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Abstract: Most of the methods for landslide susceptibility assessment are based on mathematical
relationships established between factors responsible for the triggering of the phenomenon, named
the conditioning factors. These are usually derived from geographic data commonly handled through
Geographical Information System (GIS) technology. According to the adopted methodology, after
an initial phase conducted on the GIS platform, data need to be transferred to specific software, e.g.,
MATLAB, for analysis and elaboration. GIS-based risk management platforms are thus sometimes
hybrid, requiring relatively complex adaptive procedures before exchanging data among different
environments. This paper describes how MATLAB can be used to derive the most common landslide
conditioning factors, by managing the geographic data in their typical formats: raster, vector or
point data. Specifically, it is discussed how to build matrices of parameters, needed to assess
susceptibility, by using grid cell mapping units, and mapping them bypassing GIS. An application
of these preliminary operations to a study area affected by shallow landslides in the past is shown;
results show how geodata can be managed as easily as in GIS, as well as being displayed in a
fashionable way too. Moreover, it is discussed how raster resolution affects the processing time.
The paper sets the future development of MATLAB as a fully implemented platform for landslide
susceptibility, based on any available methods.

Keywords: landslide susceptibility assessment; MATLAB Mapping Toolbox; GIS; landslide
conditioning factors

1. Introduction

Landslides are high-risk natural phenomena, which occur typically in mountain areas
with different mechanisms: slide, flow, fall [1]; they are widespread all over the world,
representing a severe threat, due to the landscape damage and loss of human lives that
they cause. Haque et al. [2] reported 11,698 injuries and 163,658 deaths due to more
than 3876 landslides that occurred between 1995 and 2014 in 128 countries around the
world. There is therefore a need to protect territories from landslides; authorities and
decision makers manage landslide risk with land planning and risk mitigation strategies,
often including monitoring and warning systems. Preliminary to risk management is the
assessment, prediction, and mapping of landslide susceptibility.

Methodologies for the assessment of landslide susceptibility can be classified into
qualitative and quantitative, both of which aim to define the susceptibility as low, moderate,
or high. Qualitative techniques rely on the experience and judgement of experts and are
based on the analysis of quasi-static variables; they are considered subjective [3]. Quan-
titative techniques rationalise the process, carrying out a numerical evaluation through
different methodologies, all united by the analysis of factors responsible for triggering
the phenomenon, named “conditioning factors”; they usually include lithology, aspect,
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and land use [4]. These factors are analysed in light of several techniques, grouped into
statistical, such as bivariate (Frequency Ratio or Weight of Evidence) and multivariate
(Logistic Regression or Discriminant method) [5–11], or deterministic, such as empirical or
physically based [12–19]. Recently, methods based on Artificial Intelligence (AI), and specif-
ically Machine Learning, are wide-spread; examples of Machine Learning techniques are
Artificial Neural Networks, the Kernel-based Support Vector Machine (SVM), Tree-based
decision trees, or Fuzzy Clustering [20–32].

Conditioning factors are derived from geographical data (geodata); their dissemina-
tion in digital format has been favoured thanks to Geographical Information System (GIS)
technology. GIS is a milestone in environmental management for natural hazards, disasters,
and global climate change; it allows management of geodata, even big volumes, and dis-
plays them spatially. Geoprocessing functions available in several GIS-based software, like
ArcGIS, also allow the application of several statistical quantitative techniques described
above for landslide susceptibility evaluation [31]; however, for the application of physically
based models or the use of AI, most previous research shows the realisation of hybrid
platforms, which are often very complex. Montrasio et al. [15,16] elaborated GIS-derived
geodata in MATLAB for the application of the SLIP Model, i.e., a model for the prediction
of rain-induced shallow landslides, on a regional scale; a similar approach was employed
by Gutiérrez-Martín [18]. MATLAB was used by Kamran et al. [26] to implement several
SVM kernel functions, and by Arnone et al. [21], who employed a specific tool for Neural
Networks; both provided MATLAB with ArcGIS-derived geodata. After elaborating the
geodata through MATLAB, the landslide susceptibility map is then visualised in a GIS
environment. To the authors’ knowledge, there is a lack of studies entirely conducted
in MATLAB, even for the geodata import. This would allow us to avoid some technical
problems regarding compatibility [22].

