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Abstract: The study presents a novel scheme that recognizes and classifies different sub-phases
within the involuntary breathing movement (IBM) phase during breath-holding (BH). We collected
force data from eight recreational divers until the conventional breakpoint (CB). They were in supine
positions on force plates. We segmented their data into no-movement (NM) phases, i.e., the easy
phase (EP) and IBM phase (comprising several events or sub-phases of IBM). Acceleration and jerk
were estimated from the data to quantify the IBMs, and phase portraits were developed to select and
extract specific features. K means clustering was performed on these features to recognize different
sub-phases within the IBM phase. We found five–six optimal clusters separating different sub-phases
within the IBM phase. These clusters separating different sub-phases have physiological relevance to
internal struggles and were labeled as classes for classification using support vector machine (SVM),
naive Bayes (NB), decision tree (DT), and K-nearest neighbor (K-NN). In comparison with no feature
selection and extraction, we found that our phase portrait method of feature selection and extraction
had low computational costs and high robustness of 96–99% accuracy.

Keywords: acceleration; jerk; involuntary breathing movement; pattern recognition; classification

1. Introduction

Involuntary physiological responses are present in biological systems that activate
when life-threatening situations arise. The prolonged contractions of the diaphragm and
external intercostal muscle during breath-holding (BH) result in one such response. Pro-
longed contraction and hypercapnia during BH activate chemoreceptors [1,2]. The receptors
reaching the sensory cortex generate a dyspnea signal, which is crucial for the initiation of
breathing [3,4]. However, humans extend BH through phasic involuntary diaphragmatic
contractions, especially under certain circumstances, such as free diving [5].

The question is: can sensors detect movement patterns associated with these invol-
untary contractions? This question is crucial for abnormal breathing detection, and the
answer is in the duration and strength of involuntary muscle contractions during the
struggle phase (SP). SP is a phase in which involuntary breathing movements (IBMs)
appear due to deep muscle involuntary contractions. Thus, invasive methods, such as
pressure transducer-based catheters, can capture them [6]; non-invasive methods, such as
surface electromyography (sEMG) and force plates during strong contractions associated
with IBM, can also be applicable [4,7,8]. IBM starts with the physiological breakpoint (PB,
the point where the first IBM appears) and ends with the conventional breakpoint (CB,
the point where breathing is resumed voluntarily) [7]. The IBMs are periodic and very
subtle and are controlled autonomously during SP [4]. Thus, rhythmic varying patterns of
IBMs associated with involuntary periodic contractions can be acquired using force-based
non-invasive methods.

Previous studies used simple computational models to detect phases during BH (onset
and end offset of the IBM phase) [6]. However, the IBM phase is more complex than just
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onset and end offset. IBMs in SP are rapid continuous movements of varying magnitudes.
Previous studies have shown complex varying phases of IBMs, as IBM amplitudes and
frequencies continued increasing until the CB [9,10]. Thus, using a simple model, it is hard
to detect patterns or sub-phases in a movement of such nature. Moreover, the current
literature does not present methods to recognize such sub-phases within the IBM phase.
Therefore, methods emphasizing detecting patterns or sub-phases within the IBM phase
are of importance in clinical science and should be developed. Hence, the goal of our study
was to design such a method. We refer to the IBM phase as several events or patterns of
IBMs during the SP.

In this study, we present a novel scheme (shown in Figure 1) that can recognize
different sub-phases within the IBM phase during BH, and classify them accordingly.
The force sensors were used to capture kinetics associated with IBMs as they comprise
mechanical components [4]. We did not use force data directly for the categorization
because kinematic patterns of rapid movements can be quantified nicely through jerk and
acceleration. Hence, rapid movements related to involuntary contractions during BH were
estimated using acceleration and jerk. These outputs were later used as features for pattern
recognition and classification of IBM sub-phases.

IBM phase and NM phase

IBM phase and NM phase

Ascending or Descending Order

IBM phase and NM phase

Model Training 

and Validation

(Training data)

Figure 1. The framework for the clustering and classification of IBM phases.
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2. Materials and Methods

The IRB review board of Colorado Mesa University has approved this study. In this
study, we recruited eight healthy participants who were recreational divers. Divers gener-
ally have higher lung capacities and better control of their breathing due to years of intense
training. This makes them a better fit for our study. The demographic data of participants
recruited in our study are listed in Table 1.

Table 1. Demographic data of participants.

