Upcycling Medical Tablet Blister Waste into High-Performance Triboelectric Nanogenerators for Sustainable Energy Harvesting
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Material Characterization
3.2. Electrical Characterization of the TENG
3.3. Applications of TS-TENGs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moustakas, K.; Loizidou, M.; Klemes, J.; Varbanov, P.; Hao, J.L. New Developments in Sustainable Waste-to-Energy Systems. Energy 2023, 284, 129270. [Google Scholar] [CrossRef]
- Themelis, N.J. An Overview of the Global Waste-to-Energy Industry. Waste Manag. World 2003, 40–48. [Google Scholar]
- Shahabuddin, M.; Uddin, M.N.; Chowdhury, J.I.; Ahmed, S.F.; Uddin, M.N.; Mofijur, M.; Uddin, M.A. A Review of the Recent Development, Challenges, and Opportunities of Electronic Waste (e-Waste). Int. J. Environ. Sci. Technol. 2023, 20, 4513–4520. [Google Scholar] [CrossRef]
- Foster, W.; Azimov, U.; Gauthier-Maradei, P.; Molano, L.C.; Combrinck, M.; Munoz, J.; Esteves, J.J.; Patino, L. Waste-to-Energy Conversion Technologies in the UK: Processes and Barriers—A Review. Renew. Sustain. Energy Rev. 2021, 135, 110226. [Google Scholar] [CrossRef]
- Krishnan, S.; Zulkapli, N.S.; Kamyab, H.; Taib, S.M.; Din, M.F.B.M.; Majid, Z.A.; Chaiprapat, S.; Kenzo, I.; Ichikawa, Y.; Nasrullah, M.; et al. Current Technologies for Recovery of Metals from Industrial Wastes: An Overview. Env. Technol. Innov. 2021, 22, 101525. [Google Scholar] [CrossRef]
- Anuar Sharuddin, S.D.; Abnisa, F.; Wan Daud, W.M.A.; Aroua, M.K. A Review on Pyrolysis of Plastic Wastes. Energy Convers. Manag. 2016, 115, 308–326. [Google Scholar] [CrossRef]
- Makarichi, L.; Jutidamrongphan, W.; Techato, K. The Evolution of Waste-to-Energy Incineration: A Review. Renew. Sustain. Energy Rev. 2018, 91, 812–821. [Google Scholar] [CrossRef]
- Lopez, G.; Artetxe, M.; Amutio, M.; Alvarez, J.; Bilbao, J.; Olazar, M. Recent Advances in the Gasification of Waste Plastics. A Critical Overview. Renew. Sustain. Energy Rev. 2018, 82, 576–596. [Google Scholar] [CrossRef]
- Zhou, H.; Sun, S.; Xu, Y.; Zhang, Y.; Yi, S.; Wu, C. Upcycling Municipal Solid Waste to Sustainable Hydrogen via Two-Stage Gasification-Reforming. J. Energy Chem. 2024, 96, 611–624. [Google Scholar] [CrossRef]
- Cudjoe, D.; Wang, H. Plasma Gasification versus Incineration of Plastic Waste: Energy, Economic and Environmental Analysis. Fuel Process. Technol. 2022, 237, 107470. [Google Scholar] [CrossRef]
- Armenise, S.; SyieLuing, W.; Ramírez-Velásquez, J.M.; Launay, F.; Wuebben, D.; Ngadi, N.; Rams, J.; Muñoz, M. Plastic Waste Recycling via Pyrolysis: A Bibliometric Survey and Literature Review. J. Anal. Appl. Pyrolysis 2021, 158, 105265. [Google Scholar] [CrossRef]
- Emebu, S.; Pecha, J.; Janáčová, D. Review on Anaerobic Digestion Models: Model Classification & Elaboration of Process Phenomena. Renew. Sustain. Energy Rev. 2022, 160, 112288. [Google Scholar] [CrossRef]
- Zamri, M.F.M.A.; Hasmady, S.; Akhiar, A.; Ideris, F.; Shamsuddin, A.H.; Mofijur, M.; Fattah, I.M.R.; Mahlia, T.M.I. A Comprehensive Review on Anaerobic Digestion of Organic Fraction of Municipal Solid Waste. Renew. Sustain. Energy Rev. 2021, 137, 110637. [Google Scholar] [CrossRef]