This article shows how to use MATLAB and disregard the GIS environment to handle
geodata; this is the starting point for the realisation of more efficient fully implemented
MATLAB platforms in landslide risk management, based on any quantitative technique for
landslide susceptibility mapping. Section 2 describes the numerical procedures to import
raster, shapefile and point data, directly in a MATLAB environment and assign them to a
reference grid cell. Section 3 shows the application of the procedures to derive some of the
conditioning factors in a study area affected by landslides during the past. Finally, Section 4
presents a discussion and a comparison of the time required by each procedure varying the
spatial resolution of the reference grid.

2. Materials and Methods

Landslide susceptibility assessment and mapping (LSM) require a preliminary and
suitable selection of the mapping unit, defined as a homogeneous portion of land surface,
which affects the accuracy of the susceptibility evaluation itself. Different methods have
been proposed for the landscape division: grid cells, terrain units, unique condition units,
slope units and topographic units [33–39]; due to the matrix, the most common is the
grid unit form, as it is efficient for data storage and computer implementation [40]. Since
MATLAB is one of the best mathematical software to manage matrix data, the grid unit form
is selected as a reference in this article. In the following, the technical procedure is described
to import geodata containing or referring to some of the most-used conditioning factors
for LSM: digital terrain model, lithology, land use and rainfalls. Geodata are provided in
a different format (raster, vector or point data), each of them requiring a specific import
procedure; then, data matrices are derived by assigning the conditioning parameters to
the same spatial grid, named reference grid. Even in this case, different procedures are
used according to the geodata format. Most of the mathematical functions discussed in the
following require the MATLAB Mapping Toolbox.
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2.1. Digital Terrain Model (Raster File)

The Digital Terrain Model (DTM) represents the starting point to build the reference
grid; it is provided as georeferenced Raster files that MATLAB may read in several formats:
“Tagged Image File + Tif World File”(.tif +.tfw), “GeoTIFF”(.tif), or “ASCII”(.asc). The
specific functions to be applied in each format case are summarised in Table 1; outputs of
this procedure are the elevation matrix E (row number n, column number m) and an array
R, defined as MapCellsReference; the latter is articulated in fields, including: information
about the DTM extension (XWorldLimits, YWorldLimits), resolution (CellExtentInWorldX,
CellExtentInWorldY), number of points (RasterSize) and the Coordinate Reference System
(CRS; ProjectedCRS and GeographicCRS). Generally, for large areas of interest it may be
necessary to read different rasters, which the area is divided into, through a for-loop. Each
raster is stored in a specific position of a cell array. cell is a variable class which allows the
storage of heterogeneous data, both in terms of element number and type. Thus, even if a
study area is included between different projected reference systems, geodata are stored
with their own reference systems separately.

Table 1. Summary of the functions used for importing DTM of several formats.

Format Function

.tif + .tfw E = imread(‘.tif ’)
R = worldfileread(‘.tfw’, ‘planar’, size(E))

.tif (GeoTiff)
.asc

[E, R] = readgeoraster(‘.tif/.asc’, ‘OutputType’,
‘double’)

The coordinates of the reference grid (stored in matrices X and Y) are computed as:

[X, Y] = worldGrid(R) (1)

where R is the MapCellsReference array.
Elevation is not the only “conditioning factor” derivable from the DTM; other morpho-

logic factors, commonly computed from the DTM, can be the slope angle β or the aspect
angle α [4,26,27,29]. MATLAB allows the computation of them through a function called
3radient; this requires the elevation matrix E and the GeographicCellsReference R1:

[α, β, δN, δE] = gradientm(E, R1) (2)

where δN and δE are, respectively, the north and eastern gradient. If the DTM is provided
in Cartographic coordinates, R1 is derivable after having converted the reference grid into
geographic coordinates through the function projinv:

[yLat, xLong] = projinv(R.ProjectedCRS, X, Y) (3)

where xLong and yLat are the geographic coordinate matrices, which have the same structure
of X and Y. LatMin, LatMax, LongMin and LongMax are the map limits in geographic
coordinates; R1, required by Equation (2), is obtained through function georefcells:

R1 = georefcells([LatMin, LatMax], [LongMin, LongMax], size(E)) (4)

Sometimes, raster data are provided only through the Open Geospatial Consortium
(OGC) and its services of Web Map (WMS) and Web Coverage (WCS). MATLAB allows
downloads from WMS (as long as the related UrlMap is known), by means of the functions
WebMapServer, wmsinfo and wmsread, obtaining the E matrix and the R array. Equation (5)
shows an example of code lines for this purpose; map limits and cell size are specified.
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ServerMap = WebMapServer(UrlMap);
info = wmsinfo(UrlMap);
orthoLayer = info.Layer(1);
[E, R] = wmsread(orthoLayer, ‘LatLim’, [LatMin,LatMax], ‘LonLim’,[LongMin,LongMax], ‘CellSize’,CellExtent);