Participant
ID Sex Ageu Heightv Massw Experienceu

P1 Male 20 s 183.5 87.5 6
P2 Female 20 s 174.5 72.0 6
P3 Male 20 s 183.0 78.0 15
P4 Male 20 s 171.0 67.0 1
P5 Female 20 s 164.0 63.5 12
P6 Male 20 s 190.0 79.0 2
P7 Male 20 s 174.5 89.5 3
P8 Male 20 s 189.0 114.0 5

ine Avg ± Sd 178.7 ± 9.1 81.3 ± 16.0 6.25 ± 4.9

Units:- u years, v centimeters, w kilograms, u years, Avg is average, Sd is standard deviation.

2.1. Experimental Design

Data collection for each participant involved a single visit to our lab. On the visit,
signed consent was obtained, and data regarding the participant’s age, gender, height,
weight, and years of experience were recorded, as shown in Table 1. Participants were also
instructed to avoid eating, drinking, and exercising two hours before the data collection.
Two AMTI force plates were used to acquire the data from the participants at a sampling
rate of 1 KHz. The force plates contained load cells that could measure the force associated
with movement. We asked the participant to lay in a supine position on the force plates.
Participants were in static postures, covering the force plate surfaces mostly with their upper
and middle backs. Moreover, to maintain a comfortable posture during data collection,
a cushion and a rolled-up pad were positioned under each participant’s head and knees.

We introduced a warm-up session in three steps. In the first step, participants breathed
normally (relaxation) for five minutes followed by a minute of BH. In the second step,
the relaxation period was reduced to two minutes, and the BH phase was incremented by
an additional sixty seconds from the previous step. In the third step, participants relaxed
again, followed by three minutes of BH.

Prior to data collection, participants were given enough relaxation periods. For data
collection, they were asked to hold their breath as long as they could. The data were recorded
from the participant’s first inhalation (starting BH) to voluntary exhalation (ending BH).
The participants were asked to lay down after data collection until lightheaded subsided.

2.2. Data Analysis

We used R programming software (R 4.2.0) for signal processing and data analysis.
The supine posture and the muscle spasm exerted force vertically, resulting in the appear-
ance of IBMs (primarily in the vertical direction) (z). Hence, force plates were used to
capture this biological phenomenon, and the force data in the vertical direction (vertical
ground reaction force) were analyzed.

The IBMs appeared later during the BH. Thus, we segmented vertical ground reaction
force data into the no-movement (NM) phase and IBM phase through visual inspections.
The NM phase data consisted mostly of baseline noise. The IBM phase consisted of several
IBM events. Hence, it was easy to isolate these two phases with visual inspections.

The segmented data were time-normalized (spline interpolation) to 10,000 time points for
the IBM phase (10,000 × 1) and NM phase (10,000 × 1) for each participant (10,000 × 1 × 8).
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Later, the segmented data were smoothed using a root mean square function with a window
size of 50 ms. The IBM and NM data (time normalized and smoothed) were combined to
form a processed vertical ground reaction force data vector (20,000 × 1 × 8).

2.3. Acceleration and Jerk Estimation

Participants experienced no significant center of mass (COM) displacement of other
body segments due to their static postures. Therefore, we assumed full body COM in the
chest; acceleration (~a) and jerk (~j) of the IBM phase were estimated from the processed
vertical ground reaction force (Fz), as shown below.

~Fz
20000×1

= ~Fa
20000×1

+ W (1)

~Fz
20000×1

= m × (~a 20000×1
COM + g) (2)

~az
20000×1 =

~Fz
20000×1

m
− g (3)

~jz
20000×1

=
δ~az

δt

20000×1
(4)

~Fa is the dynamic force data vector due to the accelerating center of mass (~aCOM), W
is the weight of the participant’s chest, m is the mass of the participant’s chest. The par-
ticipant’s chest mass is calculated from the thorax percentage contribution to full-body
mass [11], and g is the acceleration due to gravity. The superscript displays the dimension
of the data vector for a single participant in Equations (1)–(4).

2.4. Phase Portraits of Jerk and Acceleration

A phase portrait (~P) is a geometric representation of the dynamic trajectories in the
phase plane [12]. The~a and~j data were used to develop phase portraits for feature selection
and extraction. The phase portraits yielded phases that overlapped between the IBM
and NM phases. Thus, developing phase portraits were crucial to remove phases and
frequencies that overlapped between the NM and IBM phases. Feature selection and
extraction through phase portraits may be useful to enhance the performance (accuracy,
computation, robustness) of our pattern recognition and detection scheme.

