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Abstract: Smoothness is a hallmark of skilled, coordinated movement, however, mathematically 

quantifying movement smoothness is nuanced. Several smoothness metrics exist, each having its 

own limitations and may be specific to a particular motion such as upper limb reaching. To date, 

there is no consensus on which smoothness metric is the most appropriate for assessing cycling 

motion in children with cerebral palsy (CP). We evaluated the ability of four preexisting metrics, 

dimensionless jerk, spectral arc length measure, roughness index, and cross-correlation; and two 

new metrics, arc length and root mean square error, to quantify the smoothness of cycling in a 

preexisting dataset from children with CP (mean age 13.7 ± 2.6 years). First, to measure the repeat-

ability of each measure in distinguishing between different levels of un-smoothness, we applied 

each metric to a set of simulated crank motion signals with a known number of aberrant revolutions 

using subjects’ actual crank angle data. Second, we used discriminant function analysis to statisti-

cally compare the strength of the six metrics, relative to each other, to discriminate between a 

smooth cycling motion obtained from a dataset of typically developed children (TD), the control 

group (mean age 14.9 ± 1.4 years), and a less smooth, halted cycling motion obtained from children 

with CP. Our results show that (1) ArcL showed the highest repeatability in accurately quantifying 

an unsmooth motion when the same cycling revolutions were presented in a different order, and 

(2) ArcL and DJ had the highest discriminatory ability to differentiate between an unsmooth and

smooth cycling motion. Combining the results from the repeatability and discriminatory analysis,

ArcL was the most repeatable and sensitive metric in identifying unsmooth, halted cycling motion

from smooth motion. ArcL can hence be used as a metric in future studies to quantify changes in

the smoothness of cycling motion pre- vs. post-interventions. Further, this metric may serve as a

tool to track motor recovery not just in individuals with CP but in other patient populations with

similar neurological deficits that may present with halted, unsmooth cycling motion.

Keywords: roughness index; spectral arc length; cycling rhythm; cycling biomechanics; 

cerebral palsy; smoothness 

1. Introduction

Cerebral palsy (CP) is a non-progressive disorder of movement and posture that re-

sults from an injury to the infant or fetal brain, resulting in impaired sensorimotor coor-

dination and/or regulation of muscle tone [1]. Individuals with CP typically present with 

reduced muscle strength [2] muscle tone abnormalities, co-contraction of agonist and an-

tagonist muscle groups [3–5], and poor selective voluntary motor control [6]. Recumbent 

stationary cycling is a safe and practical exercise modality for those lacking the dynamic 

postural control and strength necessary for exercising in an upright position. Cycling has 

shown therapeutic benefits in patients with stroke [7,8] and children with CP [9]. 
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Muscle co-contraction and altered motor control characteristics of children with CP, 

however, contribute to irregular and halted progression of cycling crank revolution re-

sulting in poor smoothness of cycling. Smooth movements are an attribute of a well-de-

veloped motor control [10]; accordingly, smoothness of upper limb movement is used as 

a marker of motor recovery in patients with stroke [11]. Thus, the need for quantification 

of movement smoothness to assess motor learning and recovery has resulted in various 

metrics to quantify different aspects of a movement’s profile [12]; nonetheless, the utility 

of such measures are mixed even when unsmooth movements are obviously present [13]. 

Although smoothness is regarded as a hallmark of skilled and coordinated move-

ment, and despite the importance of cycling interventions in rehabilitation, there are lim-

ited studies on quantifying the smoothness of cycling, especially in the CP population. 

Thus, to track motor recovery in children with CP following cycling training protocols, a 

sensitive metric to quantify cycling smoothness is essential. To find such a metric, we 

evaluated three conventional, one recently proposed in our previous work, and two new 

metrics proposed here, with our CP cycling data set. 

While smoothness is an intuitive concept, it requires a precise mathematical and nu-

merical method for its quantification. Balasubramanian et al. [14] introduced a systematic 

approach to identify an appropriate smoothness metric for assessing sensorimotor impair-

ment and motor learning. Intuitively, a desirable metric will measure the shape of motion 

independent of its duration and amplitude [13,14]. In addition, Balasubramanian et al. 

suggested that a reliable metric must be sensitive to changes in movement parameters 

within the physiological range, and it must be robust and computationally inexpensive 

for practical implementation [14]. Therefore, we compared the ability of the following six 

potential metric candidates that have the desired characteristics to quantify cycling crank 

angle smoothness: dimensionless jerk [13]; spectral arc length metric (SALM) [14]; rough-

ness index (RI) [15]; cross-correlation (Xcorr) [16]; arc length (ArcL),; and root mean square 

error (RMSE).  

Jerk, the time-derivative of acceleration, has been used to quantify smoothness, as a 

measure of motor control, in patients with Parkinson's Disease [17,18], Huntington’s Dis-

ease [19], and post-stroke populations [20]. Being independent of amplitude and duration 

of motion, unlike most other jerk-based measures, dimensionless jerk (DJ), proposed by 

Hogan et al. [13], and its logarithmic version, proposed by Balasubramanian et al. [12] 

have shown more sensitivity, reliability, and robust assessment in comparison to the other 

jerk-based smoothness metrics.  

SALM is the arc length of the envelope of the speed profile in the frequency domain. 

It demonstrated promising results in quantifying the smoothness of upper extremity 

reaching motion in children with CP [21,22]. SALM was used successfully to classify up-

per extremity motion in-patient with neurological disorders (n = 10) into five levels of 

motor impairments [23]. 

