
Citation: Huang, X.; Qi, Y.; Bu, T.; Li,

X.; Liu, G.; Zeng, J.; Fan, B.; Zhang, C.

Overview of Advanced Micro-Nano

Manufacturing Technologies for

Triboelectric Nanogenerators.

Nanoenergy Adv. 2022, 2, 316–343.

https://doi.org/10.3390/

nanoenergyadv2040017

Academic Editor: Sang Min Lee

Received: 13 October 2022

Accepted: 21 November 2022

Published: 25 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Review

Overview of Advanced Micro-Nano Manufacturing
Technologies for Triboelectric Nanogenerators
Xinlong Huang 1,2,†, Youchao Qi 1,3,†, Tianzhao Bu 1,3, Xinrui Li 1, Guoxu Liu 1,3, Jianhua Zeng 1,2, Beibei Fan 1,2

and Chi Zhang 1,2,3,*

1 CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor,
Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China

2 Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University,
Nanning 530004, China

3 School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
* Correspondence: czhang@binn.cas.cn
† These authors contributed equally to this work.

Abstract: In the era of the Internet of Things, various electronics play an important role in information
interaction, in which the power supply is an urgent problem to be solved. Triboelectric nanogenerator
(TENG) is an emerging mechanical energy harvesting technology that can serve as a power source for
electronics, which is developing towards high performance, miniaturization and integration. Herein,
the advanced micro-nano manufacturing technologies are systematically reviewed for TENGs. First,
film preparation such as physical vapor deposition, chemical vapor deposition, electrochemical
deposition, electrospinning and screen printing for triboelectric layers are introduced and discussed.
Then, surface processing, such as soft lithography, laser ablation, inductively coupled plasma and
nanoimprint for micro-nano structures on the surface of triboelectric layers are also introduced
and discussed. In addition, micro-electromechanical system fabrication for TENG devices such as
acoustic and vibration sensors, is introduced, and their current challenges are analyzed. Finally, the
challenges of the advanced micro-nano manufacturing technologies for the TENGs are systematically
summarized, and further development is prospected.

Keywords: triboelectric nanogenerator; advanced micro-nano manufacturing technologies; triboelectric
layer; micro-nano structure; MEMS

1. Introduction

With the development of the Internet of Things (IoT), electronics are connected to the
IoT in increasing numbers. It is estimated that at least 30 billion objects will be linked to IoT
by 2025 [1]. Generally, storage devices such as capacitors and batteries are the most common
methods of driving electronics [2]. Although the advancement of microelectronic technology
promotes the continuous development of electronics in the direction of miniaturization,
intelligence and low energy consumption, for trillions of batteries with a limited lifetime
and widespread distribution, monitoring, replacing and recycling batteries would be a vast
or even impossible task [3]. A large amount of clean energy in the natural environment
can be harvested to power these electronics. Among them, mechanical energy is the most
widely distributed form in the environment, which is hardly affected by weather conditions
and the working environment [4]. Hence, harvesting mechanical energy from the ambient
environment to drive electronics is undoubtedly a feasible solution to the power supply
problem. As an emerging mechanical energy harvesting technology, triboelectric nanogener-
ator (TENG) based on contact electrification and electrostatic induction was first proposed
by Wang’s group [5], which can convert diverse forms of mechanical energy into electrical
energy [6–10]. TENG has attracted extensive attention because of its advantages such as
low cost, extensive material selection, flexible structures, light weight, and high efficiency
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at low operating frequencies [11,12]. Currently, various TENG structures are designed to
harvest different forms of mechanical energy to provide in-situ power for many distributed
electronics connected to the IoT. Wang et al. [13] proposed a flexible seaweed-like TENG to
harvest wave energy and provide in-situ power for marine distributed sensors. Fu et al. [14]
designed an autonomous wireless anemometer for simultaneously harvesting wind energy
and wind speed sensing, which is based on a planetary rolling TENG providing in-situ power.
Xu et al. [15] reported an autonomous rainfall monitoring and wireless transmission system
driven by a raindrop TENG array. Nevertheless, the output performance, miniaturization and
integration of TENGs limit their further development and application in microelectronics.

In the preparation of triboelectric layers, spin coating is a common method. Many
materials could be spin-coated to prepare triboelectric layers, such as graphene [16],
polydimethylsiloxane (PDMS) [17], polyvinylidene difluoride/polymethyl methacrylate
(PVDF/PMMA) [18] and polyvinyl alcohol/lithium chloride (PVA/LiCl) [19]. However, it
is difficult or even impossible to precisely control the triboelectric layers with a thickness of
nanometers by the spin coating method. It is difficult to prepare the triboelectric layers by
this method for some materials with excellent properties. Advanced micro-nano manufac-
turing technologies including chemical vapor deposition (CVD), electrochemical deposition
(ECD) and physical vapor deposition (PVD), can solve the above problems to prepare
high-performance triboelectric layers. Moreover, advanced micro-nano manufacturing
technologies such as soft lithography, laser ablation, inductively coupled plasma (ICP) and
nanoimprint can be used to fabricate micro-nano structures on the surface of the triboelec-
tric layers. It is encouraging that advanced micro-nano manufacturing technologies can
precisely control the size and thickness of TENGs, especially MEMS fabrication technology,
which greatly facilitates the development and application of TENGs in microelectronics.