(5)

2.2. Lithology and Land Use Import (Shapefile)

Lithology and land use are considered as “landslide susceptibility factors” by different
authors [29,32]: lithology indirectly provides information about soil type, whose mechanical
behaviour directly governs the slope failure mechanism; information regarding land use is
generally useful to detect anthropised (and altered) areas, as well as to define the risk level
based on distance criteria (e.g., distance from roads or residential areas). Lithology and land
use are reported here together, because they are commonly provided as “categorical data”,
i.e., fields classified according to specific categories (or attributes), including in polygon
form. The typical distribution format of their geodata is a Shapefile.

MATLAB reads Shapefiles (.shp) with the function shaperead; note that a specific
‘BoundingBox’ can be selected, and if the file is in Latitude–Longitude coordinates ‘UseGeo-
Coords’ equal to ‘true’ can be specified. Shaperead returns a structure array (ReadShape)
containing fields in the rows and attributes in the columns; one of the most important
attributes for the geospatial positioning of the polygons are the vertex coordinates (stored
in ReadShape.X and ReadShape.Y). As a first step, the function shapeinfo is useful (its out-
put of structure type is referred to as InfoShape); it summarises some information as the
‘ShapeType’, ‘BoundingBox’, ‘Attributes’ or ‘CoordinateReferenceSystem’. The latter is
fundamental in order to make all the conditioning factors consistent in terms of reference
system. To simplify the management of this data type, we suggest deriving a polygon
for each field and storing them in a polyshape array. Assuming a shapefile in projected
coordinates with just one field, the following code lines may be followed, consisting of
coordinate conversion and polygon creation:

[VertexLat, VertexLon] = projinv(InfoShape.CoordinateReferenceSystem,
cat(2,ReadShape.X), cat(2,ReadShape.Y))

(6a)

FieldPolygon = polyshape([VertexLat, VertexLon]’, ‘Simplify’, false) (6b)

Sometimes, fields may be made up of disjoint polygons, i.e., a group of several
polygons located in different positions; MATLAB treats this case with a “NaN-approach”:
the vertex coordinates of these polygons are contained in a unique column and the NaN
(Not a Number) value is placed at the end of each series of coordinates belonging to a
single polygon.

Matrices of conditioning factors must also be consistent in terms of discretisation
(resolution). As mentioned above, the present article considers the grid cell as the mapping
unit and all the conditioning factors are referred to a reference grid. the information on
lithology and land use being contained in polygons, a “polygon-raster” conversion is
performed. The importance of this conversion is remarked upon by Arnone et al. (2016),
who show the use of some built-in ArcGIS options. The original procedure proposed here
is based on the solution through MATLAB to a classical geometrical problem of “point-in-
polygon” [41]. In other words, it is established which field polygon includes each of the
reference grid points. The function used for this purpose is inpoly [42]; note that to avoid
wrong solutions of the point-in-polygon problem, polygons must be converted from “NaN“
to “node-edge” format. This is possible thanks to the function getnan2 [43]:

[nodes, edges] = getnan2(FieldPolygon.Vertices) (7a)

in = inpoly([xLong,yLat], nodes, edges) (7b)
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where in is a Boolean logic array with 1 located in the position of points that are inside the
polygon, otherwise 0. xLong and yLat contain the reference grid geographic coordinates,
as discussed in Section 2.1. This approach allows us to assign specific soil parameters
(mechanical and hydraulic) to the reference grid, depending on the polygon of lithology,
which includes each point. By applying the variable in as index of xLong and yLat, it is
therefore possible to extrapolate geographic coordinates of points inside a specific polygon
and generate other conditioning factors. The mechanical and hydraulic properties of soil
can be related to different lithologies, according to simple associations [15]. In such a way,
the conditioning factors of soil can be created, e.g., cohesion, friction angle or permeability:

Cohesion(in) = c_value (8a)

Friction(in) = fi_value (8b)

Permeability(in) = k_value (8c)

where c_value, fi_value and k_value are scalar variables, readable from Excel files or tables
containing the abovementioned association.

