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Abstract: Pan-sharpening is a pixel-level image fusion process whereby a lower-spatial-resolution
multispectral image is merged with a higher-spatial-resolution panchromatic one. One of the draw-
backs of this process is that it may introduce spectral or radiometric distortion. The degree to which
distortion is introduced is dependent on the imaging sensor, the pan-sharpening algorithm employed,
and the context of the scene analyzed. Studies that evaluate the quality of pan-sharpening algorithms
often fail to account for changes in geographic context and are agnostic to any specific applications
of an end user. This research proposes an evaluation framework to assess the effects of six widely
used pan-sharpening algorithms on normalized difference vegetation index (NDVI) calculation in
five contextually diverse geographic locations. Output image quality is assessed by comparing the
empirical cumulative density function of NDVI values that are calculated by using pre-sharpened
and sharpened imagery. The premise is that an effective algorithm will generate a sharpened mul-
tispectral image with a cumulative NDVI distribution that is similar to the pre-sharpened image.
Research results revealed that, generally, the Gram–Schmidt algorithm introduces a significant degree
of spectral distortion regardless of sensor and spatial context. In addition, higher-spatial-resolution
imagery is more susceptible to spectral distortions upon pan-sharpening. Furthermore, variability in
cumulative density of spectral information in fused images justifies the application of an analytical
framework to assist users in selecting the most effective methods for their intended application.

Keywords: pan-sharpening; NDVI; image fusion; vegetation indices; performance evaluation

1. Introduction

Panchromatic sharpening, known simply as pan-sharpening, is a broadly used ra-
diometric transformation-based image fusion and enhancement technique that can merge
a high-spatial-resolution panchromatic (PAN) image and a lower-spatial-resolution mul-
tispectral (MS) image to approximate a finer-spatial-resolution MS image (MSf) [1]. In
other words, pan-sharpening can increase the spatial resolution of a MS image. Though
most MS satellite images have a high spectral resolution, they often lack high spatial
resolution because the input spectral signal received by the MS sensor is divided among
multiple reflectance bands. PAN images, on the other hand, have high spatial resolution
precisely because they integrate the energy of a wide spectral region, typically the visible
to near-infrared region, to which silicon is sensitive, to allow for finer-spatial parsing of
the available energy (i.e., electromagnetic waves). Pan-sharpening requires that input PAN
and MS images be spatially co-registered, be in the same spatial reference system, be fully
overlapped, have the same dimension (i.e., ground footprint), and have an assumption of
identical scene conditions between the two image sets. It is most common, therefore, to
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merge PAN and MS images that are obtained coincidently from the same platform or even
sensor (e.g., Landsat), such that the geometry and scene conditions are inherently identical.

Pan-sharpening is most frequently used to enhance the visual representation of a re-
motely sensed image. For example, most of the high-spatial-resolution images used in plat-
forms such as Google Earth are created with pan-sharpening techniques [2]. These enhanced
images allow users to distinguish and observe finer-scale features on the ground more reli-
ably and accurately [3]. Pan-sharpening is designed to combine the high-spatial-resolution
detail from PAN bands with the low-spatial-resolution but high-spectral-resolution detail
from MS bands, creating an image which has not only high spatial resolution but also
high spectral resolution [4]. Regardless of how well these conditions are satisfied, pan-
sharpening inherently alters the values of multispectral bands, likely explaining its limited
use as a preprocessing step for automated machine interpretation.

Over the past decades, researchers have developed a myriad of pan-sharpening
algorithms that can be generally classified into one of three categories: (1) component
substitution (CS), (2) multiresolution analysis (MRA), and (3) variational optimization
(VO) [5]. A detailed description for each of these categories was provided in a study
performed by Meng et al. [5], but a brief summary is given here. Mathematically, CS
methods are the simplest, and they work by first conducting principal component analysis
(PCA) on both the MS and PAN images and then normalizing the histograms of each by
matching the spectral component from the MS image with the structural component from
the PAN one to produce a single fused image with the principal spectral and structural
information from both input images. MRA methods split the spatial information from
the MS image and PAN image into two-band pass channels, known as approximations
(i.e., low-frequency channel) and details (i.e., high-frequency channel). The high-frequency
channels of the PAN image are injected into the corresponding interpolated MS bands at
the same resolution as the PAN image, and, subsequently, the pan-sharpened MS data are
reconstructed from the set of frequency bands [6]. VO methods approach pan-sharpening as
an inverse optimization problem whereby a fused image is derived by generating an energy
functional from the input MS and PAN images that is then passed into an optimization
algorithm. In other words, VO methods focus on building the most effective and suitable
models to characterize the correlation between the spectral information from the MS image
with the spatial information in the PAN image [5,7–9]. A review of current industry-
standard GIS software revealed that VO methods have yet to be widely adopted. Similarly,
machine- and deep-learning approaches (see Reference [10]), which typically utilize a VO
approach, are not readily available in industry-standard software packages.