This review focuses on the advanced micro-nano manufacturing technologies for
TENGs, as illustrated in Figure 1. In terms of advanced micro-nano manufacturing tech-
nologies, the film preparation for triboelectric layers is reviewed and discussed in Section 2.
Subsequently, the surface processing for micro-nano structures on the surface of triboelec-
tric layers is introduced and discussed in Section 3. Furthermore, the progress, issues
and challenges of micro-electromechanical system (MEMS) fabrication for TENG devices
(MEMS-TENGs) are introduced, analyzed and discussed in Section 4. Finally, the challenges
of the advanced micro-nano manufacturing technologies for TENGs are summarized, and
its potential opportunities are prospected.
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2. Film Preparation for Triboelectric Layers

Various thin-film fabrication technologies have been successively used to prepare
triboelectric layers. In this section, the preparation of triboelectric layers by PVD, CVD,
ECD, electrospinning and screen printing is introduced and discussed.

2.1. Physical Vapor Deposition

PVD is a deposition process in which molecules or atoms are transferred to the sub-
strate surface in the form of vapor through a low-pressure gaseous vacuum or plasma
environment for condensation [23]. PVD includes techniques such as electron-beam deposi-
tion, ion plating evaporation, sputtering and vacuum thermal deposition, which can realize
the thickness of the deposited layer from nanometer to millimeter. To efficiently harvest
acoustic energy, the thickness of the triboelectric layer and TENG should be controlled.
As shown in Figure 2a, Fan et al. [24] fabricated a paper-based TENG with a thickness
of less than 125 µm using PVD deposition of Cu with a thickness of 100 nm and polyte-
trafluoroethylene (PTFE, 25 µm thick) as a triboelectric pair for acoustic energy harvesting.
However, such a single-layer TENG may limit its application due to low output current [25].
Figure 2b exhibits a multi-layered stacked TENG (3D-TENG) based on Al and PTFE as
a triboelectric pair, in which Al was deposited on both sides of flat acrylic by PVD [25].
The outputs of all TENGs can be synchronized through 3D-TENG, so that the open-circuit
voltage (VOC), short-circuit current (ISC) and peak power density is 303 V, 1.14 mA and
104.6 W/m2, respectively.

Metals can be deposited not only on flat substrates but also on different shaped and
patterned substrates. As illustrated in Figure 2c, Su et al. [26] deposited Cu as positive
triboelectric layers on both sides of a wavy-shaped Kapton by electron beam deposition,
which formed an impact-TENG with two PTFE films for harvesting water wave energy.
Lee et al. [27] developed a fully packaged, ultrathin and no-spacer hemispheres-array
structured TENG (H-TENG) by depositing Cu on the hemispherical PDMS array film with
the function of springs to keep the upper and lower materials separated, which acts as an
active self-powered sensor array for mapping the pressure distribution generated through
the foot (Figure 2d). This deposition method can directly obtain the triboelectric layer
with micro-nano structures without affecting the elasticity of the substrate. Metals can be
deposited by PVD on flexible and non-flexible substrates with different surface structures,
which makes PVD more compatible with the structural design of MEMS-TENGs.

In addition to the preparation of metal triboelectric layers, other materials have also
been reported [28–30]. Zhang et al. [28] successfully prepared amorphous carbon (a-C)
and graphene sheet embedded carbon (GSEC) thin films with 100 nm thickness on p-type
silicon wafer by PVD in a plasma system. By comparing the electrical output performance
and maximum instantaneous energy conversion of GSEC-based TENG and a-C-based
TENG, it was found that the former was better than the latter. The cause of the high output
performance of the GSEC-based TENG was believed to be the channel and edge effects of
graphene sheets [28]. As illustrated in Figure 2e, Parajuli et al. [29] vacuum deposited a C60
thin film about 200 nm thick, on PET/ITO substrate by PVD technology and explored the
electrical output performance of triboelectric pairs composed of the C60 film and different
materials. It was determined that C60 ranked between Kapton and polyvinyl chloride
(PVC) in the triboelectric series. Moreover, a novel liquid-solid TENG based on PVD
fluorination modification of microarc oxidation (MAO) coating surface was constructed
and designed for in-situ self-powered cathodic protection and wave energy harvesting [30].
The triboelectric layer was prepared by MAO treatment on an Al substrate followed by
the deposition of 1H,1H,2H,2H-perfluorooctyltriethoxysilane using simple PVD. Although
there is a wide range of materials for TENG, up to now, there have been relatively few
materials for the preparation of triboelectric layers by PVD, which may be caused by poor
compatibility between polymer materials with excellent triboelectric properties and PVD.
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Figure 2. Triboelectric layers prepared by PVD. (a) Paper-based TENG with Cu was deposited on
a small hole array substrate as a triboelectric layer for harvesting acoustic energy [24]. Copyright
permission from ACS. (b) Al was deposited onto pinned fingers by PVD and used as a triboelectric
layer for 3D-TENG [25]. Copyright permission from Wiley-VCH. (c) Cu was deposited onto the wavy-
shaped Kapton film as a triboelectric layer by electron beam evaporation [26]. Copyright permission
from Elsevier. (d) Structure of the H-TENG based on Cu deposition on a hemispherical PDMS
array film as a positive triboelectric layer [27]. Copyright permission from Wiley-VCH. (e) Structure
diagram of the TENG on the motorized pushing tester and the VOC of four different TENGs with C60

deposited on PET/ITO as a triboelectric layer [29]. Copyright permission from Wiley-VCH.

2.2. Chemical Vapor Deposition

CVD in the broadest sense refers to forming a solid film on a substrate through the
chemical reaction of vapor-phase precursors [31]. A characteristic of CVD technology
is its outstanding throwing power to produce a coating of low porosity and uniform
thickness even on complex shaped substrates, while another important feature is the ability
to locally or selectively deposit on patterned substrates [32]. Furthermore, materials with a
wide range of physical, chemical and tribological properties can be grown under varying
experimental conditions [32]. The above-mentioned advantages of CVD are very beneficial
for the manufacturing of high-performance TENGs. Moreover, gaseous, liquid and solid
raw materials can be used to prepare triboelectric layers by CVD.

