mesophytic forest type was more likely to be predicted
for northeast-facing slopes, whereas Oak/Hickory or Oak/Pine were more commonly
predicted on southeast-facing slopes, similar to the findings of Adams et al. [49] in the
eastern hill region of Ohio, United States, a region that has similar topographic charac-
teristics and forest communities to those occurring in the Allegheny Plateau section of
West Virginia. Floodplain communities were generally predicted in lower topographic
positions and valley bottoms, as expected. Classes that had a more variable presentation
on the landscape in regard to the topographic positions and elevations at which they
were predicted are the Oak/Pine and Hemlock classes.

The probabilistic results shown in Figure 4 correspond to the hard classification
presented in Figure 3. Again, the Northern Hardwood and Red Spruce classes had the
highest predicted probabilities at higher elevations in the Allegheny Highlands and low
predicted probabilities at other locations in the state. The Floodplain class was prominent
at lower topographic positions and in valley bottoms, as anticipated. The Oak/Hickory,
Oak/Pine, Mixed Mesophytic, and Hemlock classes were less aligned with topographic
and elevation gradients and tended to have a wide range of predicted probabilities
across the state. As noted above, we argue that these results are of added value, as they
provide additional and complementary information alongside the classification output.
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For wetland mapping in Yellowstone National Park, Wright and Gallant [102] also
highlight the value of probabilistic predictions as a means to complement classification
output. Because many machine learning methods generate probabilistic predictions
alongside hard classifications [103,104], we argue that this additional information should
be provided to end users, especially when classes are difficult to separate with high
accuracy or certainty, or when there are gradational boundaries between classes in the
landscape. For example, as moisture content is associated with topographic aspect, it is
expected that forest community types that occupy drier conditions, such as Oak–Hickory–
Pine communities, will have gradational boundaries with community types that occupy
wetter conditions, such as Mixed Mesophytic communities. Such gradational patterns
are not captured in the classification output.
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Figure 3. Example classification output created using the selected GLAD Phenology Metrics and
digital terrain variables for differentiating seven classes. Non-forest areas, such as development,
pastureland, and water, were masked from the results using the 2019 NLCD land cover product [65].
(a) shows the results for the entire state while (b–d) show the results at a higher spatial resolution.
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Figure 4. Example probabilistic output created using the selected GLAD Phenology Metrics and
terrain variables. These data were created using the same model as that used to generate the
classification presented in Figure 3. (a) Floodplain, (b) Hemlock, (c) Mixed Mesophytic, (d) Northern
Hardwood, (e) Oak/Hickory, (f) Oak/Pine, (g) Red Spruce.
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Table 7 provides the confusion matrix associated with the data presented in Figures 3 and 4.
Using a combination of spectral and terrain variables, the Floodplain and Red Spruce classes
were generally well differentiated from the other communities. In contrast, the Hemlock
class showed confusion with the Mixed Mesophytic, Oak/Hickory, and Oak/Pine classes
and was difficult to accurately map. A large degree of confusion was generally noted
between the Oak/Hickory and Oak/Pine classes. For comparison, Table 8 provides an
example result generated using only the spectral data. Without the inclusion of terrain
variables, the Floodplain class was not as well differentiated, and there was generally
more confusion between the Mixed Mesophytic and Oak/Hickory types. Notably, all
UAs decreased for all classes except Red Spruce, which remained the same, and PAs
decreased for four of the seven classes when the terrain variables were not included; thus,
this generally suggests that the terrain variables were important variables for mapping all
the classes and not just for differentiating certain community types.

Table 7. Example confusion matrix for seven-class classification using the selected GLAD Phenology
Metrics and terrain variables. Overall accuracy = 0.648, MICE = 0.563.

Reference
Fl

oo
dp

la
in

H
em

lo
ck

M
ix

.M
es

o

N
or

th
.H

ar
d.

O
ak

/H
ic

k.

O
ak

/P
in

e

R
ed

Sp
ru

ce

To
ta

ls

U
A

Pr
ed

ic
ti

on

Floodplain 137 3 1 1 4 7 1 154 0.890
Hemlock 2 15 3 1 2 5 1 29 0.517

Mix. Meso. 0 17 40 5 18 2 0 82 0.488
North. Hard. 0 1 2 16 4 0 6 29 0.552
Oak/Hick. 1 7 28 15 140 51 0 242 0.579
Oak/Pine 0 7 0 2 26 51 0 86 0.593