The performance variability of each algorithm is determined largely by the geographic
context of a given scene and the application orientation, or analytical goals at hand. This rep-
resents a significant gap in the extant pan-sharpening literature in that most pan-sharpening
algorithm performance evaluation studies were focused mainly on one or a couple of geo-
graphic contexts [5]. As it stands, selecting the most effective pan-sharpening algorithm
is an important decision, and performance evaluation is an essential step. In recent years,
many studies have developed various metrics for performance evaluation, with most fo-
cused on examining the quality of the pan-sharpened image in terms of color preservation,
spatial fidelity, and spectral fidelity [11–18]. However, because all pan-sharpening algo-
rithms modify the pixel values of the original MS image, image products derived from the
original MS image and pan-sharpened MS image can be expected to diverge. Index-specific
performance evaluations, such as this evaluation on the calculation of normalized difference
vegetation index (NDVI), hold promise to optimize pan-sharpening-algorithm selection for
machine interpretation workflows which are dependent on deriving reliable indices. Thus,
this research was focused on introducing a statistical framework (Figure 1) which can be
used to assess the relative variability introduced in postprocessed pan-sharpened imagery
and, ultimately, can be extensible to multiple application orientations, such as normalized
difference water index (NDWI).
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Figure 1. The workflow of the proposed statistical framework.

A review of the extant literature reveals that a framework for selecting among the
myriad of widely adopted pan-sharpening algorithms in industry-standard software is
lacking. The intellectual significance of this research lies in developing a framework for
context-based pan-sharpening algorithm selection from a statistical perspective. Using one
of the most common and frequently used spectral indices as a surrogate, the normalized
difference vegetation index (NDVI), this research evaluated the performance of several
pan-sharpening algorithms from a statistical perspective, or, more specifically, empirical
cumulative distribution function (eCDF), which calculates the cumulative distribution of a
sample’s empirical measure for a given variable value. This method is predicated on the
assumption that differences in the overall spectral and radiometric information between an
original and a fused image are the result of the pan-sharpening algorithm employed. The
degree of spatial and spectral distortion introduced in a fused image can have significant
impacts on the reliability of a derived index [19,20]. Thus, a comparison between the
cumulative distribution of NDVI values in the original and fused images will allow us to
quantify the degree of distortion introduced in the pan-sharpening process. The premise is
that an ideal pan-sharpening algorithm will produce the same cumulative distribution of
NDVI values of a given region from a MSf image as the original MS image. In other words,
MSf NDVI’s empirical cumulative distribution pattern will be identical to that of NDVI
calculated the original MS image.

2. Background

This study focused primarily on CS methods because they are the most widely em-
ployed and implemented in industry-standard GIS software; these include Brovey Trans-
form (Brovey), Esri, Gram-Schmidt (GS), intensity-hue-saturation (IHS), and simple mean
(SM) [21–24]. One MRA method based on wavelet transformations is supported in conven-
tional GIS software and is also included [25–27]. No VO methods were analyzed in the
present study, given the broad lack of implementation and adoption in conventional GIS
software packages.
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2.1. Pan-Sharpening Methods

In CS methods, a single component of the MS image, which is generally obtained by
using a linear combination of the MS bands, is substituted with the PAN image. More
precisely, the spatial information within the PAN image is extracted as the difference
between the PAN image and the MS component and then injected back into the MS image,
using a given injection scheme, such as the ones described below [5].

In Brovey image fusion, the multispectral image is resampled, and each pixel is
multiplied by the ratio of the analogous PAN pixel intensity, and, subsequently, all MS
pixel intensities are summed to generate the sharpened MS image [14]. Esri’s proprietary
transformation algorithm applies a weighted average to the PAN image and adds the
output adjustment value to each MS band [24]. Weighting factors can be multiplied
by the ratio to create a pixel-by-pixel fused digital number, which is then multiplied
by each band in the fused output image. The GS algorithm, which was patented in
2000 by Laben and Brower [22], works by first approximating a low-spatial-resolution
image from the PAN input based on derived weights for each MS band. Next, each band
combination is decorrelated by using GS decorrelation [28] to transform each band into
a multidimensional vector with the number of dimensions equivalent to the number of
pixels in the scene. Subsequently, the synthetic PAN band with coarser pixel size (PSc)
is replaced with the original finer pixel size (PSf) one, and all bands are transformed to
the PSf. In IHS transformations, the PSf PAN image replaces the intensity band of the
low-spatial-resolution image and then converts the fused product back to an MS image
with the same PSf. A weighting factor can be used to extract the spectral information of
the near-infrared band [1,24]. SM image fusion algorithms calculate the simple mean of
each MS band and the PAN band to extract the spatial structure information from the
PAN image; the simple mean averaging equation is then applied to each of the PSf output
MS bands.

WRM image fusion is an MRA method that decomposes the PAN image into three
high-frequency features and one low-frequency feature by using a wavelet transformation.
The low-frequency decomposition is then replaced with each low-spatial-resolution MS
band and then reconstructed back into a fused MS image [5,29].

2.2. Pan-Sharpening for Vegetation Indices

Many spectral indices have been developed, but the most common and frequently used
ones for Earth observation fall into a group known as vegetation indices (VIs). The prevalent
method for obtaining high-spatial-resolution VIs is based on pan-sharpening [19,28–30].
It should be noted that the scope of the present study is not to propose new methods
for calculating VIs; rather, we focus here on evaluating the performance of different pan-
sharpening algorithms, using NDVI as a common surrogate for that analysis. Note also
that, while the present study focuses on NDVI, we provide an extensible framework for
other applications, including evaluating the variability of many indices in pan-sharpened
images. Since the 1960s, remote-sensing scientists have estimated various biophysical
characteristics of vegetation by using remotely sensed data. The vast majority of global
biophysical monitoring and modeling efforts relies in VIs as inputs [1]. VIs have been
used in many fields to improve the efficiency and quality of vegetation studies, including
environmental and agricultural studies [1,31]. One of the most important indices is the
NDVI, which correlates strongly with many measures of vegetation health [32] and is
calculated by using only visible and near-infrared wavebands, which are collected by the
vast majority of MS sensors.