A flexible, transparent and wearable TENG was constructed based on the graphene
prepared by low-pressure CVD [33]. As shown in Figure 3a, large-area graphene was grown
on Cu foil using a mixed gas of CH4 and H2 and successfully transferred graphene onto an
EVA/PET thin film without etching the Cu foil, which is attributed to the roll-to-roll process
and penetration of hot water between the graphene and native oxide layer on copper foil.
Compared with other methods that require the etching of Cu to transfer the graphene, Cu
can be reused in this process [20,34]. As illustrated in Figure 3b, Khan et al. [35] used a
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mixture of ethanol and acetonitrile as a precursor solution to prepare carbon nanotubes on a
silicon wafer by a floating catalyst CVD method and then peeled off the PDMS cured on the
carbon nanotubes to transfer the carbon nanotubes and designed an arc-shaped TENG for self-
powered weighting using the carbon nanotubes as a negative triboelectric layer. In addition,
using MoO3 and S powder as initial raw materials, the growth of a large-sized monolayer
MoS2 on SiO2/Si substrate by CVD was reported by Kim et al. [36]. MoS2-based TENGs with
three contacts (Schottky contact, ohmic contact and p-n junction) were utilized to explore the
influence of the depletion layer on the output performance, as depicted in Figure 3c.
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Figure 3. Triboelectric layers prepared by CVD. (a) Fabrication process of the roll-to-roll production
of large-area graphene on copper by CVD and the roll-to-roll “green” transfer of graphene onto
EVA/PET film [33]. Copyright permission from Wiley-VCH. (b) Schematic diagram of carbon nan-
otubes prepared by floating catalyst CVD [35]. Copyright permission from Wiley-VCH. (c) Schematics
of different TENGs (TENG I-MV, TENG II-MV and TENG III-MV correspond to ITO, Au and PPy as
the triboelectric layers, respectively), the VOC of different TENGs based on MoS2/PS/ITO/PET as the
bottom layers, and energy band diagrams for different contact. Energy bandgap (Eg), work function
(WF), conductance-band minimum (CBM), valence-band maximum (VBM), ionization energy (IE)
and electron affinity (EA) [36]. Copyright permission from Elsevier.
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At present, CVD has been reported to prepare triboelectric polymer layers. An ultra-
flexible contact-separation mode TENG (CS-TENG) with a transmittance of 80% and a total
thickness of 5.5 µm was fabricated by CVD technology [37]. The TENG was fabricated by
stacking two graphene-covered 2 µm parylene thin films layer by layer, and the serpentine
structure was introduced as the spacer in one parylene thin film. The TENG shows
excellent mechanical properties when triggered under different frequencies of impacts, and
the response and recovery times are 20 and 50 ms, respectively. This fabrication method
provides a reference for the miniaturized, integrated and standardized manufacturing of
the TENGs. It is worth noting that parylene is a polymer material commonly used in the
fabrication process of MEMS devices [38–43]. The thickness of the triboelectric layer is
an important factor affecting the output performance of the TENG. Mariello et al. [44]
prepared a parylene C film by CVD and investigated the influence of the thickness of the
parylene C film on the output performance of a single-electrode mode TENG (S-TENG).
As the thickness of the parylene C film increases from 1 to 6 µm, the VOC of the S-TENG
decreases. Mariello et al. [44] believe that the main reason was the decrease in the capacity
of the S-TENG and the increase in rigidity of the layered structure. The ability of CVD to
effectively control the thickness of polymer films is of great significance for the fabrication
of ultra-thin TENGs and MEMS-TENGs.

2.3. Electrochemical Deposition

ECD is a technology in which positive and negative ions migrate in an electrolyte solution
under the action of an applied electric field, and then a redox reaction occurs on electrodes
to form a coating [45]. ECD is a commonly used technology in the manufacturing of MEMS
devices, which is used to prepare conductive materials, especially metal materials. Therefore,
ECD requires the preparation of thin films on conductive substrates, and pre-deposition of a
metal seed layer is usually required for insulating substrates to prepare triboelectric layers.

Triboelectric layers with micro-nano array structures can be directly prepared on a flat
substrate by ECD without further processing. As shown in Figure 4a, the vertical growth
of ZnO nanorod arrays (NRAs) on ITO/PET flexible substrate by ECD was reported by
Ko et al. [46], which formed a transparent TENG with PDMS. Compared with conventional
ITO/PET, ZnO NRAs significantly reduced the reflectance from 20% to 9.7% at a wavelength
range of 300–1100 nm. In addition, 3D polypyrrole nanoarrays (PPy NAs) prepared by
ECD were also used as a triboelectric layer combined with porous PVDF to fabricate a
wearable TENG [47]. Figure 4b demonstrates the effect of different deposition times on the
morphology of 3D PPy NAs. With the increase in deposition time, the obtained PPy NAs
appeared to coarsen and gradually grew into a 3D conical microstructure, then the diameter
size further increased, and finally, agglomeration occurred. When the deposition time was
1000 s, the effective contact area between PPy NAs and porous PVDF is the largest; thereby
the output performance of the wearable TENG was the best.

Conductive polymers can be used not only as triboelectric layers of alternating current
TENGs (AC-TENGs), but also for direct current TENGs (DC-TENGs). Meng et al. [48]
employed ECD to deposit PPy, polyethoxythiophene (PEDOT) and polyaniline (PANI) on
metal electrodes, and explored the output performance of the DC-TENGs with each of
them as the triboelectric layer, respectively. As depicted in Figure 4c, the output voltages
of the DC-TENG based on Au/PPy/Al (left), Au/PEDOT/Al (middle) and Cu/PANI/Al
(right) are 1.85, 0.2 and 0.6 V, respectively.