~P 20000×2 = (x =~a, y =~j) (5)

We first separated the data points overlapping between the IBM and NM phases
by sorting the values of~a and~j in descending/ascending order from the phase portraits.
These samples of ~a and ~j were then shuffled randomly and independently so that the
features represented unbiased populations of the data. Furthermore, peak envelopes, lower
(~aRMS(u),~jRMS(u)), and upper envelopes (~aRMS(l),~jRMS(l)) were extracted. These features
were finally used for unsupervised and supervised learning.

2.5. Unsupervised Learning

We performed unsupervised learning to recognize similarities and/or dissimilarities
between the IBM and NM phases and to recognize specific patterns/sub-phases/groups
within the IBM phase. These groups were labeled as different classes for classification.

The K means cluster analysis was implemented on the extracted features
(~aRMS(u),~jRMS(u),~aRMS(l),~jRMS(l)) as an unsupervised learning algorithm. The K means
clustering algorithm groups the data points within these features based on their similarity
into clusters.

2.6. Statistical Analysis

To test the normality, we performed the Kolmogorov–Smirnov test. The type (paramet-
ric or non-parametric) of test to compare the difference between the IBM and NM phases
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was based on the rejection of the null hypothesis. We considered a significance value of
p < 0.05 to reject the null hypothesis [13].

Additionally, the equality of variance between the NM and IBM phases was tested
with Levene’s test [14]. The Wilcoxon signed rank paired test was used to compare the
median of the NM and IBM phase [15]. Violin and box plots were used to display the
distribution, mean, and standard deviation of the data.

2.7. Supervised Learning

A supervised learning approach was implemented to isolate the onset of different
sub-phases of IBMs with a classifier. We developed a classification model with training data
that made no assumption about the normality of data. We used support vector machine
(SVM), naive Bayes (NB), decision tree (DT), and K-nearest neighbor (K-NN) as classifiers.

The features that were grouped into different clusters (NM phase and different IBM
sub-phases) are labeled as different classes for supervised learning. Furthermore, these
labeled features were split into a ratio of 75:25 for training (~a 15000×1

RMS(u) , ~j 15000×1
RMS(u) , ~a 15000×1

RMS(l) ,
~j 15000×1

RMS(l) ) and testing (~a 5000×1
RMS(u),

~j 5000×1
RMS(u),~a

5000×1
RMS(l),

~j 5000×1
RMS(l)) data. The training data were used

to train the classification model, and the test data were used to evaluate the accuracy of the
model. We also used the K-fold cross (K = 10) validation procedure to validate our training
model before evaluating its accuracy with testing data.

3. Results
3.1. IBM Phase vs. NM Phase

We first tested whether the IBMs were present in the vertical ground reaction force,
and were detectable through test statistics. Hence, we used nonparametric tests after testing
the distribution of data. We found that vertical ground reaction force data were statistically
significant (p ≤ 0.05, Wilcoxon signed-rank paired test) between the IBM and NM phases.
The force amplitude’s median values were different between the IBM and NM phases, as
shown in Figure 2.
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Force differences in different phases 

P8P7P6P5

P4P3P2P1

IBM NM IBM IBM IBMNM NM NM

Wilcoxon sign rank test (p < 0.05), Levene's test (p < 0.05)

Figure 2. The top panels (labeled with participant IDs—P1, P2, P3, P4) and the bottom panels (labeled
with participant IDs—P5, P6, P7, P8) show the violin plots of the respective participants. The y-axis is
a normalized force value. The A box plot is also encapsulated within the violin plot. The gray region
represents the high spikes (outliers) in the data, and the p values for each participant are displayed
on the top of each panel. The p value describes the results for both tests as differences in median and
variance were statistically significant for all participants.

Moreover, statistically significant differences (p ≤ 0.05, Levene’s test) in the variances
of the ground reaction forces between the NM and IBM phases were present for all partici-
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pants. Figure 2 shows the distribution of the vertical ground reaction force data for all of
the participants.

The high variance during the IBM phase was due to a periodic signal output of varying
amplitude. Hence, the IBMs of varying magnitudes were present in the force data and were
detected using an appropriate statistical measure.

3.2. Phase Portraits of Jerk and Acceleration

The phase portraits generated from the estimated~a and~j were then used for feature
selection and extraction. We found clear isolation between the IBM phase and NM phase
from the phase portraits and their density plot, as shown in Figure 3.