NDVI is calculated as the normalized ratio between the visible red band and NIR band
from an MS image:

NDVI =
NIR− R
NIR + R

(1)
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where NIR denotes pixel values in the NIR band, while R denotes pixel values in the visible
red band. Calculated NDVI values range from −1.0 to 1.0. Per Pettorelli [31] indicated
the following:

Very low values of NDVI (≤0.1) correspond to barren areas of rock, sand, or snow.
Free-standing water . . . tend[s] to be in the very low positive to negative values. Soils
generally . . . tend to generate rather small positive NDVI values (roughly 0.1–0.2). Sparse
vegetation such as shrubs and grasslands or senescing crops may result in moderate NDVI
values (~0.2–0.5) High NDVI values (~0.6–0.9) correspond to dense vegetation. (p. 32)

In instances where higher-spatial-MS-resolution imagery is cost-prohibitive or un-
available at the necessary temporal resolution, pan-sharpening is an attractive solution
despite the apparent distortion of spectral information [33]. To wit, issues may arise in
distinguishing spectral information at the boundaries of different land-use/land-cover
types where pixel values are likely mixed [3]. While the loss of spectral information may
be acceptable given the spatial, temporal, and analytical context, Johnson [3] found that
most, if not all, of the spatial information injected into the MS image is also lost when
a normalized VI such as the NDVI is derived from fused imagery by using the Brovey
or smoothing filter-based intensity modulation (SFIM) algorithms. The same is true to
a lesser extent with fast IHS, additive wavelet transform, and other methods reliant on
multiplicative equations, because the influence of the PAN band is mathematically canceled
out by the ratio employed in most Vis, including NDVI. According to the aforementioned
process, the pan-sharpened NDVI (NDVIps) is calculated as follows:

NDVIps =
NIRlow(δ)− R(δ)
NIRlow(δ) + R(δ)

(2)

where δ is the multiplicative function of a given algorithm, and low denotes the original
low-spatial-resolution MS image. The multipliers on either side of the vinculum negate
each other, leaving the original NDVI equation. However, because the output image is
resampled to a smaller pixel size with potential spectral distortion, errors may compound
and render an unreliable product. However, Rahaman et al. [34] argued that, if the NIR
band is resampled prior to NDVI calculation, as is the case in the present study, the
fused image is not mathematically canceled. Therefore, to get the NDVI values from a
pan-sharpened image (NDVIps’), it should be calculated as follows:

NDVIps′ =
NIRhigh − Rhigh

NIRhigh + Rhigh
(3)

where high denotes the pan-sharpened high-spatial-resolution MS image. The diverging
results reported in the studies conducted by Johnson [3] and Rahaman et al. [34] speak to
growing concerns voiced within the pan-sharpening literature that systematic application-
oriented reviews of multiple algorithms employ relatively few datasets and only focus on
specific geographic regions, with little variation in terms of surficial and spectral features [5].
As such, the present study compared the outputs of multiple algorithms from multiple
sensors across different geographic contexts.

3. Methods
3.1. Data Acquisition/Preprocessing

In total, ten pairs of MS and PAN images were acquired for this study. Geographically
co-registered MS and PAN images were freely obtained from the US Geological Survey
(USGS) and DigitalGlobe, covering spatially heterogeneous portions of San Francisco (US);
Washington, D.C. (US); Tripoli (Libya); Stockholm (Sweden); and Rio de Janeiro (Brazil).
These scenes are shown in Figure 2. Proprietary imagery from DigitalGlobe was collected
by using the WorldView-4 satellite sensor, with the exception of San Francisco, for which
imagery was collected by using QuickBird. The date of imagery acquisition is dependent
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on the availability of proprietary datasets. All Landsat scenes were selected to within
two weeks of each proprietary scene to ensure temporal similarity between images. Only
scenes with 0% cloud cover were analyzed to avoid further image processing operations to
remove clouds. The spatial resolution of MS Landsat imagery is 30 m, MS WorldView-4 is
1.2 m, and MS QuickBird is 2.4 m. The spatial resolution of PAN Landsat imagery is 15 m,
WorldView-4 imagery is 0.31 m, and QuickBird is 0.6 m. Where required, all imagery was
reprojected to Universal Transverse Mercator (UTM).
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Table 1. Summary of data sources.

Name Source PAN-GSD MS-GSD Bit Depth Acquisition Date

Rio de Janeiro WorldView-4 0.31 m 1.2 m 16-bit unsigned 27 September 2016
Rio de Janeiro Landsat-8 15 m 30 m 16-bit unsigned 13 October 2016

Washington, D.C. WorldView-4 0.31 m 1.2 m 16-bit unsigned 21 December 2019
Washington, D.C. Landsat-8 15 m 30 m 16-bit unsigned 18 December 2019

Tripoli WorldView-4 0.31 m 1.2 m 16-bit unsigned 21 December 2019
Tripoli Landsat-8 15 m 30 m 16-bit unsigned 5 December 2019

San Francisco QuickBird 0.6 m 2.4 m 8-bit unsigned 4 February 2016
San Francisco Landsat-8 15 m 30 m 16-bit unsigned 20 February 2016

Stockholm WorldView-4 0.31 m 1.2 m 16-bit unsigned 27 September 2016
Stockholm Landsat-8 15 m 30 m 16-bit unsigned 12 September 2016

GSD = ground sampling distance.