Red Spruce 0 0 0 4 0 3 24 31 0.774

Totals 140 50 74 44 194 119 32

PA 0.979 0.300 0.541 0.364 0.722 0.429 0.750

Table 8. Example confusion matrix for seven-class classification using just the selected GLAD
Phenology Metrics. Overall accuracy = 0.528, MICE = 0.415.
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Floodplain 108 3 8 3 30 11 2 165 0.655
Hemlock 4 16 5 0 4 7 2 38 0.421

Mix. Meso. 0 9 12 4 17 4 0 46 0.261
North. Hard. 0 2 1 14 7 0 3 27 0.519
Oak/Hick. 18 10 45 19 119 43 1 255 0.467
Oak/Pine 10 8 3 1 17 52 0 91 0.571

Red Spruce 0 2 0 3 0 2 24 31 0.774

Totals 140 50 74 44 194 119 32

PA 0.771 0.320 0.162 0.318 0.613 0.437 0.750

Table 9 provides an example confusion matrix for differentiating the six classes as
opposed to seven using selected GLAD Phenology Metrics and terrain variables. Again,
confusion between the Oak/Hickory and Oak/Pine classes is a dominant source of error in
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the seven-class result (Table 7), and combining these classes greatly improved the model
performance. This highlights the importance of the number of classes and specific class
definitions for the final model accuracy. Unfortunately, some community types which may
be important to differentiate, such as Oak Dominant and Mixed Mesophytic, may not be
easily separated. Once more, this highlights the value of the probabilistic output.

Table 9. Example confusion matrix for six-class classification using the selected GLAD Phenology
Metrics and terrain variables. Overall accuracy = 0.761, MICE = 0.658.
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Floodplain 135 4 2 2 8 1 152 0.888
Hemlock 1 10 1 1 5 1 19 0.526

Mix. Meso. 1 11 36 2 13 0 63 0.571
North. Hard. 0 1 2 13 3 7 26 0.500
Oak/Hick. 3 24 33 22 280 0 362 0.773
Red Spruce 0 0 0 4 4 23 31 0.742

Totals 140 50 74 44 313 32

PA 0.964 0.200 0.486 0.295 0.895 0.719

4.2. Comparison of GLAD Phenology Metric Results with Other Methods

Table 10 below provides a comparison of the mean assessment metrics for the model
replicates with different feature spaces. The top portion of the table includes all models that
made use of the digital terrain variables, while the bottom portion consists of all models
that only used spectral data. Figure 5 shows the distribution of these metrics amongst the
50 model replicates for each feature space. Generally, the models that incorporated the
terrain variables outperformed the associated models using just the spectral characteristics.
Similar to the findings of Adams et al. [49], even though the terrain variables were of
importance in the model, models that only used these terrain variables performed poorly
in comparison to models that combined them with spectral predictors, which highlights
the value of combining these disparate data types.

Table 10. Average assessment metrics for different feature spaces calculated from 50 model repli-
cates for predicting seven classes. G = GLAD Phenology Metrics, T = Digital Terrain Variables,
H = Harmonic Regression Coefficients, Sm = Summer, Fall = Fall, Spr = Spring.

Set OA MICE Top 3 aUA aPA aFS AUR ROC AUC PR

T 0.574 0.471 0.891 0.463 0.495 0.462 0.899 0.649
Sm + T 0.636 0.549 0.928 0.564 0.607 0.571 0.925 0.715
Fall + T 0.632 0.544 0.918 0.563 0.597 0.564 0.921 0.705
Spr + T 0.665 0.584 0.933 0.606 0.639 0.615 0.933 0.742
H + T 0.702 0.631 0.950 0.641 0.691 0.657 0.946 0.779
G + T 0.653 0.570 0.938 0.587 0.637 0.601 0.930 0.730

G + H + T 0.705 0.634 0.952 0.647 0.697 0.663 0.947 0.780
All 0.709 0.640 0.953 0.652 0.701 0.669 0.946 0.778

Sm 0.451 0.320 0.808 0.387 0.462 0.405 0.815 0.450
Fall 0.463 0.334 0.820 0.421 0.463 0.431 0.828 0.478
Spr 0.487 0.364 0.809 0.419 0.443 0.417 0.833 0.513
H 0.626 0.537 0.910 0.579 0.630 0.595 0.907 0.654
G 0.543 0.433 0.886 0.484 0.547 0.497 0.875 0.579