Similar to PVD and CVD, ECD can also deposit a triboelectric layer on micro-nano
structured substrates. Mariappan et al. [49] deposited antimonene on 3D nickel foam as
a triboelectric layer by ECD, and Raman mapping and X-ray photoelectron spectroscopy
(XPS) confirmed that the thickness of the antimonene nanostructure is less than 20 nm. It
was used in a TENG with Kapton as the negative triboelectric layer, and the VOC, ISC and
peak power are 54 V, 0.87 µA and 15 µW, respectively. Although ECD is limited in the
choice of substrates and triboelectric materials, it has shown great application prospects in
the manufacturing of DC-TENGs.
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as a triboelectric layer [46]. Copyright permission from ACS. (b) The process of constructing PPy-
PVDF TENG, and morphology of carbon paper and PPy NAs with different deposition times [47].
Copyright permission from ACS. (c) The fabrication process of the DC-TENGs, and the output
voltages of PPy, PEDOT and PANI as triboelectric layers, respectively [48]. Copyright permission
from Nature Publishing Group.

2.4. Electrospinning

Electrospinning is a fiber fabrication process in which a polymer solution or melt is
jet-spun in a strong electric field [50]. The main components of electrospinning include
a high-voltage power supply (direct current or alternating current), a syringe pump, a
spinneret and a conductive collector [51]. When energized, electrostatic repulsion between
surface charges with the same sign transforms the droplet into a Taylor cone, and then a
charged jet is ejected from the cone, and when the jet is stretched to a finer diameter, it
solidifies rapidly, resulting in solid fibers deposited in a grounded collector [52].

Electrospinning can directly prepare the triboelectric layers with surface micro-nano
structures without additional processing, which makes it popular in TENG manufactur-
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ing [53–56]. Figure 5a shows the preparation process of PVDF/Graphene nanosheet (G
NS) hybrid films through spin coating and electrospinning technology [57]. PVDF/G NF
obtained by electrospinning has an obvious fibrous structure, while the surface of the other
film is relatively flat. Compared with a PVDF/G film, the TENG composed of PVDF/G
NF and polyamide-6 (PA6) film has higher output performance, with an output voltage of
1511 V, a short-circuit current density (JSC) of 189 mA/m2, and a peak power density of
130.2 W/m2. The thickness of the triboelectric layer can be effectively controlled by setting
the spinning time, which is conducive to further improving the output performance of
the TENG. As depicted in Figure 5b, Sun et al. [58] prepared PA66/multi-walled carbon
nanotubes (MWCNTs) and PVDF nanofiber membranes by electrospinning technology,
which acts as positive and negative triboelectric layers of nanofiber-based TENG (NF-
TENG), respectively. To improve the output performance of the NF-TENG, the thickness of
PA66/MWCNTs nanofiber membrane was optimized in the range of 15 to 90 µm. When
the thickness of PA66/MWCNTs nanofiber film is 49 µm, the VOC and ISC of NF-TENG
reach their maximum. Furthermore, the spinning time will affect the light transmittance
of the triboelectric layer [59]. Therefore, the spinning time is a noteworthy factor when
fabricating a transparent TENG.

The micro-nano structures of the surface of the triboelectric layers can also be adjusted
by controlling the viscosity or concentration of the electrospinning solutions while prepar-
ing the triboelectric layers. As shown in Figure 5c, Xiong et al. [60] successfully prepared
microfibers (MFs), microspheres (MSs) and microsphere-nanofibers (MSNFs) by adjusting
the viscosity of the ether-based thermoplastic Tg-type shape memory polyurethane (SMPU)
with dimethylformamide solvent. MF mats can be produced by electrospinning in SMPU
solutions with a viscosity greater than or equal to 1973 cP, MS mats can be prepared in
polymer solutions with a viscosity that does not exceed 41.6 cP, and MSNF mats can be
obtained from polymer solutions with a viscosity of 41.6–1973 cP. The output performances
of different TENGs based on SMPU and Al were in the order of SMPU film-TENG < MFs
mat-TENG < MSs mat-TENG < MSNFs mat-TENG. Moreover, the triboelectric layers with
different surface micro-nano structures can be prepared by electrospinning with different
P(VDF-TrFE) concentrations [61]. As the concentration increased from 4 to 10 wt%, a
large number of small particles appeared in electrospinning P(VDF-TrFE) accompanied by
the formation and disappearance of the honeycomb structure, which is considered to be
caused by the weakening of the effect of surface tension. However, when the concentration
increased to 15 wt%, the typical nanofiber structure appeared, which is due to the high
viscosity of the solution and the easy evaporation of the solvent.

Both positive and negative triboelectric layers can be prepared by electrospinning
during TENG fabrication [62]. An all-electrospun flexible TENG (PE-TENG) with a multi-
layered nanofiber structure for enhanced output performance was reported [63]. Among
them, PVDF, PVA, carbon black-doped polystyrene nanoparticles (PSC) and polystyrene
(PS) were all fabricated by electrospinning, which was used as a negative triboelectric layer,
a positive triboelectric material, a conductive interface layer and an electron barrier layer,
respectively. The PSC accelerates the charge transfer rate, and the PS provides high electron
trapping holes, further increasing the charge density, thereby enhancing the output of the
PE-TENG. In addition, a variety of materials can be mixed in the electrospinning solution
to improve the properties of the triboelectric layer prepared by electrospinning [64–66].
Jiang et al. [67] reported an all-electrospun flexible TENG in which polyvinyl alcohol (PVA)
was mixed with an MXene nanosheet material with high electronegativity and conductivity
by electrospinning to prepare the nanofiber film as a negative triboelectric layer and silk
fibroin (SF) as a positive triboelectric layer. The instantaneous peak power density of the
fabricated TENG reached 1087.6 mW/m2. Therefore, electrospinning is a very competitive
technology in the preparation of high-performance triboelectric layers.
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the output performance of NF-TENG and the thickness of PA66/MWCNTs film [58]. Copyright
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the comparison of the output performance of the different SMPU films [60]. Copyright permission
from Elsevier. (d) Schematic illustration of the fabrication process of PVA/MXene and silk nanofiber
films [67]. Copyright permission from Elsevier.