3.2. Study Areas

The above sites were selected in an effort to represent a diversity of land-use and land-
cover (LU/LC) contexts and because they were offered as free sample datasets through
DigitalGlobe at the time of analysis. The extent of each of the five study sites was defined
by the extent of the proprietary image. There is 100% overlap between each Landsat and the
respective proprietary scene. In general, the scenes all represent randomly mixed LU/LC
status. Figure 2 shows the global distribution of each study area and false-color composites
(NIR, red, and green bands) of each. Washington, D.C., has the highest proportion of
vegetative cover, and Tripoli has the lowest. The proportions of open water, built-up land,
and barren land similarly vary across scenes. Table 2 lists approximate LU/LC statistics that
were derived by using thematic rasters from the European Space Agency (ESA) GlobCover
dataset (ESA 2009).

Table 2. Approximate percentage of GlobCover LU/LC classification types for each scene.

ESA GlobCover Classification Washington, D.C. Rio de Janeiro Tripoli Stockholm San Francisco

Vegetation * 95% 57% 6%% 15% 25%
Artificial surfaces and associated areas 4.42% 13.82% 54% 78.04% 29.73%

Bare areas 0% 1.26% 23.76% 0 0
Water bodies 0.9% 26.25% 16.16% 6.97% 45.07%

* Vegetation is composite of the following ESA GlobCover classes: mosaic cropland (50–70%)/vegetation (grass-
land/shrubland/forest) (20–50%), mosaic vegetation (grassland/shrubland/forest) (50–70%)/cropland (20–50%),
closed-to-open (>15%) broadleaved evergreen or semi-deciduous forest (>5 m), closed (>40%) broadleaved decid-
uous forest (>5 m), closed (>40%) needle-leaved evergreen forest (>5 m), open (15–40%) needle-leaved deciduous
or evergreen forest (>5 m), closed-to-open (>15%) mixed broadleaved and needle-leaved forest (>5 m), mosaic
forest or shrubland (50–70%)/grassland (20–50%), mosaic grassland (50–70%)/forest or shrubland (20–50%),
closed-to-open (>15%) (broadleaved or needle-leaved; evergreen or deciduous) shrubland (<5 m), closed-to-open
(>15%) herbaceous vegetation (grassland, savannas, or lichens/mosses), sparse (<15%) vegetation, closed-to-open
(>15%) broadleaved forest regularly flooded (semi-permanently or temporarily).

Rio de Janeiro is a Brazilian megalopolis on the Western Atlantic Coast, where intensive
infrastructural networks serve a consistently growing population. The built environment
of Rio de Janeiro contrasts sharply with a precipitous topography, dense forests, and
abundant freshwater bodies [35]. Washington, D.C., is a low-elevation urban core located
in the Mid-Atlantic United States. The Potomac River converges with its tributary, the
Anacostia River, at its southern borders with Virginia and Maryland. There are more
than 7000 acres of parks within the District [36]. Tripoli is an ancient desert city on the
Mediterranean coast of Northern Africa. Sparse vegetation contrasts with constructed water
conveyances to support the large Libyan population [37]. San Francisco is the hilly urban
center of the eponymous Bay Area situated between the Pacific Ocean to the west and San
Francisco Bay to the east. Constructed parks dot the metropolitan core, and larger densely
forested areas emerge at the metropolitan periphery [38]. Stockholm is an archipelago city
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located on Sweden’s east coast lowland near the Baltic Sea. Low-to-medium-density urban
construction sits within large swaths of deciduous forest [39].

3.3. Image Pan-Sharpening

We created pan-sharpened images of each scene, using the Brovey, Esri, GS, IHS, SM,
and WRM algorithms. All calculations were conducted in ArcMap (Version 10.7.1), with
the exception of WRM, which was calculated by using ERDAS Imagine (Version 2015).

Prior to performing pan-sharpening via IHS, Brovey, Esri, and GS, optimal input
band weight coefficients were calculated for each MS image, using the standard ArcGIS
proprietary algorithm, which generates normalized weights based on the spectral sensitivity
curves of each MS band. The MS band with the greatest overlap with the PAN band is
weighted the highest, while any band with no overlap is weighted 0 [24]. The computed
weights for each of the scenes are displayed in Table 3. Next, the pan-sharpening process
was automated in a Python script, using the ArcPy library from Esri. Two separate scripts,
one for the Landsat scenes and another for the proprietary scenes, are made publicly
available in a GitHub repository (https://anonymous.4open.science/r/pansharpening-
1BFE/README.md, accessed on 26 June 2022). WRM pan-sharpening was conducted
manually on all ten scenes in ERDAS Imagine: for each scene, the spectral transformation
was calculated by using PCA, and the pan-sharpened image was resampled by using
nearest-neighbor interpolation. All pan-sharpened images were saved as 16-bit unsigned
integer TIFF (.tif) raster datasets.

Table 3. Computed MS band weights used in the IHS, Brovey, Esri, and GS algorithms.