The capability of DJ and SALM in measuring the smoothness of upper extremity mo-

tion was evaluated against other smoothness measures in individuals with stroke [12] and 

CP [22]. Balasubramanian et al. compared the number of peaks, local maxima, in the speed 

profile of the motion, root mean squared jerk, normalized mean absolute jerk, DJ, speed 

ArcL, and SALM [12]. They measured the smoothness of the upper extremity reaching 

motion in two post-stroke survivors and one healthy adult, and in simulated data, finding 

that SALM is the most robust metric in the presence of noise, inter-submovement inter-

vals, and motion arrest. SALM was the most sensitive metric in quantifying improved 

smoothness of arm motion in stroke population; speed profile ArcL and DJ were the clos-

est competitors to SALM Quijano-González et al. [22] and Rincón Monteset et al. [21] eval-

uated DJ, SALM, and numbers of motion peaks in distinguishing upper extremity motion 

of children with CP (n = 3 for Rincón Montes et al., n = 10 for Quijano-Gonzalez et al.) and 

typically developing peers. Both studies demonstrated the SALM and DJ could differen-

tiate between CP and TD motion and for affected and less-affected sides in subjects with 

CP, with SALM showing more sensitivity. Logarithmic DJ and SALM surpass the number 
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of local peaks in the speed profile, in all of the aforementioned studies; thus, the number 

of peaks method was not included in our evaluation. 

Speed profile’s ArcL, i.e., the arc length of the speed signal, also showed a high level 

of sensitivity and reliability in comparisons by Balasubramanian et al. [12]. We included 

a modified version of the speed ArcL in our comparison; instead of measuring the arc 

length of the speed profile as proposed by Balasubramanian, we used the crank angle’s 

arc length, i.e., the arc length of the position profile. 

Chen et al., pioneers in measuring cycling smoothness in rehabilitation applications, 

proposed the roughness index, RI, for quantifying the smoothness of cycling in post-

stroke survivors. The RI uses the curvature of the instantaneous crank speed, revolution 

per minute (RPM), to measure the cycling smoothness [15]; the lower the RI indicates the 

greater smoothness of the cycling motion. The RI metric was mostly used to characterize 

cycling in the population with stroke [15] or to quantify the effects of the functional elec-

trical stimulation [24], visual feedback [25], or maximal workload [26] on cycling perfor-

mance.  

XCorr was used as a measure of the similarity between the two signals [27,28] by 

comparing the ideal crank rotation in a cycling system to the observed crank rotation in 

the sagittal plane. When used as a smoothness metric, the higher the XCorr factor, the 

greater the similarity of the subject’s crank motion to the ideal crank motion. In a study 

conducted by Sansare et al. [16], XCorr could successfully differentiate the cycling 

smoothness of children with CP and typical development (TD (p < 0.0001). To further eval-

uate this metric, XCorr is included in our comparison to assess its performance in com-

parison with the described metrics. We also propose another intuitive metric called RMSE, 

which is the root mean square error (RMSE) between the subject’s crank motion and the 

ideal crank motion. 

The objective of this study was to compare the repeatability and sensitivity of six 

different smoothness metrics in distinguishing between different levels of un-smoothness 

in cycling data from children with CP. To this end, we followed a two-fold approach; first, 

to measure the repeatability of each measure in distinguishing between different levels of 

noise, as representations of un-smoothness. Second, we used discriminant function anal-

ysis to statistically compare the strength of the six metrics relative to each other to dis-

criminate between a smooth cycling motion obtained from a dataset of typically devel-

oped children (TD), and less smooth, halted cycling motions obtained from children with 

CP. 

2. Materials and Methods

2.1. Participants 

CP group: the CP data set is from a larger study. Thirty-one ambulatory adolescents 

with CP (mean age 13.7 ± 2.6 years, 6 females) with gross motor function classification 

system (GMFCS) [29] levels II-IV were recruited through the outpatient CP clinic at 

Shriners Hospital for Children, Philadelphia, and local referral sources. Institutional Re-

view Board approval and informed consent and assent were obtained. All subjects with 

CP underwent screening by a physical therapist for the inclusion and exclusion criteria 

specified in Table 1. There were no criteria for the weight of participants. The result of the 

cycling intervention is previously published by our group [30]. Here, we used the crank 

angles collected from one of the cohort groups in the study, only to assess the capabilities 

of the aforementioned metrics in quantifying smoothness when subjects did not cycle 

smoothly. 
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Table 1. Inclusion criteria. 

Inclusion Criteria Exclusion Criteria 

Ages 10–18. 

Diagnosis of spastic CP.

Lower-extremity orthopedic surgery or traumatic 

fracture within the past 6 months. 

GMFCS II, III, or IV.

Adequate range of motion of the 

hips, knees, and ankles to allow 

pedaling. 

Visuoperceptual skills and cogni-

tive/communication skills to follow 

multiple-step commands for attend-

ing to exercise and data collection. 

Ability to communicate pain or dis-

comfort with testing and training 

procedures. 

Lower-extremity joint pain during cycling. 

Spinal fusion extending to the pelvis. 

Hip, knee, or ankle joint instability or dislocation. 

Lower-limb stress fractures in the past year. 

Symptomatic or current diagnosis of cardiac dis-

ease as assessed by the American Heart Association 

guidelines for cardiac history. 

Current pulmonary disease or asthma and taking 

oral steroids or hospitalized for an acute episode in 

the past 6 months. 

Severe spasticity in legs (score of 4 on the Modified 

Ashworth Scale).

Severely limited joint range of motion or irreversi-

ble muscle contractures that prevented safe posi-

tioning on the cycle. 

Diagnosis of athetoid or ataxic CP.

Less than six months following Botox injections to 

the leg muscles. 

Control group (TD): The data from TD controls were obtained from a pre-existing 

dataset of healthy, typically developing children (mean age 14.9 ± 1.4 years, 7 females). 

TD datasets were obtained from a larger study [31]. The inclusion criteria were (1) age 

(13–19 years); (2) the ability to maintain a sitting position; (3) a minimum of 15° of plantar-

flexion range of motion [31]. 