G + H 0.637 0.550 0.924 0.588 0.643 0.606 0.918 0.687
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In the models that used only median values from a single season or combined one
of these sets with the terrain variables, the spring imagery generally performed better
than the summer and fall imagery. The GLAD Phenology Metrics generally performed
similarly to the spring imagery or better if the terrain variables were not included; however,
the best results based on the average assessment metrics generally resulted from using a
combination of the harmonic regression coefficients and the terrain variables. The models
using harmonic regression coefficients and terrain variables yielded a mean overall accuracy
of 70.2%, whereas the models using the GLAD Phenology Metrics and the terrain variables
yielded an overall accuracy of 65.3%. Including both the GLAD Phenology Metrics and
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harmonic regression coefficients alongside the digital terrain variables yielded an OA of
70.5% (MICE = 0.634); thus, average accuracy only improved by 0.3% for the G + H + T
model in comparison to the G + H model. When the terrain variables were not included,
the G + H model yielded a 1.1% improvement in accuracy in comparison to the G model. In
summary, including the GLAD Phenology Metrics did not greatly improve models trained
using just the harmonic regression coefficients.

Allowing the model to choose from all of the available predictor variables (i.e., summer,
fall, and spring medians; harmonic regression coefficients; GLAD Phenology Metrics; and
terrain variables) yielded the highest accuracy of 70.9% (MICE = 0.640). In summary, the
GLAD Phenology Metrics generally outperformed the summer and fall spectral medians
and performed similarly to the spring medians or better if the terrain variables were
not included; however, they did not provide the level of performance achievable when
using the harmonic regression coefficients. Thus, this study supports findings from prior
studies that highlight the value of harmonic regression methods for summarizing a time
series of imagery and for representing multitemporal, multispectral data as predictor
variables in spatial predictive models (e.g., Adams et al. [49], Pasquarella et al. [51], and
Wilson et al. [54]).

4.3. Summary of Key Findings and Recommendations

The key results of this study can be summarized as follows:

1. Including digital terrain variables generally improved the accuracy of forest type
differentiation compared to only using spectral data.

2. The number of classes and class definitions can have a large impact on the accuracy
of the resulting map products.

3. Even if the correct class was not always predicted with the highest probability, it
was generally in the top set of the highest predicted probabilities. We attribute this
result to specific classes being difficult to separate, pixels not mapping well to a
specific class, and/or class boundaries being gradational within the landscape. This
highlights the value of supplementing “hard” classification products with associated
probabilistic predictions.

4. GLAD Phenology Metrics were generally of value for mapping and differentiating
forest community types. However, they did not provide the level of accuracy obtained
using harmonic regression coefficients.

Forest type classification over large spatial extents and at a moderate spatial reso-
lution (i.e., the Landsat scale) using remotely sensed data is a difficult task that has not
yet been operationalized. One component of the issue is that it can be challenging to
acquire cloud-free imagery for a large extent within a specific timeframe, a problem that
is potentially compounded because humid and cloudy regions typically support diverse
forest community types. Specific time periods during fall senescence or spring leaf-out may
be vital for differentiating communities; however, cloud-free data may not be available.
Furthermore, key dates would likely vary over large spatial extents as a result of latitudinal
and elevational gradients, further complicating the selection of key imagery. This study
generally supports the use of products that summarize large sets of multitemporal imagery,
such as the GLAD Phenology Metrics used in this study or harmonic regression coefficients
used in prior studies (e.g., Adams et al. [49] and Pasquarella et al. [51]), as such methods
offer a means to generally characterize yearly central tendency and seasonal variability
consistently across large spatial extents and for each individual cell. We argue that globally
consistent datasets that offer aggregated spectral measurements over broad spatial extents
and characterize seasonal variability, such as the GLAD Phenology Metrics, are generally
underused in spatial predictive mapping and modeling. Furthermore, we argue that there
is a need for the adoption of a consistent set of seasonal metrics from the Landsat time series
to complement other commonly used metrics, such as vegetation indices or the Tasseled
Cap Transformation. As this study suggests that the GLAD Phenology Metrics did not
perform as well as harmonic regression coefficients, generating ARD products representing
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harmonic regression coefficients should be pursued by data providers so that users do
not have to generate these metrics from scratch using the available time series and so that
consistent methods are adopted across studies. Also, using a different processing year
for generating the GLAD metrics, or a different range of years for performing harmonic
regression analysis, may impact the model accuracy.

Although the GLAD Phenology Metrics did not offer the level of performance obtained
with the harmonic regression coefficients, they do offer some key additional advantages.
These data are generated using a consistent methodology and are available globally. Gap-
filling methods allow for the estimation of metrics at every pixel location, which supports
wall-to-wall mapping efforts. Lastly, these data can be easily downloaded and processed
using the scripts provided by the data originators [48]. Thus, we argue that these data
should be explored as input for additional mapping and modeling tasks.