2.3. Rainfall (Point Data)

Rainfall is a conditioning factor in the susceptibility analysis of rain-induced shallow
landslides [15,16,26,27,29]. Generally, rainfall data refer to past or future events, through
rain gauge recordings or predictions of climatic models, respectively. In the first case,
rain measurements are provided as “point data”, i.e., data referred to points of known
coordinates (gauging stations); they are stored in Excel or Ascii files, importable to MATLAB
through the readcell function. In the second case, climatic models return the predictions
assigned to a grid, included in grib files; for their import, a specific toolbox nctoolbox is
required [44]. In both cases, rain data need to be distributed to the reference grid, through
an interpolation procedure. Several methods have been shown in the literature to spatially
distribute a few data points to a large area: Thiessen polygon, Isohyetal, average arithmetic,
Krigin and inverse distance weight (IDW) [10,45]. In MATLAB, this can be done through the
scatteredInterpolant function, suitable to interpolate both irregular and regular scattered data;
this function allows the use of three interpolation methods: linear, nearest neighbour or
natural neighbour interpolation, which you can choose by specifying, respectively, ‘linear’,
‘nearest’ or ‘natural’ among the input of the function; the latter is used in the present article.
By applying the function to the coordinate arrays of the scattered points (xLongSta, yLatSta)
and the array of the recording/prediction rainfall data referred to each of them (RainData),
the interpolant function F is computed:

F = scatteredInterpolant(xLongSta, yLatSta, RainData, ‘natural’) (9)

Input array arguments must be in column form. F is then applied to the reference grid
coordinate matrices to obtain the interpolated rainfall matrix hw:

hw = max(0, F(xLong, yLat)) (10)

With the code reported in Equation (10), negative values are excluded because they
have no physical meaning. To avoid saving irrelevant information (i.e., zero values) for
the landslide susceptibility assessment, data can be stored in sparse matrices. Note that hw
refers to the interpolation of a single rain episode; if a temporal analysis must be performed
with a rainfall time history, this procedure must be repeated for each rainfall event.

2.4. Other Useful Operations

In the following, it is described how some useful operations, common to the GIS
environment, may be handled even in MATLAB.
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2.4.1. Geoprocessing Procedures

Among the common GIS-geoprocessing procedures, merging, clipping, and raster
resampling (specifically, resolution downscaling) are of relevance.

The merging procedure is useful to manage high-resolution DTM (or raster, more
generally); to avoid a big file size, a regional DTM is often divided into a set of DTMs of
smaller extension. To cover a specific study area, it may be required to manage a certain
number of DTM files together; this can be done by storing each DTM matrix in a different
position of a cell array. Note that, similarly, a 3D-matrix-based approach may be used, by
saving each DTM in a different third-dimension position; however, this approach can be
adopted only when all DTMs to be stored have the same raster size, i.e., the same number
of rows or columns. For a generic procedure, the cell-based one is preferred.

The clipping procedure allows us to focus susceptibility analyses on a specific study
area, including inside certain territorial limits (municipality, province, region). Limits are
usually contained in Shapefile and treated as polygons, as indicated in Section 2.2. It is then
possible to clip both a raster and a categorical vector. In the first case, the inpoly function is
used (see Section 2.2); this allows us to define the index of the grid matrix included in the
study area polygon. Clipping a vector is instead possible through the application of the
intersect function to two polygons (or a set of polygons).

The choice of the most suitable raster resolution for a landslide susceptibility analysis
has been discussed by several authors [21]. The resampling of raster data and their down-
scaling may be essential to improve the computational efficiency of a susceptibility analysis.
Thanks to the matrix form of raster data, resampling by downscaling is easily managed by
selecting from the original matrix row and column elements with a certain step, according
to the integer value of the ratio new/original resolution. In this way, a reduced matrix
is obtained.

2.4.2. Geometric Measurement

It could be of interest to measure the extent of a certain area, e.g., the study area or a
zone belonging to a specific category. Since areas are managed as polygons, their extent is
returned by the function polyarea. A conditioning factor that can be derived from geometric
measurement is the “distance from roads”. Roads are generally stored in Shapefile geodata.
A specific function that can be applied for computing the distance of each point of the
reference grid from roads is p_poly_dist [46].