2.2. Data Collection 

A commercially available recumbent sport tricycle (www.kmxkarts.co.uk) fitted with 

shank guide orthoses to control for excess hip adduction and abduction movement, was 

used for the CP group (Figure 1A) [32]. The TD group used a semi-recumbent, free-stand-

ing Restorative Therapies, Inc. bicycle (Baltimore, MD) attached to a therapy bench (Fig-

ure 1B). Despite the different cycling systems for CP and TD groups, anthropometric dif-

ferences of individuals within and across groups were minimized by standardizing posi-

tioning in both cycling setups (Figure 1C). Additionally, the force transducer pedals used 

for the TD group by Johnston et al., [31] also used on the recumbent tricycle used for the 

CP group in Sansare et al. [16,30], which further standardized foot and shank positioning 

across the two datasets. The bicycle crank and spindle assembly for both systems were 

instrumented with sensors to indicate crank position and cadence. Both groups cycled for 

three trials of 15–30 s, depending on their capabilities. Data were analyzed using custom-

ized software (MATLAB The Mathworks, Inc., Natick, MA, USA). Note that, here we used 

the TD dataset, from Johnston et al. [31], as the representative dataset of smooth cycling, 

and the CP dataset, from Sansare et al. [30], was used as the representative dataset of un-

smooth cycling. The crank angle data from the CP group were visually less smooth when 

compared with those of TD group. The focus of this paper is comparison between six dif-

ferent types of smoothness metrics and not comparison between CP versus TD groups. 

The result of cycling intervention on CP and comparison between CP and TD groups were 

published in Sansare et al.[30], and Johnston et al. [31], respectively. 
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Figure 1. Recumbent cycling setup. (A) the set-up for the CP group. (B) semi-recumbent set-up used 

in the TD group. (C) Adjusted components in both set-ups based on subject anthropometrics. (1) 

Seat-to-pedal distance = 85% of the distance from the greater trochanter to the base of the calcaneus. 

(2) Seat-to-greater trochanter distance = 15% of the distance from the greater trochanter to the base 

of the calcaneus. (3) Crank arm length = 30% of tibial length. The seat back of (C) emulated the angle 

of the recumbent cycle seat of (A) and was placed comfortably behind the subject while maintaining 

the seat to greater trochanter distance. 

2.3. Data Analysis 

We discarded the first and the last revolution of the crank angle to minimize the ef-

fects of acceleration and deceleration, respectively. Crank angle data were low-pass fil-

tered at 5 Hz (4th order Butterworth) and plotted against time, resulting in a sawtooth 

waveform indicating the angle of the recumbent cycle’s crank as the trial progressed. Five 

Hz frequency was chosen by Frequency power analysis of the crankIS. There is a discon-

tinuity in the crank angle as it crosses from 360°→0° (Figure 2A [16]), i.e., as it transitions 

from the end of one revolution to beginning of the next revolution. To eliminate this dis-

continuity, we converted the crank angle to a linear form by concatenating the angle data 

in series. The resultant angle-in-series data (crankIS) thus consists of a time series repre-

senting the angular progression of the crank from zero to N × 360°, where N is the num-

ber of revolutions (Figure 2B [16]). To quantify the deviation of each subject’s crankIS from 

the theoretically smooth crank angle, the ideal crank angle (crankIDL), was defined as the 

straight line that connected the beginning to the end of angle-in-series data points. This 

straight line accounted for the subject-specific cycling duration; however, note that this 

ideal scenario is not practically achievable as there are acceleration and deceleration seg-

ments in subjects’ crank-in-series, no matter how smooth they are, resulting in an S-shape 

trajectory for any subject. The first derivative of the crankIS was used to measure the in-

stantaneous RPM (crankRPM). See Table 2 for the summary of the terms. 

Table 2. Summary of the terms. 

crankIS A line form by concatenating the angle data of each revolution in series 

carnkRPM The instantaneous RPM of crankIS 

crankIDL That connected the beginning to the end of angle-in-series data points 

crankSim The simulated crankIS using the aberrant revolutions of CP subjects  

(A) (B) (C)
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Figure 2. Schematic representation of crank angle smoothness. (A) Depicts crank angle (plotted 

against time in seconds) for 3 representative revolutions from a child with CP, each color depicting 

one revolution from 0° to 360°, thick vertical black lines indicate the discontinuity between 360° and 

0° at the end of each revolution. (B) Depicts the concatenation of the three revolutions resulting in a 

time series, crankIS, representing the angular progression of the crank from zero to 3 × 360. The dash 

line is the hypothetical smoothest progress of crank, crankIDL [16]. 

2.4. Smoothness Metrics 

DJ. To measure DJ, the crank-in-series jerk, the third derivative, was squared and inte-

grated over time. The dimension of this integration is length squared over the 5th power 

of time. Thus, to become dimensionless, DJ was defined by Equation (1) [13]: 

DJ = (∑ 𝑐𝑟𝑎𝑛𝑘𝑅𝑃𝑀(𝑛)⃛
𝑁×360°

𝑛=0
)𝐷

5

𝐴2
⁄  (1) 

where N is number of revolutions, D is the duration, and A is the amplitude of crankIS. To 

smooth the jerk signal, it was low passed filtered (fc = 5 Hz, 4th order Butterworth) using 

MATLAB’s zero-phase digital filter, filtfilt. The filtering was in addition to the prepro-

cessing of the crankIS. 

SALM is defined as the arc length of the crankRPM ‘s envelope in the frequency domain, 

i.e., the envelope is its Fourier spectrum magnitude [14]. The frequency range to measure

SALM is defined based on the target motion using user-defined parameters [14].

ArcL is defined as the length of the crankIS curvature. The result of preliminary statistical

analysis showed there was no significant difference between measuring ArcL of the speed

profile, crankRPM, as suggested by Balasubramanian et al. [12], and measuring ArcL of

crankIS, in our application. Therefore, we chose the simpler approach, ArcL of crankIS.