Figure 3. Jerk acceleration phase portraits with densities. On the top right side of the figure,
the coordinates showing the x-axis and y-axis displayed~a and~j normalized values. (A) The top eight
panels display phase portraits for all the participants. Thus, each panel shows a phase portrait of a
participant. The phase portrait indicates rhythmicity of varying magnitudes (amplitudes) during the
IBM phase. (B) The bottom eight panels show the density of data points in the phase portraits. Thus,
each panel displays the density plot of a participant. The NM phase and IBM phase isolation are
visible. The x (~a) and y (~j) axes values are normalized between (−1,1) across participants for better
visual representation. A spectrum of densities (bottom) can be observed during the IBM phase, which
is associated with different sub-phases during SP. Overall, these figures show the phasic nature of
contractions during the IBM.

The data points for the NM phase were concentrated at a specific region of less
magnitude around the baseline signal. The data density was also high in this region as
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shown in Figure 3. Thus, the BH data were mostly composed of baseline noise associated
with the NM phase.

The IBM phase concentrically surrounded the NM phase area. These concentric circles
represent the regions of low, moderate, and high magnitude of~a and~j as shown in Figure 3.
These different regions within the IBM phase suggest different sub-phases or patterns
within the IBM phase. In addition, the circular shape of the phase portrait suggests the
presence of some rhythmic patterns of IBMs.

3.3. Clustering

The goal of clustering is to identify sub-phases within the IBM phase. However, we
first determined the optimal number of clusters (K) that needed to be defined in the K
means algorithm. We found that based on total withinness, five to six clusters were optimal
for the goodness of clustering across most participants.

We then tested (through clustering) whether the IBM phase was a biological phe-
nomenon comprising varying magnitudes of ~a and ~j. We extracted peak minima and
maxima values of the NM and IBM phases (sliding window = 25 samples) from the phase
portraits before feeding them to K means algorithm. The cluster analysis displays clear
isolation between the NM and IBM phases. Moreover, it also shows the separation of
sub-phases within the IBM phase.

The cluster analysis shows that clusters 1 and 6 consist of the NM phase and few IBM
data points. The centroid of these clusters was toward the point of origin (0,0) and (~a, 0),
suggesting an overlap between the NM and IBM phases due to no activity. The values
slightly above (0,0) for~a and~j in cluster 1 and 6 suggest IBM onset. Moreover, the constant
~a of higher magnitude was also grouped in clusters 1 and 6.

Clusters 2, 3, 4, and 5 mainly represent the IBM phase. The centroid of clusters 2, 3 4, and 5
showed varying degrees of~a and~j during the IBM phase, as shown in Figure 4. These clusters
explained phases of~a and~j with (high, high), (high, moderate), (moderate, high), and (moderate,
moderate) magnitudes. The categorical names here were based on the relative magnitudes of
the centroids. Thus, different patterns or sub-phases were present and identified during the IBM
phase using K means clustering.

P8P6

Figure 4. K means cluster analysis for all of the participants. Each panel shows the results of K
means clustering for a single participant. The magnitudes for~a on the x-axis and~j on the y-axis were
normalized between 0 and 1, and −1 and 1, respectively. The NM and IBM phases are represented by
circle and triangle shapes, respectively. Clusters 1 and 6 show overlap between NM and certain IBM
sub-phases, whereas clusters 2, 3, 4, and 5 show more patterns revealing different sub-phases of IBM.
For one participant, a few NM phase data points were clustered into cluster 2 due to the noise.

3.4. Classification

Supervised learning classified these complex patterns or sub-phases with a compu-
tational model. Our aim of classification was to design a scheme that detects clustered
regions with high accuracy.
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We trained different classifiers for the labeled data. The data were labeled based on
the clusters. We performed 10-fold cross-validation procedure to validate our classification
model (shown in Figure 5A). We further evaluated the model accuracy with the testing
data. We found that our classification model could predict with an accuracy of 96.5–99.9%.
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Figure 5. (A) The top four panels with boxplots show the classifier performances using 10-fold
cross-validation; thus, each panel displays a specific classifier. The y-axis shows validation accuracy
in decimal points. The features were selected and extracted to train the model from 5 to 11 classes,
and a 10-fold cross-validation was performed before the performance evaluation with testing data.
The class numbers were also changed to test the sensitivity of accuracy. (B) The lower panel shows
the relationship between the number of classes and the accuracy of the DT classifier on data without
features. The x-axis shows the number of clusters and the y-axis shows percentage accuracy. The DT
accuracy decreased when the number of clusters or classes increased, especially when features were
not selected and extracted.