2.4.3. User-Defined Parameter Classification

A preliminary procedure when performing a landslide susceptibility assessment
consists in grouping some conditioning factors in classes, according to specific numeric
value ranges. From a conditioning factor matrix, it is possible to select the index of points
whose value is included in a specific interval, by using the find function. As an example, to
select the index Ind of the E matrix where the elevation ranges between values a and b, the
following code line can be used:

Ind = find(E ≤ b & E ≥ a) (11)

3. The Conditioning Factors for a Landslide Susceptibility Assessment of Enna
Municipality (Sicily, Italy)

The procedures described in Section 2 are now applied to a study area, which includes
Enna Municipality (Sicily, Italy), where on 2 February 2014 a rain-induced shallow landslide
occurred, causing disruptions to the road network [47–49]. Figure 1 shows the location of
the Municipality and the homonymous Province in the Sicily Region, along with a detail
of the study area and its orthophoto. Both the territorial limits and the orthophoto are
provided by the Open Data service of the Sicily Region: the first in Shapefile, the second
with a Web Map Service (WMS) technology.
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gion was derived through Laser Imaging Detection and Ranging (LIDAR) technology dur-
ing ATA 2007–2008 flight; it deals with a medium-high-resolution DTM of cell size 2 m × 
2 m. It is provided by the Web Coverage Service (WCS) of the Open Geospatial Consor-
tium (OGC). Due to its extent, it is necessary to manage DTMs of smaller dimensions to 
cover the area under examination. Specifically, 20 DTMs have been used, each of a size 
around 40 Mb; the division of the regional DTM has been performed according to the 
limits of the Regional Technical Map. DTMs have been downloaded as GeoTiff and im-
ported to MATLAB through the specific procedure reported in Table 1, obtaining the ele-
vation matrix E and the MapCellReference array R. E-matrix values are shown in Figure 
2a; it can be observed how elevation ranges between 230 and 990 m above sea level. As 
mentioned in Section 2.4.3, a common procedure for landslide susceptibility assessment 
is the grouping of data into parameter ranges through the MATLAB find function. As an 
example, 12 elevation classes are chosen, whose distribution is shown in Figure 2b. 
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Figure 2. Elevation matrix represented in: (a) Continuous colour map; (b) Value range map. 

The DTM is provided in EPSG:3004 projected coordinates (Monte Mario Italy 2); after 
converting the R array into geographic coordinates, the function gradientm is applied, 

Figure 1. Geographical framework and detail of the study area.

The study area has an extent of 357 km2. The Digital Terrain Model of the Sicily Region
was derived through Laser Imaging Detection and Ranging (LIDAR) technology during
ATA 2007–2008 flight; it deals with a medium-high-resolution DTM of cell size 2 m × 2 m.
It is provided by the Web Coverage Service (WCS) of the Open Geospatial Consortium
(OGC). Due to its extent, it is necessary to manage DTMs of smaller dimensions to cover
the area under examination. Specifically, 20 DTMs have been used, each of a size around
40 Mb; the division of the regional DTM has been performed according to the limits of
the Regional Technical Map. DTMs have been downloaded as GeoTiff and imported to
MATLAB through the specific procedure reported in Table 1, obtaining the elevation matrix
E and the MapCellReference array R. E-matrix values are shown in Figure 2a; it can be
observed how elevation ranges between 230 and 990 m above sea level. As mentioned in
Section 2.4.3, a common procedure for landslide susceptibility assessment is the grouping of
data into parameter ranges through the MATLAB find function. As an example, 12 elevation
classes are chosen, whose distribution is shown in Figure 2b.
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Figure 2. Elevation matrix represented in: (a) Continuous colour map; (b) Value range map.

The DTM is provided in EPSG:3004 projected coordinates (Monte Mario Italy 2); after
converting the R array into geographic coordinates, the function gradientm is applied,
providing the results of slope and aspect angle, respectively, shown in Figure 3a,b; even in
this case, values have been grouped into classes.
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The lithology of the study area is provided as a shapefile by the Open Enna database;
it consists of 30 categorical lithologic units, summarised in Table 2. The methodology
described in Section 2.2 is followed to obtain the field polygons plotted in Figure 4a. As
discussed, a “polygon-raster” conversion is needed to assign a field parameter to each
point of the reference grid; by assuming the lithologic units of the study area are grouped
into 3 classes, indicated in Table 2, a class distribution is obtained using the inpoly function
(Figure 4b).
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Table 2. Lithology units in the study area: codes, denominations, descriptions, and classes assigned
to group similar type.