2.5. Screen Printing

Screen printing is a printing technology that transfers ink onto a rigid or flexible sub-
strate to obtain a specific pattern through a printing process. It has the advantages of
easy operation, low cost, simple fabrication process and large-scale production [68,69]. It
is considered a highly competitive fabrication technology for the rapid and scalable fabri-
cation of printed microelectronics [70]. Currently, materials such as Ag, ZnO, La2O3 and
carbon nanotubes have been used to fabricate triboelectric layers by screen printing [71–73].
The desired patterned triboelectric layer can be obtained by designing the mask. To improve
the breathability of a wearable TENG, electrospinning and screen-printing, batch-scale
fabrication technologies were used to fabricate a self-powered nanofiber-based triboelectric
sensor (SNTS) for health monitoring [71]. The stacking of electrospun PVDF nanofibers
and the screen-printed silver nanoparticles ensure the gas channel throughout the device,
and the air permeability of SNTS is up to 6.16 mm/s. As depicted in Figure 6a, Paosangth-
ong et al. [74] reported a free-standing mode TENG (pnG-TENG) with alternating positive
and negative grating structures, which consists of a triboelectric layer prepared by screen
printing with an Ag ink, a positive triboelectric layer (nylon fabric) and a negative tribo-
electric layer (polyvinyl chloride heat transfer vinyl, PVC HTV) alternately. Compared
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with single nylon (pG-TENGs), single PVC HTV (nG-TENGs) and grating-free TENG,
the performance of pnG-TENG is significantly improved. The ISC and capacitor charging
voltage of the pnG-TENG increased with the number of gratings, while the VOC decreased
with the increase in the capacitance of the electrodes. Furthermore, the VOC and ISC of
the pnG-TENG are theoretically equal to the sum of the VOC and ISC of the pG-TENG and
nG-TENG. The VOC, ISC and maximum power of the pnG-TENG are 136 V, 2.68 µA, and
125 µW, respectively. The maximum power density of the pnG-TENG reached 38.8 mW/m2,
which is 6.43 and 1.94 times higher than that of the grating-free TENG and nG-TENG,
respectively. During the preparation of the triboelectric layer, the Ag layer obtained af-
ter screen printing can be heated to get a uniformly wrinkled surface, which effectively
improves the contact area [75]. Prutvi et al. [76] reported a self-powered vibration sensor
based on an S-TENG, in which a ZnO film is prepared by screen printing as a positive
triboelectric layer and an FEP film as a negative triboelectric layer. At resonance, the
peak-to-peak voltage, ISC and power density generated by the S-TENG are 25 V, 10 µA and
1.38 W/m2. The vibration sensor has an accuracy of >99% in the wide frequency range of
0–400 Hz, and the maximum sensitivity was 14 V/g. In addition, a La2O3 nanocrystal with
a large surface area was used to fabricate a triboelectric layer through a screen-printing
process [73]. The VOC and ISC of the TENG composed of La2O3 and PTFE are 120 V and
23.7 µA, respectively. With an external load resistance of 30 MΩ, the maximum power
density was up to 7.125 W/m2. To develop a stretchable self-charging power unit for
harvesting and storing energy, Yang et al. [77] fabricated a micro-supercapacitor (MSC) and
a stretchable TENG on PDMS substrates using screen printing technology; it is displayed
in Figure 6b. The maximum instantaneous power density of the TENG is 84.4 mW/m2,
and the performance did not decrease significantly when stretched up to 40%. Integrating
TENG and MSC can serve as a fully stretchable self-charging power unit (FS-SCPU) for
wearable electronics. Screen printing is an effective way for the large-scale preparation
of triboelectric layers, but the thickness of the triboelectric layers is difficult to precisely
control, which, to some extent, affects its application in specific TENG structures.
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3. Surface Processing for Micro-Nano Structures

Increasing the effective contact area of the contact electrification process by fabricating
surface micro-nano structures of the triboelectric layers is a way to enhance the output
performance of TENGs. Soft lithography, laser ablation, ICP and nanoimprinting are
commonly used technologies for fabricating surface micro-nano structures. In this section,
their applications in the TENGs manufacturing process are introduced and discussed.