We also trained models without feature selection and extraction. We found that the
accuracies of those models were consistent with most algorithms, except DT, as shown in
Table 2. DT accuracy was also sensitive to the number of classes when no features were
selected or extracted, as shown in Figure 5B. The processing speed also slowed down for
most algorithms due to the increased computation costs, as shown in Table 2.
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Table 2. Comparison of the accuracies of different methods evaluated using testing data.

Classifier Clusters
K = 5

Accuracy%(Duration) Accuracy%
(Duration)

Features sel. No Features sel.

K-NN 99.9 (Low) 99.9 (Moderate)
NB 99.9 (Low) 99.3 (Low)

SVM 99.9 (Low) 99.7 (Very High)
DT 99.9 (Low) 58.0 (High)

Note: The categorical values were used to specify processing speeds rather than quantitative values (because
quantitative values representing the processing speeds varied depending on the hardware (processor)). Moreover,
the tuning parameters for classifiers were fixed while comparing feature selection and extraction against no-feature
selection. This removes the analysis bias.

However, the feature selection reduced the computation costs without loss of accuracy
(robustness). In addition, we found that feature selection improves DT accuracy, as shown
in Table 2. Therefore, our scheme provided low computation costs with feature selection
and higher accuracy with different classifiers. Thus, our model can classify or detect
different sub-phases during the IBM phase with high accuracy using different algorithms,
and low computation costs, as shown in Table 2.

4. Discussion

We developed a pattern recognition and classification scheme to detect different sub-
phases of IBMs during BH. We used force plates and estimated ~a and ~j to quantify the
movements during contractions. Furthermore, we used phase portraits as a means to
select features for our clustering and classification algorithms. We found that our designed
scheme had a high processing speed, robustness, and accuracy using classifiers such as
SVM, NB, DT, and K-NN. Our scheme will be of significant interest to practitioners working
with the breathing disorder population. It can assist in detecting certain events of varying
intensities within the IBM phase, thus diagnosing the extent of the breathing problem.

The use of kinetic, kinematics, and neural signals (EMG) is not uncommon for move-
ment classification [16–18]. Based on the application of our study, the duration and strength
of IBMs, kinetics, and kinematics are better choices for signal classification. A sensor review
study validates it [19]. Moreover, sEMG-based classification was challenging because the
muscles associated with IBMs are mostly deep (intercostal and diaphragm).

The circular geometry estimated from~a and~j phases during BH suggests rhythmic
kinematic patterns of IBMs. Phase portrait-based comparative studies were performed
on the locomotion of patients with Parkinson’s and without Parkinson’s that validate this
hypothesis [20]. Although previous studies focused on movements where the joint angles
during muscle contractions changed [21], our study is the first to use phase portraits for
involuntary contraction analysis. Moreover, the variability in IBM amplitudes appeared as
concentric circles in the phase portraits. Thus, the phase portraits provided good indicators
of periodicity in signals with varying amplitudes. Moreover, phase portraits provided
data about redundant features and crucial features. The redundant features were removed,
whereas crucial features were extracted for cluster analysis. The processing, selection,
and extraction of features using phase portrait increased the classification accuracy and
reduced the computation burden.

4.1. Physiological Interpretation of Clusters

We used clusters to group different phases of the IBM phase. These groups displayed
changes in~a and~j data values during a BH. We found from these clusters that there were
sub-phases of low, moderate, and high magnitude within the IBM phase. The low values of
~a and~j during IBMs were clustered with the NM phase in clusters 1 and 6. The low values
of~a and~j in these clusters represented the onset of IBM. Moreover, the high and moderate
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data values of the IBM phase grouped in clusters 2, 3, 4, and 5 had physiological relevance
to extend BH.