This metric was then normalized to the length of the crankIDL, calculated using the Py-

thagorean theorem.

RI was defined as the curvature of the six-order polynomial curve fitted to the crankRPM,

using the Equation (2) [15]:
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𝑅𝐼 = ∑ |𝑑𝑐𝑟𝑎𝑛𝑘𝑅𝑃𝑀 𝑑𝑠⁄ |

𝑁×360°

𝑛=0

 (2) 

where s is the crank angle. 

XCorr was defined as the maximum of the cross-correlation of the crankIS and crankIDL. 

To make XCorr dimensionless, the maximum of cross-correlation was normalized to the 

maximum of crankIDL’s autocorrelation, the cross-correlation of the signal with itself. The 

results were expressed as a smoothness metric. Further detail on XCorr can be found in 

study by Sansare et al. introducing this metric [16]. 

RMSE was defined as the RMSE between the crankIS and the crankIDL. 

For all the aforementioned metrics the lower the outcome the smoother the cycling. 

2.5. Simulated Signals Using Real Aberrant Cycles 

To objectively quantify the increasing level of un-smoothness, three aberrant revolu-

tions from CP subjects’ crank angles were used to generate crankIS simulations. A physical 

therapist visually inspected the CP subjects’ crank angles and extracted three revolutions 

that consistently represented aberrant patterns in multiple subjects. These patterns 

showed different levels of un-smoothness, (Figure 3). The chosen revolutions were inter-

polated to 12 k samples. Six simulated signals were then generated by randomly replacing 

the revolutions of a crankIDL (N = 6 revolutions, A = 2160°, 10 rpm, and 2 kHz sampling 

frequency) with the three aberrant revolutions (Figure 3). We call these simulated signals 

crankSims. The detailed description of crankSims is as follow: 

crankSim1: aberrant revolution #1 (Figure 3) randomly replaced a revolution in the 

crankIDL. crankSim2: aberrant revolution #1 randomly replaced two revolutions in the 

crankIDL. crankSim3: aberrant revolution #1 randomly replaced two revolutions in 

crankIDL and revolution #2 randomly replaced one revolution. crankSim4: aberrant revo-

lutions #1 and #2 randomly replaced 2 revolutions, each. crankSim5: aberrant revolutions 

#1 and #2 randomly replaced two revolutions in crankIDL each, and revolution #3 ran-

domly replaced one revolution. crankSim6: aberrant revolutions #1, #2, and #3 randomly 

replaced 2 revolutions of crankIDL, each.  

Figure 3. Three aberrant revolutions. Aberrant revolution #1 (blue) #2 (orange) #3 (yellow). 

The repetition of aberrant revolutions in the crankSim 2, 4, and 6, is to evaluate the 

sensitivity of the metrics to an equal amount of increasing un-smoothness using the same 

aberrant revolution used in the previous crankSim, i.e., crankSims 1, 3, 5.  

The crankSims are depicted in Figure 4. 

#1 #2 #3
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To evaluate the repeatability of the metrics in differentiating between various levels 

of un-smoothness, we shuffled the order of revolutions of each crankSims five times, re-

sulting in five sets of crankSims. We used each of the six metrics to then compute the 

smoothness of the crankSims of each set, depicted with different colors in each panel of 

Figure 5. Therefore, we have five values for each crankSims, and ideally, the shuffling 

should result in a similar smoothness value calculated by each metric. 

Figure 4. Crank simulation with different levels of un-smoothness, crankSims. 

Figure 5. The repeatability of the metrics in differentiating between various levels of un-smoothness, 

each color represents the output of each metric (XCorr, RMSE, RI, SALM, ArcL, and DJ) in quanti-

fying the un-smoothness level of each set of crankSims, crankSims1 to 6. 

2.6. Statistical Analysis 

We evaluated the diagnostic (discriminant) validity of the six different smoothness 

metrics for evaluating cycling smoothness in two groups: children with CP and those with 
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typical development TD. Dependent variables were the six different metrics: DJ, SALM, 

ArcL, RI, Xcorr, and RMSE. 

Data were analyzed using a one-way between-subjects multivariate analysis of vari-

ance (MANOVA). Secondary analyses used a direct-entry (simultaneous) discriminant 

function analysis (DFA) to evaluate the relative strength of each dependent variable (DJ, 

SALM, ArcL, RI, Xcorr, and RMSE) in discriminating between the TD and CP cycling 

smoothness in comparison to each other. In essence, DFA results in a discriminant func-

tion that uses a combination of the dependent variables to maximize the separation be-

tween the two groups, in this case, the CP and TD cycling smoothness. The structure ma-

trix from the DFA will be interpreted using the loadings, which are the correlations be-

tween each smoothness metric and the discriminant function. A larger loading implies a 

larger absolute correlation between the discriminant function and the variable and in turn 

implies a larger contribution to the discrimination between TD and CP cycling smooth-

ness. Loadings above 0.71 are considered excellent, 0.71–0.63 are very good, 0.63–0.55 are 

good, 0.55–0.45 are fair, and below 0.45 are poor [33]. By ranking the metrics by their load-

ings, we were able to rank the metrics by their ability to distinguish between different 

smoothness levels during cycling. Finally, to cross-validate our results and to evaluate the 

accuracy of the DFA in predicting group membership, we performed a classification anal-

ysis after the DFA. That is, the classification analysis compared the “predicted group 

membership” based on the results from the DFA with the actual group membership as 

CP or TD to give a percentage of the correct classifications. Using the same sample that 

was used for the DFA for the classification analysis, however, might introduce a bias. To 

avoid this bias, the jack-knife procedure [34], which resamples the data by sequentially 

leaving one observation out during each iteration of resampling, was used. 