AOI
Landsat Proprietary

Red Blue Green NIR Red Blue Green NIR

San Francisco 0.4023 0.5163 0.0814 0.0000 0.0356 0.4652 0.0000 0.4992

Rio de Janeiro 0.6317 0.0000 0.3408 0.2753 0.4834 0.0496 0.2857 0.1813

Stockholm 0.4930 0.3296 0.1687 0.0088 0.4041 0.1716 0.2195 0.2048

Tripoli 0.3894 0.5661 0.4447 0.0000 0.3937 0.0312 0.4153 0.1598

Washington, D.C. 0.5720 0.0000 0.4162 0.0118 0.3601 0.0941 0.3964 0.1494

All pan-sharpened scenes were compiled into one consolidated ArcMap document
with individual data frames for each study site. We used Python to automate the calculation
of NDVI from the pre-fused scenes and NDVIps’, using the R and NIR bands of each
scene. Pixel values from all NDVI images were extracted to a matrix of 10,000 (100 × 100)
equidistant points overlaid on each study area and then exported to five spreadsheets,
which included 10,000 rows and 14 columns representing NDVI values calculated on both
the pre- and post-sharpened Landsat and proprietary scenes.

3.4. eCDF Plotting

We calculated the eCDF of extracted NDVI values by using R statistical software
(version 4.0.2). Figures 2 and 3 show faceted plots comparing the eCDF of NDVI calculated,
using pre-sharpened Landsat and proprietary scenery, respectively, with NDVI calculated
after pan-sharpening for each algorithm included in this analysis. The eCDF is the distri-
bution of an empirical measure of a sample—NDVI values, in this case—that increases
by 1/n for each ordered data point in the set. The eCDF converges with the probabilis-
tic cumulative distribution function (CDF) at 1, or 100% of the observations, where the
probability of a variable, X, evaluated at x is less than or equal to X. Each NDVI value is

https://anonymous.4open.science/r/pansharpening-1BFE/README.md
https://anonymous.4open.science/r/pansharpening-1BFE/README.md
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sorted in ascending order and equals 0.01% of the entire distribution of observed points
(1/10,000 × 100) for each NDVI (NDVIj) calculation. Therefore, we have the following:

ˆeCDFNDVIj

(
NDVIj

)
=

10, 000 ≤ NDVIj

n
=

1
n

n

∑
i=1

1Xi ≤ NDVIj (4)
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The variance between the eCDF of NDVI calculated by using the pre-sharpened
scenes and each algorithmic pan-sharpened one is understood to be caused by spectral and
radiometric distortion or loss of fidelity from any given algorithm. In order to quantify this
variance, we calculated a two-sample Kolmogorov–Smirnov (KS) statistic between NDVIs
computed by using each pre-fused scene and each respective co-registered NDVIps’ image.
The two-sample KS test (hereinafter referred to as KS) is a nonparametric statistical test that
assesses whether two distributions are statistically equal. The KS statistic, D, represents the
greatest distance on the y-axis between two eCDFs (or in a one-sample KS test, an eCDF and
the probabilistic CDF curve). Because the KS test is nonparametric, it is necessary to first
ensure that the distributions of the NDVI values for each scene are not normally distributed.
As such, we first conducted the Shapiro–Wilk (SW) normality test on each NDVI set. In
the SW test, the null hypothesis states that a given NDVI sample comes from a normal
distribution. A p-value of substantially less than 0.01 will provide sufficient evidence to
reject the null hypothesis to conclude that all NDVI sets are not normally distributed before
proceeding to the KS test. The results of the SW normality tests are reported in Table 4.

Table 4. Results of the SW normality tests.

AOI Algorithm Landsat SW
Statistic (W) p-Value Proprietary SW

Statistic (W) p-Value

Rio de
Janeiro

Pre-fused 0.94287 <0.0001 0.92158 <0.0001
Brovey 0.94326 <0.0001 0.92158 <0.0001

Esri 0.94326 <0.0001 0.92158 <0.0001
GS 0.92060 <0.0001 0.96281 <0.0001
IHS 0.94326 <0.0001 0.92158 <0.0001
SM 0.94326 <0.0001 0.92158 <0.0001

WRM 0.94207 <0.0001 0.94638 <0.0001

San Francisco

Pre-fused 0.86692 <0.0001 0.86818 <0.0001
Brovey 0.86764 <0.0001 0.98715 <0.0001

Esri 0.86764 <0.0001 0.91479 <0.0001
GS 0.87268 <0.0001 0.88993 <0.0001
IHS 0.86764 <0.0001 0.96635 <0.0001
SM 0.86764 <0.0001 0.92906 <0.0001

WRM 0.87938 <0.0001 0.88751 <0.0001

Stockholm

Pre-fused 0.96186 <0.0001 0.94561 <0.0001
Brovey 0.96111 <0.0001 0.94561 <0.0001

Esri 0.96111 <0.0001 0.94561 <0.0001
GS 0.93824 <0.0001 0.96344 <0.0001
IHS 0.96111 <0.0001 0.94561 <0.0001
SM 0.96111 <0.0001 0.94561 <0.0001

WRM 0.84995 <0.0001 0.96727 <0.0001

Washington,
D.C.