- Kumar, K.U.; Hajra, S.; Mohana Rani, G.; Panda, S.; Umapathi, R.; Venkateswarlu, S.; Kim, H.J.; Mishra, Y.K.; Kumar, R.R. Revolutionizing Waste-to-Energy: Harnessing the Power of Triboelectric Nanogenerators. Adv. Compos. Hybrid Mater. 2024, 7, 91. [Google Scholar] [CrossRef]
- Ahmed, A.A.; Qahtan, T.F.; Owolabi, T.O.; Agunloye, A.O.; Rashid, M.; Mohamed Ali, M.S. Waste to Sustainable Energy Based on TENG Technology: A Comprehensive Review. J. Clean. Prod. 2024, 448, 141354. [Google Scholar] [CrossRef]
- Basith, S.A.; Khandelwal, G.; Mulvihill, D.M.; Chandrasekhar, A. Upcycling of Waste Materials for the Development of Triboelectric Nanogenerators and Self-Powered Applications. Adv. Funct. Mater. 2024, 34, 2408708. [Google Scholar] [CrossRef]
- Sahu, M.; Hajra, S.; Jadhav, S.; Panigrahi, B.K.; Dubal, D.; Kim, H.J. Bio-Waste Composites for Cost-Effective Self-Powered Breathing Patterns Monitoring: An Insight into Energy Harvesting and Storage Properties. Sustain. Mater. Technol. 2022, 32, e00396. [Google Scholar] [CrossRef]
- Sahu, M.; Hajra, S.; Kim, H.G.; Rubahn, H.G.; Kumar Mishra, Y.; Kim, H.J. Additive Manufacturing-Based Recycling of Laboratory Waste into Energy Harvesting Device for Self-Powered Applications. Nano Energy 2021, 88, 106255. [Google Scholar] [CrossRef]
- Sahu, M.; Hajra, S.; Panda, S.; Rajaitha, M.; Panigrahi, B.K.; Rubahn, H.G.; Mishra, Y.K.; Kim, H.J. Waste Textiles as the Versatile Triboelectric Energy-Harvesting Platform for Self-Powered Applications in Sports and Athletics. Nano Energy 2022, 97, 107208. [Google Scholar] [CrossRef]
- Panda, S.; Hajra, S.; Kim, H.-G.; Achary, P.G.R.; Pakawanit, P.; Yang, Y.; Mishra, Y.K.; Kim, H.J. Sustainable Solutions for Oral Health Monitoring: Biowaste-Derived Triboelectric Nanogenerator. ACS Appl. Mater. Interfaces 2023, 15, 36096–36106. [Google Scholar] [CrossRef]
- Fan, F.R.; Tian, Z.Q.; Wang, Z.L. Flexible Triboelectric Generator. Nano Energy 2012, 1, 328–334. [Google Scholar] [CrossRef]
- Wu, C.; Wang, A.C.; Ding, W.; Guo, H.; Wang, Z.L. Triboelectric Nanogenerator: A Foundation of the Energy for the New Era. Adv. Energy Mater. 2019, 9, 1802906. [Google Scholar] [CrossRef]
- Zhang, R.; Olin, H. Material Choices for Triboelectric Nanogenerators: A Critical Review. EcoMat 2020, 2, e12062. [Google Scholar] [CrossRef]
- Shanbedi, M.; Ardebili, H.; Karim, A. Polymer-Based Triboelectric Nanogenerators: Materials, Characterization, and Applications. Prog. Polym. Sci. 2023, 144, 101723. [Google Scholar] [CrossRef]
- Potu, S.; Kulandaivel, A.; Gollapelli, B.; Khanapuram, U.K.; Rajaboina, R.K. Oxide Based Triboelectric Nanogenerators: Recent Advances and Future Prospects in Energy Harvesting. Mater. Sci. Eng. R Rep. 2024, 161, 100866. [Google Scholar] [CrossRef]
- Shi, X.; Wang, W.; Wang, J.; Li, J.; Chen, H. Semiconductor-Based Direct Current Triboelectric Nanogenerators and Its Application. J. Semicond. 2024, 45, 121701. [Google Scholar] [CrossRef]
- Rajaboina, R.K.; Khanapuram, U.K.; Kulandaivel, A. 2D Layered Materials Based Triboelectric Self-Powered Sensors. Adv. Sens. Res. 2024, 3, 2400045. [Google Scholar] [CrossRef]
- Rajaboina, R.K.; Khanapuram, U.K.; Vivekananthan, V.; Khandelwal, G.; Potu, S.; Babu, A.; Madathil, N.; Velpula, M.; Kodali, P. Crystalline Porous Material-Based Nanogenerators: Recent Progress, Applications, Challenges, and Opportunities. Small 2024, 20, 2306209. [Google Scholar] [CrossRef]