3. Results

Figure 5 demonstrates the repeatability of each metric. In the case of a metric with 

acceptable repeatability, first, we expect the colored lines to be very close to each other, 

i.e., show low variability at a similar level of un-smoothness resulting from shuffling the

revolutions; in an ideal scenario, colored lines would overlap entirely, i.e., the metric out-

puts similar values for all five shuffling of each specific crankSims. Second, because the

un-smoothness level increases by adding more aberrant cycles, we expected the output of

each metric to increase, preferably linearly. ArcL, RMSE, and DJ satisfy both of the above

expectations, i.e., each colored line has a similar value at each crankSims and shows an

increase in the smoothness from crankSims 0 to 6 (Figure 5). DJ showed more variability

between shufflings, in comparison with ArcL and RMSE; it could not maintain the desired

linear ascending trend for crankSim2. Overall, ArcL demonstrated a linear increase in

smoothness value as the crankSims became more unsmooth and the shuffling resulted in

almost identical ARcL values. XCorr, RI, and SALM, however, showed a high level of

variability at each crankSims and were unsuccessful in following the ascending trend.

Distributional statistics are presented separately for each group (Table 3). The 

MANOVA was significant (Pillai’s Trace = 1.00, F = 16611.935, df [6,34], p < 0.001), showing 

that the smoothness metrics were significantly affected by the membership in the CP or TD 

group. While the assumption of multivariate homogeneity among the covariance matrices 

was not satisfied, this problem was circumvented through the use of Pillai’s trace [35]. 

Table 3. Cycling smoothness metrics for the CP and TD groups. 

CP TD 

Cycling Smoothness M SD M SD 

DJ 0.031 0.119 0.007 0.010 

SALM −2.871 0.428 −11.900 0.374 

RI 5523.579 14136.316 2.281 1.156 

ArcL −0.008 0.006 −0.997 0.001 
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 CP TD 

XCorr 0.039 0.058 0.006 0.003 

RMSE 120.165 155.602 4.298 1.804 

Follow-up comparisons to MANOVA using DFA revealed a discriminant function 

that was statistically significant (Wilks Λ < 0.001, 𝜒2 = 325.642, df [6], p < 0.001). The DFA 

results were interpreted using pooled within-group correlations from the structure matrix 

(see Table 4). Loadings above 0.71 are considered excellent, 0.71- 0.63 are very good, 0.63–

0.55 are good, 0.55-.45 are fair, and below 0.45 are poor. In essence, the metric with the 

highest loading implies that this metric has a greater ability to discriminate between a CP 

and TD cycling pattern [32]. Using these criteria established by Comrey et al. [33], the 

pattern of correlations showed good loading from ArcL and DJ (0.576 and 0.545, respec-

tively), while the remaining four metrics showed poor loadings. Because ArcL and DJ 

have the most contributions to the discriminant function, these variables have the most 

discriminatory abilities among the six smoothness metrics in identifying differences be-

tween different smoothness levels during cycling. 

Table 4. Regression analysis summary for variables measuring cycling smoothness depicting the 

loadings for each metric in decreasing order, i.e., the metrics as listed from top to bottom as highest 

to lowest in their discriminatory ability between CP and TD cycling smoothness. Loadings above 

0.71 are considered excellent, 0.71–0.63 are very good, 0.63–0.55 are good, 0.55–0.45 are fair, and 

below 0.45 are poor. 

Variable Within-Group Correlation 

ArcL 0.576 

DJ 0.545 

RMSE 0.086 

SALM 0.064 

Xcorr 0.061 

RI 0.045 

Note: ArcL = arc length, SALM = spectral arc length of instant speed, RMSE = root mean square error 

from ideal cycling, XCorr = cross-correlation method, RI = roughness index, and DJ = dimensionless 

jerk. 

The validity of our DFA analysis in discriminating between the TD and CP cycling 

patterns was evaluated through a classification analysis. The classification rate of 100% 

demonstrated that all participants in the CP and TD groups were correctly classified into 

either group based on the DFA results. This demonstrates the high accuracy of the DFA 

in predicting group membership. 

4. Discussion 

The objective of this study was to find the best metric to quantify CP cycling smooth-

ness, using four previously proposed metrics, DJ, SALM, RI, and Xcorr, and two newly 

proposed metrics by our group, ArcL, and RMSE. To do so, first, we used a set of simu-

lated signals, crankSims, with different levels of known un-smoothness by adding aberrant 

cycles. Thereby, we could visually inspect each metric’s capability in differentiating be-

tween different levels of un-smoothness in a repeatable manner. The result of our analysis 

showed ArcL, DJ, and RMSE have the highest repeatability, i.e., less variability at each 

crankSim value, and can maintain an ascending trend. Secondly, to statistically quantify 

each metric’s sensitivity in discriminating between a smooth and less smooth cycling mo-

tion, we performed DFA on the six metrics. Our results show that ArcL, with loading of 

0.576 (within the good range), and demonstrating robustness in the repeatability evalua-

tion, was the best metric in identifying unsmooth, halted cycling motion from smooth 
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cycling. DJ, on the other hand, despite similar good loading, 0.545, did not show the same 

level of repeatability as ArcL. 

ArcL vs. SALM. A desirable smoothness metric would be computationally inexpen-

sive [14]. One of the outstanding characteristics of the ArcL is that it is not only computa-

tionally inexpensive but is also easily comprehendible and implementable. As the un-

smoothness level increases, the length of the arc to reach the final crank angle, 𝑁 × 360°, 

also increases. In the study by Balasubramanian et al. [12], the speed profile ArcL was also 

a reliable and sensitive metric to quantify upper extremity motion in healthy adults and 

the stroke population; however, SALM was outperforming their metric. Quijano-Gonza-

lez et al. also found that SALM was also the best metric to quantify upper extremity mo-

tion in the CP population [21]. One reason for the altered ranking of ArcL outperforming 

SALM in our study to the aforementioned studies is the nonexistence of submovement 

intervals in the crankIS motion signal we used. Balasubramanian et al. demonstrated that 

the sensitivity of the speed profile’s ArcL decreases as the inter-submovement intervals 

increases in the intermittent upper extremity motion [12]. This sensitivity may also be the 

case for the position-based ArcL metric tested in our study. The manner in which we de-

veloped the crankIS, enabled us to eliminate the crank angles’ submovements and to pro-

duce a continuous motion, which might contribute to the superior performance of the 

ArcL in quantifying cycling smoothness.  