Our study showed that different levels of~a and~j clustered in groups 2, 3, 4, and 5
were correlated with force and associated with increasing IBM or the struggle phase during
BH. The struggle phase is a phase in which participants can hold their breath beyond
PB before reaching CB [10]. A previous study showed that increased amplitude and the
frequency of pressure signals are indicators of struggle termination [6,7,10]. In our study,
we observed similar results for most participants, where force amplitude incremented
continuously until the end of the SP, as shown in Figure 6B. However, in a few participants,
the signal amplitude decayed before the SP ended, as shown in Figure 6A. The low force
signal amplitude before the SP ended could have been due to a high fatigue index and low
energy expenditure, as the O2 level in blood during BH was depleting [22,23].
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EP or NM SP CB

Normalized Time in Seconds

PB

Figure 6. Raw force signal during BH. The top panel (A) and bottom panel (B) show force signals for
two different participants. The x-axis is the normalized time in seconds. The time was normalized
across participants for better visual representation. The y-axis is the force magnitude in newtons,
which was not normalized here. The gray region shows NM (or the easy phase (EP)), the white
region shows SP, and the red region, starting from the CB, shows the end of BH. The spikes appearing
during BH are movement artifacts due to some position changes on the force plates, which were
later removed from the analysis. (A) The force signal for a participant displaying a slight decrease in
amplitude near the end of SP. (B) The force signal for a participant showing continuously increasing
amplitude until the end of SP.

4.2. Accuracy, Speed, and Robustness

We used different classifiers that made no assumption about normality, such as SVM,
DT, NB, and K-NN [24–27]. Our study also showed that the classification accuracy did not
improve radically with feature selection and extraction as most classifiers performed well
with the raw data. Moreover, accuracy did not decrease with an increase in the number
of classes (clusters, K = 5 to 11). This creates a question about our scheme (pertaining to



Biomechanics 2022, 2 535

whether feature selection using phase portraits was necessary). The answer depends on the
criteria considered for detection because we also found that the greedy algorithm, such as
DT classification accuracy, was sensitive to feature selection, extraction, and the number of
classes. Therefore, if the goal is to detect different IBM sub-phases with high accuracy and
ignore other aspects, such as processing time and flexibility of using different algorithms,
then feature selection and extraction using phase portraits are not necessary. However,
ignoring these criteria will increase the hardware costs as faster processors and built-in
computation methods will be needed. Therefore, our detection scheme offers high accuracy,
speed, and flexibility with other algorithms without loss of accuracy (robustness).

The other aspect of the classification accuracy of our scheme is parameter optimization.
We mentioned in our results that we kept parameters consistent while comparing the
accuracy with and without feature selection. Hence, the DT model without features was
not optimized subjectively to attain higher accuracy. The rationale was to reduce any
analysis bias. However, the biased approach of optimizing the parameters for higher
accuracy of the DT training model will not change the fact that there will still be a trade-off
between accuracy and speed. Therefore, in our study, feature selection and extraction using
phase portraits were of significant importance as they reduced the constraints related to
the processing speed without impact accuracy [28], especially for greedy deterministic
algorithms, such as DT.

4.3. Limitations and Future Work

There were information-based constraints with two-dimensional features (~a, ~j) in
this study. The lack of high-dimensional feature space limited the degree of freedom to
process enough information. However, additional information could be captured using
multichannel sensors with a high sampling rate. The inertial measurement unit (IMU) sen-
sors could be alternates [19,29]. The IMUs were embedded with accelerators, gyroscopes,
and magnetometers, and they could provide linear and rotational kinematic data about
IBM in the vertical direction [29,30]. Therefore, a high-dimensional feature space can be
acquired using such sensors and will be the scope of our future studies.

In addition, our study did not account for the relationships between physiological
factors [31] (such as motivation level, blood lactic acid level, lung volume, partial levels
of O2 and CO2 (PO2 and PCO2), and IBM sub-phases. Therefore, in this study, IBM’s
physiological role was inferred. These physiological factors are the key factors for SP
characteristic determination [7,10]. Thus, we could not develop a concrete relationship
between IBM sub-phases and SP physiological characteristics. It is something we will
consider studying in the future.

5. Conclusions

We found in our study that IBMs during BH could be captured through force sensors.
In this study, we developed a pattern recognition and classification scheme using estimated
~a and~j from the vertical ground reaction force. The~a and~j were used to quantify the rapid
movements associated with involuntary contractions. Our scheme recognizes and classifies
the IBM phase from the NM phase during BH, and also identifies and classifies different
sub-phases of varying (low, moderate, and high) magnitudes within the IBM phase. We
also developed phase portraits using~a and~j to select and extract specific features so that
the accuracy, robustness, and computational costs of our scheme could be enhanced. To the
best of our knowledge, this is the first study that developed a pattern recognition and
classification scheme to detect IBMs from vertical ground reaction force.
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