- Song, K.Y.; Kim, S.W.; Nguyen, D.C.; Park, J.Y.; Luu, T.T.; Choi, D.; Baik, J.M.; An, S. Recent Progress on Nature-Derived Biomaterials for Eco-Friendly Triboelectric Nanogenerators. EcoMat 2023, 5, e12357. [Google Scholar] [CrossRef]
- Paosangthong, W.; Torah, R.; Beeby, S. Recent Progress on Textile-Based Triboelectric Nanogenerators. Nano Energy 2019, 55, 401–423. [Google Scholar] [CrossRef]
- Vikram, L.S.; Potu, S.; Kasireddi, A.K.D.P.; Khanapuram, U.K.; Divi, H.; Rajaboina, R.K. Biowaste Sea Shells-Based Triboelectric Nanogenerator: Sustainable Approach for Efficient Mechanical Energy Harvesting. Energy Technol. 2025, 13, 2401333. [Google Scholar] [CrossRef]
- Suneetha, V.L.; Mahesh, V.; Supraja, P.; Navaneeth, M.; Uday Kumar, K.; Rakesh Kumar, R. Facile and Robust High-Performance Triboelectric Nanogenerator Based on Electronic Waste for Self-Powered Electronics. Energy Technol. 2025, 13, 2401387. [Google Scholar] [CrossRef]
- Varghese, H.; Chandran, A. Triboelectric Nanogenerator from Used Surgical Face Mask and Waste Mylar Materials Aiding the Circular Economy. ACS Appl. Mater. Interfaces 2021, 13, 51132–51140. [Google Scholar] [CrossRef]
- Shen, D.; Xiao, M.; Zhao, X.; Xiao, Y.; Duley, W.W.; Zhou, Y.N. Multifunctional Self-Powered Electronics Based on a Reusable Low-Cost Polypropylene Fabric Triboelectric Nanogenerator. ACS Appl. Mater. Interfaces 2021, 13, 34266–34273. [Google Scholar] [CrossRef]
- Navaneeth, M.; Potu, S.; Babu, A.; Rajaboina, R.K.; Kumar, U.; Divi, H.; Kodali, P. A Medical Waste X-Ray Film Based Triboelectric Nanogenerator for Self-Powered Devices, Sensors, and Smart Buildings. Environ. Sci. Adv. 2023, 2, 848–860. [Google Scholar] [CrossRef]
- Basith, S.A.; Chandrasekhar, A. COVID-19 Clinical Waste Reuse: A Triboelectric Touch Sensor for IoT-Cloud Supported Smart Hand Sanitizer Dispenser. Nano Energy 2023, 108, 108183. [Google Scholar] [CrossRef] [PubMed]
- Navaneeth, M.; Potu, S.; Babu, A.; Lakshakoti, B.; Rajaboina, R.K.; Kumar, K.U.; Divi, H.; Kodali, P.; Balaji, K. Transforming Medical Plastic Waste into High-Performance Triboelectric Nanogenerators for Sustainable Energy, Health Monitoring, and Sensing Applications. ACS Sustain. Chem. Eng. 2023, 11, 12145–12154. [Google Scholar] [CrossRef]
- Lakshmi Suneetha, V.; Supraja, P.; Uday Kumar, K.; Rakesh Kumar, R. Sustainable Energy Harvesting from Medical Waste: Utilizing Discarded Ointment Tubes in Triboelectric Nanogenerators. Mater. Lett. 2024, 377, 137350. [Google Scholar] [CrossRef]
- Chougale, M.Y.; Saqib, Q.M.; Khan, M.U.; Shaukat, R.A.; Kim, J.; Dubal, D.; Bae, J. Expired Pharmaceutical Drugs as Tribopositive Material for Triboelectric Nanogenerator. Adv. Sustain. Syst. 2021, 5, 2100205. [Google Scholar] [CrossRef]
- Yang, R.; Qin, Y.; Li, C.; Dai, L.; Wang, Z.L. Characteristics of Output Voltage and Current of Integrated Nanogenerators. Appl. Phys. Lett. 2009, 94, 92–95. [Google Scholar] [CrossRef]
- Vivekananthan, V.; Chandrasekhar, A.; Alluri, N.R.; Purusothaman, Y.; Kim, S.J. A Highly Reliable, Impervious and Sustainable Triboelectric Nanogenerator as a Zero-Power Consuming Active Pressure Sensor. Nanoscale Adv. 2020, 2, 746–754. [Google Scholar] [CrossRef] [PubMed]
- Behera, S.A.; Kim, H.G.; Jang, I.R.; Hajra, S.; Panda, S.; Vittayakorn, N.; Kim, H.J.; Achary, P.G.R. Triboelectric Nanogenerator for Self-Powered Traffic Monitoring. Mater. Sci. Eng. B 2024, 303, 117277. [Google Scholar] [CrossRef]