Pre-fused 0.93798 <0.0001 0.93798 <0.0001
Brovey 0.93444 <0.0001 0.74406 <0.0001

Esri 0.93444 <0.0001 0.77086 <0.0001
GS 0.97589 <0.0001 0.92872 <0.0001
IHS 0.93444 <0.0001 0.88188 <0.0001
SM 0.93444 <0.0001 0.88431 <0.0001

WRM 0.81412 <0.0001 0.85643 <0.0001

Tripoli

Pre-fused 0.94014 <0.0001 0.94014 <0.0001
Brovey 0.93931 <0.0001 0.77817 <0.0001

Esri 0.93931 <0.0001 0.77817 <0.0001
GS 0.62166 <0.0001 0.94565 <0.0001
IHS 0.93931 <0.0001 0.77817 <0.0001
SM 0.93931 <0.0001 0.77817 <0.0001

WRM 0.94425 <0.0001 0.75739 <0.0001
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In this study, eCDF was used to calculate the cumulative distribution of a given x-
value—in this case, NDVI. Subsequently, a probabilistic CDF can be used to determine the
probability that a random observation that is taken from the population will be less than or
equal to a certain value. Users can use this distribution pattern information to determine the
probability that an observation will be greater than a certain value, or between two values
of interest. The discrepancy between the baseline distribution and the post-distribution can
be used to qualitatively assess the degree of variability. That being said, the discrepancy
between the baseline distribution and the post-distribution can be used to assess how
well the NDVI values extracted from the pan-sharpened image approximate the NDVI
value extracted from the original MS image. The premise is that an effective algorithm will
sharpen an image whose NDVI’s cumulative distribution pattern is similar or close to the
original MS image.

The null hypothesis states that the extracted NDVI values from the original images
and pan-sharpened images are normally distributed. The results revealed that all tested
NDVI values have a p-value that is substantially less than 0.01 (Table 4); therefore, we reject
the null hypothesis and conclude that there is sufficient evidence that the data tested are
not normally distributed. Subsequently, the KS test was used to examine if, and the degree
to which, the pan-sharpened NDVI eCDF distribution is statistically different from the
original NDVI eCDF distribution for each scene. If the p-value of the KS test is statistically
significant (i.e., <0.05), we conclude that the pre- and post-fused images are dissimilar, and
that the given algorithm is thereby ineffective.

4. Results and Discussion

A total of 30 eCDF plots were created for Landsat and proprietary satellite images since
there are five areas of interest (AOIs) and six pan-sharpening methods. As aforementioned,
NDVI values range from −1.0 to 1.0; however, the x-axis values in these graphs only range
from −0.5 to 1.0 to enhance visualization of the cumulative NDVI distributions where there
is the most variance. It should be noted that the eCDF values (probability values) range
from 0.0 to 1.0, and, therefore, the y-axis values in these graphs range from 0.0 to 1.0.

Interpreting Figure 4, we can see that all methods, except for GS, can be used to
effectively pan-sharpen the entire collection of Landsat images (Rio de Janeiro; San Fran-
cisco; Stockholm; Washington, D.C.; and Tripoli) in the context of the NDVI, because the
discrepancy between the baseline distribution and the post-distribution is visually minimal.
The GS method cannot be used to effectively pan-sharpen any of the Landsat images. A fur-
ther examination disclosed that the GS method involves an approximation process that
could cause the discrepancy. To wit, the GS method approximates a low-spatial-resolution
image from the high-spatial-resolution PAN image based on derived weights for each band.
Weight selection is critical to the approximation process, and different band weights will
create completely different low-spatial-resolution images. Currently, there are no well-
established guidelines on how to select the weights for different satellite images, and most
users use the software’s default weights for the approximation process. This could result in
inappropriate weight selections for Landsat images, ultimately leading to the discrepancy
between the baseline distribution pattern and the post-distribution pattern.

Further exploration of the eCDF graphs reveals that the GS method has varying
impacts on different Landsat images. The degree of variation is seemingly unassociated
with the relative percentage of vegetation within each scene, but the eCDF curves tend to
converge near the extreme low and high ends, where cumulative values are close to 0% and
100%, respectively. This is likely because GS decorrelation creates a vector of n dimensions
based on the number of pixels in each band, thereby substantially increasing the potential
sources of distortion.
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There are no generalizable patterns between pre- and post-sharpened NDVI datasets
derived from using proprietary imagery (Figure 4). That being said, the effective pan-
sharpening methods vary for proprietary satellite images in the context of NDVI. For Rio
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de Janeiro, which is a Worldview-4 satellite image, the effective pan-sharpening methods
are Esri, IHS, and SM in the context of NDVI, because the discrepancy between the baseline
distribution and the post-distribution is visually minimal. Not surprisingly, both the
Brovey and GS methods do not exhibit high performance, as a result of their computational
complexity, as discussed above. The WRM method also shows some discrepancy. For
San Francisco, none of the methods was effective in the context of NDVI; however, WRM
may be effective because the discrepancy between the baseline distribution and the post-
distribution is relatively small. Even so, further examination revealed that the discrepancy
is large around the NDVI value of 0, potentially underestimating vegetation in built or
barren areas. However, the Brovey, Esri, IHS, GS, and SM methods are not effective at all
due to the large discrepancy. For Stockholm, the effective pan-sharpening methods are
Brovey, Esri, IHS, and SM in the context of NDVI. However, the GS method and WRM
method are not effective at all, due to the large discrepancy. For Washington, D.C., none of
the pan-sharpening methods was effective in the context of NDVI since the discrepancy
between the baseline distribution and the post-distribution is very large. That being said,
when the Worldview-4 images for the Washington, D.C., area are used for pan-sharpening
and subsequently used for NDVI analysis, Brovey, Esri, GS, IHS, SM, and WRM methods
are not effective. Referring back to the GlobCover LU/LC distribution, we see that close to
95% of the Washington, D.C., scene consists of vegetation cover, followed by Rio de Janeiro
(59%) and San Francisco (25%).