Temporal organization sensitivity. Balasubramanian et al. concluded that any met-

ric could not be used on an entire rhythmic movement to estimate smoothness, because a 

candidate metric may be sensitive to the temporal organization of the motion [14]; e.g., 

changing the speed of a submovement and the length of the interval between each sub-

movement can lead to disparate values for the similarly smooth signals. Note that, alt-

hough cycling is continuous motion, the crank angle consists of multiple 0–360° crank 

rotations. Depending on the sensor used, e.g., if an absolute encoder is used, these rota-

tions segment the motion into submovements, which together form a sawtooth signal. By 

generating the crankIS data for each trial, we eliminated sawtooth intermittency to alleviate 

the effect of the temporal organization by producing a continuously progressive crank angle 

signal. Alternatively, if an incremental encoder without a reference point is used to collect 

the crank angle signal, we will have this continuously progressive angle signal with the need 

for extra processing steps required for generating crankIS. CrankIS permits generating the 

three smoothness metrics, ArcL, XCorr, and RMSE. These three metrics have the capability 

of analyzing the entire movement sequence to capture smoothness in its entirety.  

XCorr. Other metrics such as SALM and RI have been used to characterize smooth-

ness of movement in upper limb motion. Xcorr showed promising results in differentiat-

ing between CP and TD cycling smoothness in the study by Sansare et al. [16]. Despite Xcorr 

showing merit in detecting smoothness levels when used independently, when the smooth-

ness metrics were compared against each other, the ArcL accounted for the most between-

group variance in the data and hence, was identified as the most sensitive measure.  

Context-specific metrics. Because most cycling systems, like the one used in this 

study, have one degree of freedom, we could assume a subject-specific ideal scenario 

(crankIDL) for our cycling intervention, which matched the duration and number of revo-

lutions of each subject. The crankIDL became closer to the physically achievable scenario 

after the elimination of the initial (acceleration) and the final (deceleration) revolutions. 

The existence of this ideal scenario enabled us to propose the XCorr and RMSE metrics. 

The ideal scenario might be difficult to assume in other contexts, such as gait smoothness, 

which limits the application of XCorr and RMSE. Additionally, in gait applications, ArcL 

may be more challenging to compute, as the increase in the prominence of peaks and val-

leys in some motion signals (e.g., shank angular velocity during gait) may be characteris-

tics of desired motion, while it also increases the arc length of the signal. Thus, it would 

be hard to isolate the contribution of unsmooth motion from the more pronounced peaks 

and valleys in the signal. In contrast, SALM and DJ can be more universally used in vari-

ous applications. 
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Limitations. Aside from the limited number of subjects included in our comparison, 

one of the major limitations of this study is that it only informs us about the ability of the 

metrics to distinguish between CP and TD cycling, where the differences in the smooth-

ness levels might be more obvious compared to more subtle differences that might occur 

pre- and post-intervention. Even though the differentiation between CP and TD was not 

the objective of quantifying cycling smoothness, this differentiation was used because it 

is known that TD cycling is smoother than that of CP; this could be used as a benchmark 

to assess the strength of each metric to correctly detect such differences. Furthermore, be-

cause we recruited children aged 10–19 years, i.e., those at prepuberty, puberty, or post-

puberty, it is possible that some developmental changes due to puberty stages may con-

tribute to potential inter-group differences. Lastly, the habitual physical ability of the TD 

group may be higher than the CP group, and this may also contribute to some inter-group 

differences. While both these factors, i.e., changes due to puberty and habitual physical 

activity may affect cycling smoothness, it is beyond the scope of this study to address 

these contextual factors in-depth. 

Implications, applications, and future directions. Despite the development of sev-

eral smoothness metrics in recent years, there was a lack of a study that compared their 

performance on cycling motion. By analyzing the repeatability of the metrics on simulated 

data and the discriminatory ability of the metrics on CP and TD datasets, this study pro-

vides the first step in identifying a repeatable, sensitive metric for analyzing cycling 

smoothness in children with CP. Additionally, the results of this study can be extrapolated 

to other clinical populations (e.g., stroke) that have similar impairments such as spasticity, 

muscle co-contraction, and muscle weakness that might lead to unsmooth and halted cy-

cling motion. While ArcL demonstrated the most promising repeatability and sensitivity 

with our dataset, future studies should look at its sensitivity in discriminating more subtle 

changes in smoothness such as pre- versus post-intervention improvements. 

5. Conclusions

In our comparison of six metrics (DJ, SALM, RI, XCorr, which are previously pro-

posed, and RMSE, and ArcL, which are proposed in this study), when visually inspected 

using simulated crank angles, ArcL, i.e., the length of the crank angle signal, demonstrated 

a high level of repeatability and sensitivity in differentiating decreasing levels of smooth-

ness. DJ, a jerk-based metric, was the closest competitor. Both metrics, ArcL and DJ, 

showed a good level of sensitivity in differentiating TD and CP cycling. The proposed pre-

possessing technique in combination with ArcL may be used in future studies to quantify 

various levels of improvement in motor control post-cycling interventions. 