- Behera, S.A.; Kaja, K.R.; Hajra, S.; Panda, S.; Sahu, A.K.; Belal, M.A.; Alagarsamy, P.; Vivekananthan, V.; Kim, H.J.; Achary, P.G.R. Self-Powered Wind Flow Monitoring Unit Using Lead-Free Composites-Based Triboelectric Nanogenerator. ACS Appl. Energy Mater. 2025, 8, 6688–6698. [Google Scholar] [CrossRef]
- Liu, W.; Wang, Z.; Wang, G.; Zeng, Q.; He, W.; Liu, L.; Wang, X.; Xi, Y.; Guo, H.; Hu, C.; et al. Switched-Capacitor-Convertors Based on Fractal Design for Output Power Management of Triboelectric Nanogenerator. Nat. Commun. 2020, 11, 1883. [Google Scholar] [CrossRef] [PubMed]
- Mishra, S.; Supraja, P.; Haranath, D.; Kumar, R.R.; Pola, S. Effect of Surface and Contact Points Modification on the Output Performance of Triboelectric Nanogenerator. Nano Energy 2022, 104, 107964. [Google Scholar] [CrossRef]




| Sl. No | Medical Waste Type | Opposite Layer | Voltage (V) & Current (µA) | Power Density | Application | Ref. |
|---|---|---|---|---|---|---|
| 1 | Surgical face mask | Mylar | 200 and 48.3 | 71.16 mW/m2 | Lighting low-power electronic devices | [33] |
| 2 | Laboratory waste (plastic, PET, aluminum, nitrile gloves) | PET | 185 and 1.25 | 81 mW/m2 | Self-powered human tracking device | [18] |
| 3 | Surgical mask (polypropylene) | AL | 60 and 3.5 | 18 mW/m2 | Self-powered touching sensor | [34] |
| 4 | X-ray sheets | Silicone | 201 and 62.8 | 1.39 W/m2 | Self-powered indicator displays and force sensor | [35] |
| 5 | COVID-19 clinical waste (masks and gloves) | Nitrile rubber | 50.7 and 4.8 | 63.9 mW/m2 | Touch sensor, smart hand sanitizer dispenser | [36] |
| 6 | Saline bottle sheets | Silicone | 500 and 105 | 8.78 W/m2 | Health monitoring and sensing | [37] |
| 7 | Medical ointment tubes | Silicone | 405 and 82 | 658 mW/m2 | Lighting low-power electronic devices | [38] |
| 8 | Expired pharmaceutical drugs | PET | 561 and 53 | 1.63 W/m2 | Lighting low-power electronic devices | [39] |
| 9 | Tablet blister waste | Silicone | 300 and 40 | 3.54 W/m2 | LED lamps, and portable electronic devices continuously. | Present work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suneetha, V.L.; Mahesh, V.; Uday Kumar, K.; Kumar, R.R. Upcycling Medical Tablet Blister Waste into High-Performance Triboelectric Nanogenerators for Sustainable Energy Harvesting. Nanoenergy Adv. 2025, 5, 19. https://doi.org/10.3390/nanoenergyadv5040019
Suneetha VL, Mahesh V, Uday Kumar K, Kumar RR. Upcycling Medical Tablet Blister Waste into High-Performance Triboelectric Nanogenerators for Sustainable Energy Harvesting. Nanoenergy Advances. 2025; 5(4):19. https://doi.org/10.3390/nanoenergyadv5040019
Chicago/Turabian StyleSuneetha, Vikram Lakshmi, Velpula Mahesh, Khanapuram Uday Kumar, and Rajaboina Rakesh Kumar. 2025. "Upcycling Medical Tablet Blister Waste into High-Performance Triboelectric Nanogenerators for Sustainable Energy Harvesting" Nanoenergy Advances 5, no. 4: 19. https://doi.org/10.3390/nanoenergyadv5040019
APA StyleSuneetha, V. L., Mahesh, V., Uday Kumar, K., & Kumar, R. R. (2025). Upcycling Medical Tablet Blister Waste into High-Performance Triboelectric Nanogenerators for Sustainable Energy Harvesting. Nanoenergy Advances, 5(4), 19. https://doi.org/10.3390/nanoenergyadv5040019