Previous studies have used RF and spectral data for forest type mapping and obtained
accuracy rates above 80%, such as Liu et al. [50]; however, these studies had much smaller
spatial extents. We argue that the lower classification accuracies obtained in this study in
comparison to some other forest type mapping experiments can be partially attributed to
the large spatial extent that was mapped (i.e., the entire state of West Virginia), which spans
multiple Landsat scenes, multiple physiographies with varying hillslope characteristics,
and over 1400 m of elevation change across approximately 3 degrees of latitude (37–40◦

North). Studies that have attempted to map smaller spatial extents or areas that are
covered by a single Landsat scene may not capture the complexity of mapping over larger
extents and, as a result, may offer optimistic assessments that may not scale to operational
mapping of large spatial extents. This study was conducted at the scale of an entire state
with inconsistent physiographic characteristics and multiple Landsat scenes in order to
specifically explore operational, large-area mapping using spectral and terrain variables.

Another issue with this task is the complexity of mapping fuzzy or gradational classes
as well as the naturally heterogenous nature of forest community types. Specifically,
this is seen in the confusion between the Oak/Hickory and Oak/Pine classes in the con-
fusion matrices and the improvement in accuracy when these classes were combined.
Furthermore, inherently mixed classes consisting of a variety of tree species, such as Mixed
Mesophytic, were particularly difficult to map due to confusion with multiple other classes.
This further highlights the value of probabilistic output, which we argue provides a more
meaningful characterization or mapping when class definitions are fuzzy and class bound-
aries are gradational. Probabilistic outputs, such as those generated in this study and by
Pasquarella et al. [51], highlight complex landscape patterns and should be used alongside
hard classifications to characterize the landscape and mapping uncertainty more fully.

Our findings support those of Liu et al. [50], Pasquarella et al. [51], Hościło and
Lewandowska [56], and Adams et al. [49], in that digital terrain variables were found to be
important for mapping and differentiating forest community types. Furthermore, digital
elevation data are readily available at a moderate spatial resolution (e.g., the NED dataset in
the United States). Thus, incorporating such data is generally possible. However, creating
derivatives from DTMs can be time-intensive, memory-intensive, and computationally
intensive [52,53]. Making DTM derivatives more readily available could aid in their
adoption for large-area and operational mapping and modeling tasks. Being able to
generate such output on the fly, such as by using the recently introduced Raster Functions
in the ArcGIS software environment [78], could speed up and simplify the use of such
variables in spatial predictive mapping and modeling. As another option, derivatives could
be generated in a cloud computing environment, such as Google Earth Engine [41], which
has DTM data available within its data catalog.

There were a few notable limitations to this study. First, we had to make use of
available ground plot data that may not represent the full variability and correct class
proportions for the entire mapped extent (i.e., the entire state of West Virginia). We used
the NLCD data to remove plots that were not mapped as forested and assumed that the
remaining plots had the same forest type as when they were field-surveyed. It is possible
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that some plots may have been disturbed, introducing some uncertainty into the analysis.
Unfortunately, the lack of a large number of randomized reference samples is a common
issue for empirical modeling tasks generally and forest type differentiation more specifically,
as also highlighted by Pasquarella et al. [51]. Future studies should explore other datasets
for input into forest type predictive modeling tasks, such as those made available by the
Forest Inventory and Analysis (FIA) dataset curated by the United States Department of
Agriculture (USDA) Forest Service in the United States. There is also a need to investigate
ARD datasets, such as the GLAD Phenology Metrics, for estimating other forest attributes.
For example, a continuous variable, such as percent oak or percent “dry-adapted species”,
could be predicted as opposed to differentiating a set of predefined classes.

5. Conclusions

This study highlights the difficulty of differentiating complex forest community types
over a large spatial extent using moderate spatial resolution data while highlighting the
value of digital terrain variables and ARD data products. We also document the value of
generating both hard classifications and probabilistic predictions, especially when classes
are difficult to separate, have fuzzy definitions, and/or have gradational boundaries in the
landscape. The number of classes and defined classes being mapped and differentiated can
also have a large impact on model performance. The GLAD Phenology Metrics that were
specifically explored in this study generally outperformed summer and fall median values
and performed similarly to spring median values. However, they did not provide the level
of accuracy obtained using harmonic regression coefficients, which highlights the need to
generate ARD data that consistently represent such variables and ease their use in spatial
predictive mapping and modeling tasks. Although the GLAD metrics did not perform to
the level of the harmonic regression coefficients in this specific study and application, we
argue that they should be considered as a spectral input for mapping tasks because they
are well documented, globally consistent, can be generated without data gaps, and are
available as ARD products.
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