3.1. Soft Lithography

Soft lithography is a micro-pattern replication technology; it includes micromolding
in capillaries, replica molding, microcontact printing, solvent-assisted micromolding and
micro-transfer molding, in which the manufacture of elastomeric stamps is an important
step. PDMS, polyimide (PI) and polyurethane are common elastomeric stamps. PDMS
is a commonly used triboelectric material, which can also be engraved with UV light to
create patterns on its surface [78,79]. To quantitatively analyze the “effective” contact area
of micro-nano structures, Yang et al. [80] fabricated the pyramid-textured surface of TENG
by technologies such as photolithography, wet etching and replication, and then adopted
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the inexact Newton method, bi-conjugate stabilized method and fast Fourier transform
(FFT) technique to quantitatively analyze the effect of texture size and applied force on
the effective contact area and VOC. Figure 7a shows the fabrication process of the textured
PDMS layer and a theoretical model of the contacting process. The four sides of the pyramid
pattern participate in contact electrification, so the effective contact area should be the sum
of the contact area of the pyramid lateral only with the texture area contact. When both the
pyramid texture and the flat regions were in contact, the effective contact area was the sum
of the contact area on the four sides of the pyramid and the flat contact area. The VOC of
TENG with a pyramid texture increases owing to the increase in the effective contact area
under smaller pressure, while under larger pressure, the VOC remains stable due to the
constant contact area. In addition, the contact area and VOC of the TENG increase with the
increase in texture pitch under smaller pressure and decreases with the increase in texture
pitch under larger pressure.
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The output performance of TENGs is different owing to the difference in the effective
contact area of different-patterned triboelectric layers during contact electrification. There-
fore, the output performance of TENGs can be further enhanced by optimizing the pattern
of the triboelectric layer surface. Three kinds of PDMS with different surface micro-nano
structures were fabricated by replication technology, and the SEM images are shown in
Figure 7b [81]. The triboelectric pairs of PET and different patterned PDMS were formed,
and the effect of surface micro-nano structures on the output performance of TENGs was
investigated. The VOC and ISC of different TENGs are in the same order, which is flat-
TENG < line-TENG < cube-TENG < pyramid-TENG. Photoresists after photolithography
can also be used as a mold to prepare a triboelectric layer with surface micro-nano struc-
tures. Figure 7c demonstrates a textile-based wearable TENG (WTNG) based on an oblique
PDMS microrod array [82]. The PDMS with an oblique microrod array was prepared by
using a photoresist as a mold. The oblique PDMS microrods were compelled to slide and
bend in one direction during the operating state, which can enhance the effective contact
area of the WTNG. The VOC, JSC and maximum peak power density generated by the
WTNG reached 1014.2 V, 3.24 µA/cm2 and 211.7 µW/cm2, respectively. Furthermore,
photoresists with micro-nano structures can be used as a substrate to directly fabricate
a patterned triboelectric layer by depositing triboelectric materials. Dhakar et al. [83]
spin-coated a layer of SU-8 (negative photoresist) with a thickness of 50 µm on a silicon
substrate, then used the SU-8 micropillars obtained after exposure as a substrate, and used
thermal evaporation to deposit Au on the substrate to directly obtain the triboelectric layer
with micropillar structures. For photolithography, various patterned triboelectric layers
can be fabricated by designing masks. After exposure and development, the substrates can
be processed by etching to obtain a specially patterned triboelectric layer or the desired
mold for structure replication, which promotes the diversification of the surface micro-nano
structures of the triboelectric layers.

3.2. Laser Ablation

Laser ablation primarily uses the photothermal effect caused by a focused laser to
remotely generate a highly controllable confined temperature field at the desired loca-
tion [84–86]. As a microfabrication technology, it has the advantages of being fast, cost-
effective, scalable and environmentally-friendly, permitting in situ processing, and precise
control of the surface structure of materials [87]. Surface micro-nano structures of the
triboelectric layers can be changed by adjusting the laser power. Xiao et al. [88] treated
PDMS surfaces with laser powers of 50, 100, 150 and 200 mW and found that the size of the
hierarchical micro-nano structures decreased with the increase in laser power, resulting in a
more intense thermal shock to the surface of PDMS. The contact angle of the PDMS surface
prepared under 200 mW laser power is in the superhydrophobic range, which is beneficial
for the construction of surface self-cleaning TENGs. Moreover, the regular surface structure
was obtained by laser ablation, and the effect of laser ablation on the surface chemical
composition of the triboelectric layer was investigated [89]. As shown in Figure 8a, when
the laser power was 29 mW, the PDMS film surface formed a regular concave hemispherical
structure, while the laser pulse over 50 mW could induce regular and deep hemispherical
concave morphology and induce irregular submorphology. Under ultrafast laser irradia-
tion, the formation of the dense electron-hole plasma destroys the chemical bonds on the
surface of PDMS to create a non-thermally molten layer, and then an amorphous process
is enabled to enclose the amorphous atomistic structure, which essentially dominates the
PDMS surface, resulting in a rough surface with irregular submorphology at the nanoscale.
XPS and Fourier-transform infrared spectroscopy (FT-IR) characterization results confirmed
that the chemical composition of PDMS did not change before and after laser irradiation.
In the range of 0–132 mW, the TENG achieved the maximum power output with a laser
power of 29 mW.

Figure 8b exhibits the formation of different micropatterns on PET substrates using
a continuous wave fiber laser with a wavelength of 1064 nm, and the effect of different
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surface structures on the TENG output performance was investigated [90]. Compared
with the pristine and other patterned TENGs, the line-patterned TENG showed better
output performance, which generated the VOC, ISC and power density of 36 V, 0.46 µA and
0.8 µW/cm2, respectively. However, the output performance of the line-patterned TENG
was reported to be smaller compared to square and hexagonal patterns [91]. Cho et al. [91]
directly sculpted different surface patterns (line, hexagon, and square) on PI films using a
direct UV laser ablation technique that allows the accurate construction of predesigned pat-
terns within one minute. The output performance order of the film-sponge coupled TENG
based on PI and SRPA (silicone rubber and non-woven polyamide sponge) is H-sq > H-
hex > H-line > L-sq > L-hex > pristine >L-line (H means a large amount, while L means
a small amount). The synergistic effect in the TENG improves the output performance
and exhibits good durability. In addition, Wang et al. [92] increased the surface roughness
by irradiating PTFE with a femtosecond laser to improve the surface charge density and
proposed a self-powered ammonia sensor based on the TENG.