The results reveal that all tested NDVI eCDF distributions have varied results, which
are summarized in Table 5. The KS statistic, D, is the absolute maximum distance between
both eCDFs. For each pan-sharpened NDVI dataset, D statistics with an associated p-value
less than 0.05 (95% confidence level) are statistically dissimilar from the pre-sharpened
NDVI calculation, meaning that relatively smaller D values and corresponding p-values
greater than 0.05 suggest that an algorithm is effective.

Table 5. Results of the two-sample Kolmogorov–Smirnov test.

AOI Algorithm Landsat KS Statistic (D) Proprietary KS Statistic (D)

Rio de Janeiro

Brovey 0.0048 0.3641 **
Esri 0.0048 0
GS 0.2737 ** 0.2592 **
IHS 0.0048 0
SM 0.0048 0

WRM 0.0127 0.0396 **

San Francisco

Brovey 0.0035 0.7856 **
Esri 0.0035 0.2604 **
GS 0.4408 ** 0.2227 **
IHS 0.0035 0.1745 **
SM 0.0035 0.1280 **

WRM 0.1435 ** 0.0381 **

Stockholm

Brovey 0.0069 0.0001
Esri 0.0069 0.0001
GS 0.9946 ** 0.3246 **
IHS 0.0069 0.0001
SM 0.0069 0.0001

WRM 0.0649 ** 0.03834 **

Washington, D.C.

Brovey 0.0089 0.8819 **
Esri 0.0089 0.6592 **
GS 0.0885 ** 0.5588 **
IHS 0.0089 0.5014 **
SM 0.0089 0.4584 **

WRM 0.0241 ** 0.5754 **
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Table 5. Cont.

AOI Algorithm Landsat KS Statistic (D) Proprietary KS Statistic (D)

Tripoli

Brovey 0.0101 0.1967 **
Esri 0.0101 0.1967 **
GS 0.5828 ** 0.7159 **
IHS 0.0101 0.1967 **
SM 0.0101 0.1967 **

WRM 0.0357 ** 0.1906 **
** Significant at p < 0.01.

To summarize, all methods, except for GS, can be used to effectively pan-sharpen the en-
tire collection of Landsat images (Rio de Janeiro; San Francisco; Stockholm; Washington, D.C.;
and Tripoli) in the context of NDVI, because the p-values are less than 0.01 (99% confidence
interval). It is also noteworthy that, despite the visual similarity between the pre-sharpened
NDVI dataset and the one derived from WRM in the eCDF plot, the KS test reveals small
but statistically significant (p < 0.01) dissimilarities in all scenes but Rio de Janeiro. How-
ever, for proprietary satellite images, the KS test results closely resemble the visual analysis
detailed above. For Rio de Janeiro, the effective methods in the context of NDVI are SM,
IHS, and Esri, while the ineffective methods are WRM, GS, and Brovey. For Stockholm, the
effective pan-sharpening methods are Brovey, Esri, IHS, and SM in the context of NDVI,
while the GS method and WRM method are not effective. None of the tested methods was
effective in the context of NDVI for San Francisco; Washington, D.C.; and Tripoli. However,
the intention of the current study is not to make specific recommendations as to which
pan-sharpening algorithm is most appropriate given the geographic context, because the
ultimate objective of each practitioner may vary within the domain of interpreting VIs.

One possible explanation is that, the more a given scene is dominated by vegetation
cover, the less accurate are the NDVI computations when derived from pan-sharpened
imagery, with no extensible rule about which algorithm is superior or inferior. To test this,
we assessed the relationship between the distribution of NDVI values and percentage of
vegetation cover for each scene. Because the distribution of NDVI values for all scenes
is not normally distributed, the difference between median NDVI values of the pre- and
post-fused images is used to represent the variation introduced by each pan-sharpening
algorithm. These differences and the percent vegetation cover present in each scene were
transposed into the dataset displayed in Table 6.

Table 6. Percent vegetation cover and difference in median NDVI values for each scene and algorithm.

Scene/Sensor % Veg. Cover
Difference in Median NDVI (Pre-Fused—Post-Fused)

WRM SM IHS GS Brovey Esri

Washington, D.C./Landsat 95% −0.0015 −0.0010 −0.0010 0.0116 −0.0010 −0.0010
Washington, D.C./Proprietary 95% −0.2652 −0.1263 −0.1540 −0.1951 −0.4117 −0.6471

Tripoli/Landsat 6% −0.0003 −0.0003 −0.0003 0.0461 −0.0003 −0.0003
Tripoli/Proprietary 6% 0.0070 0.0069 0.0069 −0.2233 0.0069 0.0069
Stockholm/Landsat 15% 0.0002 −0.0004 −0.0004 0.2673 −0.0004 −0.0004

Stockholm/Proprietary 15% −0.0280 0.0000 0.0000 0.2051 0.0000 0.0000
San Francisco/Landsat 25% 0.0052 0.0004 0.0004 −0.0029 0.0004 0.0004

San Francisco/Proprietary 25% −0.0023 −0.0007 −0.0385 0.0140 −0.5385 0.0336
Rio de Janeiro/Landsat 57% 0.0000 0.0008 0.0008 0.0463 0.0008 0.0008