Lithological Code Denomination Description Class

AMCf Centuripe formation Blue marly clay 1
AS Scaly clay Scaly clay 1
AV Variegated clay Variegated clay 1

ENNa Enna formation Marl and clayey marl 0
ENNb Enna formation Sand and Limestone 2
FYN3 Numidian flysh Blackish clay, brown clay and yellowish quartz sandstone 1
FYN4 Numidian flysch Quartz, kaolinitic mudstones and silty clay 1
GER Geracello formation Marly clay 1
GERa Geracello formation Sandy clay and clayey sand 2
GPQ2 Pasquasia formation Gypsum arenite 2
GPQ3 Pasquasia formation Marly gypsum 0

GPQ 3a Pasquasia formation Gypsum 0
GPQ5 Pasquasia formation Sandy-gypsum brownish clays 1
GTL1 Cattolica formation Limestone 0
GTL2 Cattolica formation Selenite 0
NNL Lannari formation Medium/fine-grained sand 2
POZ Polizzi formation Calciluties 0
TPL Tripoli Laminated diatomites 0
TRB Trubi Calcareous marl and marly limestone 0

TRBa Trubi Claystone breccias and brecciated clays 1
TRV Terravecchia formation Clayey marl and marly-silty clay 1
TRVa Terravecchia formation Conglomerates 0
TRVb Terravecchia formation Claystone breccias and brecciated clays 1

a Colluvium deposits Sand with many cobbles and boulders 2
a1 Landslide deposits Heterogeneous materials 2
ba Alluvial deposits Gravel, sand and clayey silt 2
bb Recent alluvial deposits Medium-fine grained sand 2
e2 Lacustrine deposits Sandy loam 2
h Anthropic deposits Gravel, sand, silt, clay 2
t Alluvial terrace deposits Gravel, sand, silt, clay 2

Information on land use are contained in the Corine Map provided by the Open
Database of the Sicily Region as a shapefile. The procedure described in Section 2.3 is
followed; the polygons’ distribution is shown in Figure 5, evidencing the presence of
42 classes. In this case, no elaboration procedure for the derivation of the conditioning
factors is illustrated, because it depends on the specific landslide susceptibility assessment
methodology [15].

As regards rainfall, data recorded on 1 February 2014 23:00 CET by the six gauging
stations illustrated in Figure 6a, provided by the Sicilian Agrometeorological Information
Service (SIAS), are used. The irregular scattered data values reported in brackets have
been interpolated through the scatteredInterpolant function, by considering the “Natural
Neighbour” interpolation methodology, which is the best quality solution in MATLAB. The
representation of the rainfall matrix obtained for the reference grid is shown in Figure 6b,
with values grouped into six classes according to rainfall intensity.

The matrices of parameters described here have been obtained by considering four
DTM resolutions: 2, 4, 8 and 16 m; each case corresponds to a different number of points
in the reference grid. The time durations of each procedure with the DTM resolution and
the point number are reported in Table 3 and plotted in Figure 7 against the number of
points in the reference grid. Note that the rainfall value is referred to as the interpolation of
a single rainfall event. Times vary according to the non-zero values of the sparse matrix.
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Table 3. Summary of the processing times (in seconds) by changing raster resolution, related to the
use of a desktop PC. equipped with Intel® Core™ i5-9600K CPU@3.70GHz, 16Gb RAM at 2133 MHz
and no dedicated GPU.

Raster Samples
(-)

Merging, Data Store in Cell Array and
Computing of Geomorphology Parameters

(s)

Clipping
(s)

Polygon to Raster
Conversion (inpoly)

(s)

Rainfall
Interpolation

(s)

83,656,084 (2 × 2 m) 81.21 17.17 203.60 110.74
22,420,209 (4 × 4 m) 21.70 2.95 43.92 27.01
5,609,137 (8 × 8 m) 7.49 0.92 15.30 6.75

1,403,860 (16 × 16 m) 3.13 0.28 7.59 1.75
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4. Discussion

Figures 1–6 demonstrate that, even for the solution of problems involving geodata,
MATLAB may be fully applied; if GIS is defined as a tool to display geodata in a “fashion-
able” way [50], our plots show that MATLAB gives results similar to GIS-based elaborations,
shown in most of papers about this topic [15,16,26,27,29].

Among the described procedures, the slowest one is the polygon–raster conversion
and the detection of reference grid points belonging to lithology (30 fields); the raster
clipping is instead the fastest operation (Figure 7). As expected, computational efficiency
improves by reducing the number of points in the reference grid, with a non-linear trend.
A proper selection of the raster resolution is fundamental to solving problems related to
very large areas, compatible with the physical phenomenon.

Further developments regard the implementation of a fully integrated MATLAB
platform for risk management, based on even complex methodologies.
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