The fabrication of patterns on metal surfaces by laser ablation has also been re-
ported [93]. As illustrated in Figure 8c, a micro-nano structure-enhanced TENG was
developed by Huang et al. [94], in which the laser scanning ablation technology was used
to fabricate strip-like and cone-shaped micro-nano scale structures, and the micro-bowl
structures with different sizes were fabricated on PDMS surfaces by single-pulse laser
irradiation. The power density of the TENG with the micro-bowl structure on the PDMS
surface and cone structure on the Cu surface is increased by about 21 times. Furthermore,
a Q-switched pulsed laser used to etch the surface of the aluminum film can increase
the VOC from 80 to 130 V and the ISC from 3.9 to 6.6 µA [95]. The spring-assisted TENG
generates 66 V, 5.1 µA and 350 µW of VOC, ISC and power in the vertical vibration mode of
operation at an average velocity of 10 cm/s, respectively. In addition to using laser ablation
technology to directly pattern the surface of the triboelectric layers, the substrate, after laser
ablation, can also be used as a mold to fabricate the surface micro-nano structures of the
triboelectric layer [96,97]. Despite laser ablation having many advantages, it is limited to
large-scale manufacturing.

3.3. Inductively Coupled Plasma

ICP means that the working gas is ionized under the excitation of an electric field
and generates plasma. Since the plasma contains ions, electrons, excited atoms, molecules,
free radicals, and other active particles, these active particles can react with the material
to be etched. ICP is an important dry etching technology in micro-nano manufacturing,
which can be etched onto the surface of thin films to form micro-nano structures. In the
manufacturing process of TENGs, ICP is often used to etch the surface of the triboelectric
layers to produce micro-nano structures, thus improving the output performance [98–101].
A two-step plasma etching method using O2 and Ar to increase the surface area of FTFE
from 25.78 to 48.91 µm2 without CF4 gas was reported by Prada et al. [102]. After plasma
treatment, the surface roughness of PTFE increases and exhibits superhydrophobic char-
acteristics. Compared with the pristine PTFE and other plasma processes, the TENG
constructed with O2/Ar treated PTFE as a triboelectric layer has better output performance.
During ICP treatment, different parameters will have different effects on the surface micro-
nano structures of the triboelectric layer. Cheng et al. [103] treated the PDMS surface
with different ICP powers and etching times and explored the effect of different experi-
mental conditions on the PDMS surface morphology and TENG output performance, as
shown in Figure 9a. Although the surface morphologies of PDMS treated by ICP with
different power are completely different, their average surface roughness has little change.
Compared with the PDMS treated at 60 and 120 W, the 90-W-treated PDMS has many
micropillars. The 90-W-treated PDMS (5 min) has the maximum output voltage and cur-
rent. Similarly, Wang et al. [104] also utilized different ICP power to etch the surface of
the triboelectric layers to optimize the output performance of the TENG. As depicted in
Figure 9b, with the increase in etching power from 0 to 275 W, the surface micro-nano
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structure density of the ethyl cellulose (EC) films increases gradually. Whereas, as the
etching power is further increased, the micro-nano structures are significantly reduced,
which is due to the limitation of the thermal stability of the EC films and the high etching
power to destroy the surface structure of the EC films. The EC treated with 275 W etching
power as the triboelectric layer reached the maximum for VOC, ISC and dynamic friction
factor. In addition, Zhang et al. [10] used O2, CHF3 (first step) and C4F8 (second step) as
working gases and studied the influence of different radio frequency (RF) power on the
surface micro-nano structures and chemical composition of polyethylene (PE) film under
the condition of ICP power of 100 W, and proposed a TENG (RDE-TENG) for harvesting
raindrop energy by using the PE film after plasma etching as a negative triboelectric layer.
As depicted in Figure 9c, the average thickness (T) of the ICP-treated PE film increases
first and then decreases as the RF power increases from 0 to 100 W, while the arithmetic
means roughness (Ra) changes in the opposite direction. When the RF power is 50 W, the
PE film (ICP-3) has a more nanotextured structure. The characterization results of XPS and
energy dispersive spectrometer showed that the C/F ratio of the ICP-3 film is the lowest
(the content of F is the highest), which effectively enhanced the tribo-electronegativity of
the ICP-3 film and is beneficial for enhancing the output performance of RDE-TENG.
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ICP can fabricate various micro-nano structures through masks, especially in the
manufacturing process of MEMS devices. In the ICP etching process, metal (Al, Cu, Au,
Ti, etc.) films are usually used as masks to fabricate micro-nano structures on the surface
of the triboelectric layer [105–108]. Lin et al. [109] deposited a thin Au film on the FEP
surface as a mask to fabricate nanowire structures by ICP etching and designed a rolling
TENG using the FEP as a triboelectric layer. Figure 9d shows the structure of the rolling
TENG, which consists of a set of rolled steel bars sandwiched between two FEP films.
Compared to sliding friction, the surface nanowire structures of the FEP did not change
significantly after 1000 cycles of rolling friction, which would prolong the service life of the
TENG and ensure the output performance. Interestingly, ICP can also be used to prepare a
polymer triboelectric layer while fabricating micro-nano structures [110]. As a micro-nano
fabrication technology, ICP has many reports on the fabrication of micro-nano structures
on the surface of the triboelectric layer, which is a promising technology for manufacturing
MEMS-TENGs.
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3.4. Nanoimprint