Author Contributions: Conceptualization, A.B. and A.S.; methodology, A.B. and A.S; software, 

A.B.; validation, A.B. and A.S; formal analysis, A.S.; investigation, S.C.K.L.; resources, S.C.K.L.; data

curation, S.C.K.L.; A.B writing—original draft preparation, A.B. and A.S.; writing—review and ed-

iting, S.C.K.L.; visualization, A.B.; supervision, S.C.K.L.; project administration, S.C.K.L.; funding

acquisition, S.C.K.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Institutes of Health (NIH), grant number 

R01HD062588, Shriners Hospital for Children (Grant #8530), and a Clinical Research Grant from the 

Pediatric Section of the American Physical Therapy Association. 

Institutional Review Board Statement: The study was conducted in accordance with the Declara-

tion of Helsinki and approved by the Institutional Review Boards of Temple University and the 

University of Delaware (protocol code 11659). 

Informed Consent Statement: Informed assent or consent (if 18 years old) was obtained from all 

subjects involved in the study, and a parent or legal guardian signed consent documents for minors. 

Written informed consent has been obtained from the patient(s) to publish this paper. 

Data Availability Statement: The data presented in this study are available upon request from the 

corresponding author. 



Biomechanics 2023, 3 91 

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the 

design of the study; in the collection, analyses, or interpretation of data; in the writing of the manu-

script; or in the decision to publish the results. 

References 

1. Bax, M.; Goldstein, M.; Rosenbaun, P.; Leviton, A.; Paneth, N.; Dan, B.; Jacobsson, B.; Damiano, D. Proposed definition and

classification of cerebral palsy, April 2005. Dev. Med. Child Neurol. 2005, 47, 571.

2. Wiley, M.E.; Damiano, D.L. Lower-extremity strength profiles in spastic cerebral palsy. Dev. Med. Child Neurol. 1998, 40, 100–

107.

3. Damiano, D.L.; Martellotta, T.L.; Sullivan, D.J.; Granata, K.P.; Abel, M.F. Muscle force production and functional performance

in spastic cerebral palsy: Relationship of cocontraction. Arch. Phys. Med. Rehabil. 2000, 81, 895–900.

https://doi.org/10.1053/apmr.2000.5579.

4. Stackhouse, S.K.; Binder-Macleod, S.A.; Stackhouse, C.A.; McCarthy, J.J.; Prosser, L.A.; Lee, S.C. Neuromuscular electrical

stimulation versus volitional isometric strength training in children with spastic diplegic cerebral palsy: A preliminary study.

Neurorehabil. Neural Repair 2007, 21, 475–485. https://doi.org/10.1177/1545968306298932.

5. Stackhouse, S.K.; Binder-Macleod, S.A.; Lee, S.C.K. Voluntary muscle activation, contractile properties, and fatigability in

children with and without cerebral palsy. Muscle Nerve 2005, 31, 594–601. https://doi.org/10.1002/MUS.20302.

6. Thelen, D.D.; Riewald, S.A.; Asakawa, D.S.; Sanger, T.D.; Delp, S.L. Abnormal coupling of knee and hip moments during

maximal exertions in persons with cerebral palsy. Muscle Nerve 2003, 27, 486–493. https://doi.org/10.1002/mus.10357.

7. Fujiwara, T.; Liu, M.; Chino, N. Effect of pedaling exercise on the hemiplegic lower limb. Am. J. Phys. Med. Rehabil. 2003, 82, 357–

363. Available online: https://journals.lww.com/ (accessed on 10 January 2020).

8. Brown, D.A.; Nagpal, S.; Chi, S. Limb-loaded cycling program for locomotor intervention following stroke. Phys. Ther. 2005, 85,

159–168. https://doi.org/10.1093/ptj/85.2.159.

9. Williams, H.; Pountney, T. Effects of a static bicycling programme on the functional ability of young people with cerebral palsy

who are non-ambulant. Dev. Med. Child Neurol. 2007, 49, 522–527. https://doi.org/10.1111/j.1469-8749.2007.00522.x.

10. Sejnowski, T.J. Making smooth moves. Nature 1998, 394, 725–726.

11. Bosecker, C.; Dipietro, L.; Volpe, B.; Krebs, H.I. Kinematic Robot-Based Evaluation Scales and Clinical Counterparts to Measure

Upper Limb Motor Performance in Patients With Chronic Stroke. Neurorehabilit. Neural Repair 2010, 24, 62–69.

https://doi.org/10.1177/1545968309343214.

12. Balasubramanian, S.; Melendez-Calderon, A.; Burdet, E. A robust and sensitive metric for quantifying movement smoothness.

IEEE Trans. Biomed. Eng. 2012, 59, 2126–2136. https://doi.org/10.1109/TBME.2011.2179545.

13. Hogan, N.; Sternad, D. Sensitivity of Smoothness Measures to Movement Duration, Amplitude, and Arrests. J. Mot. Behav. 2009,

41, 529–534. https://doi.org/10.3200/35-09-004-RC.

14. Balasubramanian, S.; Melendez-Calderon, A.; Roby-Brami, A.; Burdet, E. On the analysis of movement smoothness. J. Neuroeng.

Rehabil. 2015, 12, 112. https://doi.org/10.1186/s12984-015-0090-9.

15. Chen, H.Y.; Chen, S.C.; Chen, J.J.J.; Fu, L.L.; Wang, Y.L. Kinesiological and kinematical analysis for stroke subjects with

asymmetrical cycling movement patterns. J. Electromyogr. Kinesiol. 2005, 15, 587–595. https://doi.org/10.1016/j.jelekin.2005.06.001.

16. Sansare, A.; Behboodi, A.; Johnston, T.E.; Bodt, B.; Lee, S.C.K. Characterizing Cycling Smoothness and Rhythm in Children

With and Without Cerebral Palsy. Front. Rehabil. Sci. 2021, 2, 12. https://doi.org/10.3389/FRESC.2021.690046.