Rio de Janeiro/Proprietary 57% −0.0039 0.0000 0.0000 0.0900 0.2046 0.0000

The SW normality test indicates that the distributions of percent vegetative cover and
differences in median NDVI are not normally distributed. As such, the Spearman rank
correlation coefficient was calculated between the percent vegetation cover and differenced
median NDVI for each algorithm. The results, which are displayed in Table 7, indicate that,
as vegetation cover increases, so too does the difference in median NDVI. The ρ values
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indicate a weak to moderate correlation (weak ρ = 0.1 = 0.3; moderate ρ = 0.3–0.5) that varies
by the algorithm employed. Moreover, following the results of the KS test, this relationship
is noticeably less pronounced when using the Brovey and GS algorithms, thus further
suggesting an increased introduction of random distortion in the output PSf MS image. A
simple linear regression between the percent of vegetation cover and difference in median
NDVI shows that this relationship is significant (p = 0.002), with an R2 of 0.2144. Model
diagnostics suggest that the linear regression is acceptable—the residuals are normally
distributed with only negligible evidence of kurtosis, and only one point (derived by using
the Washington, D.C., proprietary image) is an outlier, but with little to no leverage. When
the data points for the GS and Brovey algorithms are removed, the model significance
increases somewhat, while the R2 remains unchanged.

Table 7. Correlation between percent vegetation cover and difference in median NDVI values for
each algorithm.

Algorithm Correlation (ρ) Degree

WRM −0.492366 Moderate
SM −0.4691716 Moderate
IHS −0.4197851 Moderate
GS −0.1477098 Weak

Brovey −0.246183 Weak
Esri −0.3703986 Moderate

These relatively low correlations and R2 values are deemed acceptable, and they
are even expected, in this context. First, the global land-cover classification is derived
from the ESA GlobCover product, which has a spatial resolution of approximately 500 m.
Second, the GlobCover product is an average LU/LC classification over time, while the
scenes analyzed in the present study are at a single discrete moment. Finally, an ideal
pan-sharpening algorithm is characterized by minimal distortion, which can stem from a
vast array of potential sources of error or uncertainty. Vegetation cover, as it stands, can
still reasonably account for 21.4% of the model variability in difference in median NDVI
over and above the grand mean.

Additionally, the effect of differential bandwidth between MS and PAN bands cannot
be overlooked. All three sensors that were analyzed in the present study have contrasting
bandwidths between the MS and PAN bands, so it follows that spectral information is lost
during the pan-sharpening process. Matsuoka et al. [40] conducted a sensitivity analysis
exploring the effect of varying band position and bandwidth across multiple sensors on
pan-sharpened images, finding that discrepancies in bandwidth do impart varying degrees.
It is noteworthy that Matsuoka et al. identify a causal relationship between land-cover type
and variability in fused image quality, specifically relating this variability to low contrast
between vegetation and open water when employing the GS algorithm, regardless of
sensor. This result is effectively replicated in the present analysis. To wit, GS is consistently
outperformed by all other algorithms employed herein.

5. Conclusions

Pan-sharpening is an effective tool for increasing the visual interpretability of remotely
sensed imagery in that it increases spatial resolution and provides a better visualization of
a relatively low-spatial-resolution MS satellite image, using a single high-spatial-resolution
PAN image. Moreover, pan-sharpening can improve the accuracy of image analysis, feature
extraction, and modeling and classification [41]. The spatial and spectral context of a scene
is often overlooked within the body of application-oriented pan-sharpening literature [5].
We highlighted one specific application in earth observation, NDVI, and systematically test
the effects of multiple commercially available pan-sharpening algorithms on the calculation
of NDVI. The assumption of the current study is that overall differences between the NDVI
calculated from raw and pan-sharpened imagery is due to spectral or radiometric distortion,
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or loss of image fidelity, during the pan-sharpening process. The premise, therefore, is that
an effective pan-sharpening algorithm will produce an image whose NDVI’s cumulative
distribution pattern is similar or close to the original MS image.

We quantified the deviation introduced in the NDVI calculations after the pan-sharpening
process and found that the deviation was increased by the spatial resolution of the input
imagery and land-cover type—in this instance, the presence and abundance of vegetation.
Similarly, error increases in geographic contexts with a higher degree of vegetative land
cover. As such, we provide the following recommendations and procedure to assist users
in selecting the most effective pan-sharpening algorithm for calculating the NDVI within
their given context and application. First, avoid the GS and Brovey algorithms in favor
of Esri, IHS, or SM for images with relatively coarse spatial resolution, such as Landsat,
and exercise caution when selecting any pan-sharpening algorithm for imagery with a
sub-meter ground sampling distance (GSD). Second, quantify the difference between the
NDVI datasets calculated by using both the pre- and post-sharpened input imagery and
select the algorithm that introduces the least distortion. Finally, the proposed analytical
framework to quantitatively compare eCDF plots of the NDVI derived from using both pre-
and post-fused imagery can assist with the qualitative identification of which algorithm
introduces error and at which particular NDVI ranges of interest to the task at hand.

The framework proposed in the current study may also be extended to selecting the
most effective pan-sharpening algorithms for different application contexts, such as soil or
water indices. A limitation of the current framework is that the KS statistic represents the
severity of difference between the eCDF functions being compared. It does not, however,
quantify the overall extent or source of variance. Future research ought to focus on iden-
tifying the specific sources of distortion introduced by using any given pan-sharpening
algorithm, the application of a sensitivity analysis to assess the effects of different band
weights in pan-sharpening algorithms, and on the application of novel methods to the
problem of pan-sharpening, which is outside the scope of the present study.
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