17. Ketcham, C.J.; Seidler, R.D.; Van Gemmert, A.W.A.; Stelmach, G.E. Age-related kinematic differences as influenced by task

difficulty, target size, and movement amplitude. J. Gerontol. Ser. B 2002, 57, 54–64. https://doi.org/10.1093/geronb/57.1.P54.

18. Teulings, H.L.; Contreras-Vidal, J.L.; Stelmach, G.E.; Adler, C.H. Parkinsonism reduces coordination of fingers, wrist, and arm

in fine motor control. Exp. Neurol. 1997, 146, 159–170.

19. Smith, M.A.; Brandt, J.; Shadmehr, R. Motor disorder in Huntington's disease begins as a dysfunction in error feedback control.

Nature 2000, 403, 544–549.

20. Platz, T.; Denzler, P.; Kaden, B.; Mauritz, K.H. Motor learning after recovery from hemiparesis. Neuropsychologia 1994, 32, 1209–

1223.

21. Montes, V.R.; Quijano, Y.; Chong Quero, J.E.; Ayala, D.V.; Perez Moreno, J.C. Comparison of 4 different smoothness metrics for

the quantitative assessment of movement’s quality in the upper limb of subjects with cerebral palsy. In Proceedings of the Pan

American Health Care Exchanges (PAHCE), IEEE Computer Society, Brasilia, Brazil, 7–12 April 2014.

22. Quijano-Gonzalez, Y.; Melendez-Calderon, A.; Burdet, E.; Chong-Quero, J.E.; Villanueva-Ayala, D.; Pérez-Moreno, J.C. Upper

limb functional assessment of children with cerebral palsy using a sorting box. In Proceedings of the 2014 36th Annual

International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014, Chicago, IL, USA, 26–30 August

2014; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2014; pp. 2330–2333.

23. Anaya, L.; Quinones, I.; Quijano, Y.; Bueyes, V.; Chong, E.; Ponce, V. Clustering of Data that Quantify the Degree of Impairment

of the Upper Limb in Patients with Alterations of the Central Nervous System. In Proceedings of the 2020 17th International

Conference on Electrical Engineering, Computing Science and Automatic Control, CCE 2020, Mexico City, Mexico, 11–13

November 2020.



Biomechanics 2023, 3 92 

24. Chen, J.-J.J.; Chen, H.-Y.; Chen, S.-C.; Chen, C.-C. Clinical applications of FES-cycling to SCI and stroke subjects for smoother

and symmetrical movement patterns. In Proceedings of the 11th Annual Conference of the International FES Society, Miyangi-

Zao, Japan, 12–15 September 2006.

25. Lin, S.I.; Lo, C.C.; Lin, P.Y.; Chen, J.J.J. Biomechanical assessments of the effect of visual feedback on cycling for patients with

stroke. J. Electromyogr. Kinesiol. 2012, 22, 582–588.

26. Linder, S.M.; Rosenfeldt, A.B.; Bazyk, A.S.; Koop, M.M.; Ozinga, S.; Alberts, J.L. Improved lower extremity pedaling mechanics

in individuals with stroke under maximal workloads. Top. Stroke Rehabil. 2018, 25, 248–255.

https://doi.org/10.1080/10749357.2018.1437935.

27. Quian Quiroga, R.; Kraskov, A.; Kreuz, T.; Grassberger, P. Performance of different synchronization measures in real data: A

case study on electroencephalographic signals. Phys. Rev. E 2002, 65, 14. https://doi.org/10.1103/PhysRevE.65.041903.

28. Penney, G.P.; Weese, J.; Little, J.A.; Desmedt, P.; Hill, D.L. A comparison of similarity measures for use in 2-D-3-D medical

image registration. IEEE Trans. Med. Imaging 1998, 17, 586–595. Available online: https://ieeexplore.ieee.org/ (accessed on 10

January 2020).

29. Palisano, R.; Rosenbaum, P.L.; Russell, D.; Galuppi, B.E. Development and reliability of a system to classify gross motor function

in children with Cerebral Palsy ICF into Practice View project Development and initial validation of an assessment of visual

ability for children with cerebral palsy View project. Artic. Dev. Med. Child Neurol. 1997, 39, 214–223.

https://doi.org/10.1111/dmcn.1997.39.issue-4.

30. Sansare, A.; Harrington, A.T.; Wright, H.; Alesi, J.; Behboodi, A.; Verma, K.; Lee, S.C.K. Aerobic Responses to FES-Assisted and

Volitional Cycling in Children with Cerebral Palsy. Sensors 2021, 21, 7590. https://doi.org/10.3390/S21227590.

31. Johnston, T.E.; Prosser, L.A.; Lee, S.C. Differences in pedal forces during recumbent cycling in adolescents with and without

cerebral palsy. Clin. Biomech. 2008, 23, 248–251. Available online: https://www.ncbi.nlm.nih.gov/ (accessed on 10 January 2020).

32. Harrington, A.T.; McRae, C.G.A.; Lee, S.C.K. Evaluation of Functional Electrical Stimulation to Assist Cycling in Four

Adolescents with Spastic Cerebral Palsy. Int. J. Pediatr. 2012, 2012, 1–11. https://doi.org/10.1155/2012/504387.

33. Comrey, A.; Lee, H. A First Course in Factor Analysis, 2nd ed.; Psychology Press: New York, NY, USA, 1992.

34. Lachenbruch, P.A. An almost unbiased method of obtaining confidence intervals for the probability of misclassification in

discriminant analysis. Biometrics 1967, 23, 639–645.

35. Tabachnick, B.G.; Fidell, L.S. Using Multivariate Statistics, 7th ed.; Allyn & Bacon/Pearson Education: Boston, MA, USA, 2019;

ISBN 978-0-13-479054-1.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual au-

thor(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to 

people or property resulting from any ideas, methods, instructions or products referred to in the content. 