Nanoimprint technology is a replication process for micro-nano structures first pro-
posed by Chou’s group [111], which has the advantages of high resolution, low cost and
high throughput [112]. A hard mold containing nanoscale surface relief features is pressed
into the polymer material and cast onto the substrate under controlled pressure and temper-
ature, thereby creating a thickness contrast in the polymer material [113]. As illustrated in
Figure 10a, Yoo et al. [114] reported a thermal nanoimprint and simultaneous electric poling
approach to enhance the output performance of the TENG with a ferroelectric thermoplastic
polymer and used it to harvest wind energy. Specifically, the polished aluminum substrate
was immersed in 0.1 M phosphoric acids, anodized at a constant voltage of 187 V to prepare
anodic aluminum oxide (AAO) nanostamps with regularly arranged nanopore arrays and
used as a mold to fabricate micro-nano structures on P(VDF-TrFE) film. Figure 10b demon-
strates the SEM of the porous Al2O3 as a mold and the PDMS nanopillar arrays obtained
after nanoimprinting [115]. The high-resolution micro-nano structures increase the surface
roughness and effective contact area of the PDMS triboelectric layer, thereby enhancing the
output performance of the TENG. Moreover, Choi et al. [116] utilized AAO as a mold to
fabricate micro-nano structures on a thermoplastic PET surface by thermal nanoimprint,
which is displayed in Figure 10c. Compared with the TENG without micro-nano structures,
the solid–solid and solid–liquid contact TENGs based on the patterned PET exhibit higher
output performance.

Generally, the materials used as molds are subjected to high temperature and high pres-
sure without changing their properties. Silicon substrates are common molds, which can
obtain various patterns for nanoimprinting through photolithography. Mahmud et al. [117]
successfully replicated nanopatterns of lines, pillars and hexagonal cones on PMMA and
PDMS layers by thermal nanoimprinting with Si as the master stamp. The output perfor-
mance of the TENG with a hexagonal cone pattern is better than other patterns, and its
voltage, current density and maximum output power are 3, 6 and 22 times higher than a
TENG without a pattern, respectively. The output performance of the patterned TENG can
be further improved by optimizing the height, width and spacing of the patterns. The pres-
sure applied during the nanoimprint process would affect the height of the surface pattern
of the triboelectric layer [118]. Figure 10d reveals the influence of imprint pressure on the
TENG output performance during the PTFE imprint process. When the pressure is 5 MPa,
the VOC, ISC and charge density of TENG all reached maximum values. Kim et al. [119]
utilized nanoimprinting to fabricate a defect-free and large-area nanopatterned TENG, and
studied the effect of the length and space of the surface line structures of the triboelectric
layer on the output performance of the TENG in detail. As illustrated in Figure 10e, when
the line length and space are both 200 nm, the output voltage of the TENG reaches its
maximum, which is consistent with the results of the finite element simulation. What is
more, the output voltage of the TENG can be further improved by patterning the surface
of another triboelectric layer. It is worth noting that nanoimprint technology can also
fabricate micro-nano structures on metal surfaces. The femtosecond laser pulses were used
to irradiate steel plates to fabricate stamps with periodic line nanostructures and conical
microstructures, respectively [120]. Using electropolished aluminum disks as substrates,
microstructured and line nanostructured Al was successfully fabricated by nanoimprint
technology. Compared with TENGs with flat and microstructures, the TENG with line
nanostructures has larger VOC and ISC. The above-mentioned features make nanoimprint
technology have great application prospects for fabricating micro-nano structures on the
surface of the triboelectric layers.
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Figure 10. Surface micro-nano structures fabricated by nanoimprinting. (a) Fabrication process of the
NP-TENG based on nanoimprinting [114]. Copyright permission from Elsevier. (b) SEM images of the
porous Al2O3 template (left) and PDMS nanopillar arrays (right) [115]. Copyright permission from
AIP. (c) Schematics of the fabrication process of the nano-PATERN based on thermal nanoimprint and
the experimental results of energy harvesting via solid–solid and solid–water contact of TENGs [116].
Copyright permission from Wiley-VCH. (d) The VOC, ISC and charge density of the TENGs based on
various PTFE polymers prepared at different imprint pressures [118]. Copyright permission from
ACS. (e) Results of finite element simulations and parameter optimization of line nanopatterned
PFPE films [119]. Copyright permission from Wiley-VCH.

4. MEMS Fabrication for TENG Devices

MEMS is an integrated miniature device or system involving electrical and mechanical
components, developed using integrated circuit-compatible batch processing techniques,
ranging in size from microns to millimeters [121]. The system can control, actuate and
sense at the microscopic scale and work individually or in arrays to make an impact
at the macroscopic scale [122]. MEMS has been used in various electronics due to its
advantages of small size, low cost, low power consumption and easy integration. MEMS
incorporates technologies such as photolithography, PVD, CVD, ICP, UV-LIGA (Ultra-
Violet Lithographie, Galvanoformung, Abformung), silicon micromachining, non-silicon
micromachining and precision machining. This section focuses on the use of MEMS
fabrication technology to fabricate TENGs, and the application and progress of MEMS
fabrication technology in TENG devices are introduced, analyzed and discussed in detail.

4.1. MEMS Acoustic Sensors

The application of TENGs in microelectronics is facing the challenges of miniatur-
ization and integration. MEMS fabrication technology offers ideas for addressing these
challenges. Silicon is an ideal material for MEMS fabrication; it does not undergo plas-
tic deformation under normal conditions, is elastic and inert enough to have no fatigue
or minimal defects in device operation, and anisotropic properties can be used in both
device fabrication and operation [123]. At present, the silicon-based MEMS manufactur-
ing process is quite mature, and it has been used to manufacture various MEMS devices.
Therefore, silicon-based MEMS fabrication technology plays an important role in micro-
electronics manufacturing.
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There have been many reports on the application of silicon-based MEMS fabrication
technology to MEMS acoustic sensors [124–126]. MEMS-TENG for acoustic sensors can
be manufactured by silicon-based MEMS fabrication technology. Figure 11a shows the
fabrication process and structure of a micro-triboelectric ultrasonic device (µTUD) [22].
To efficiently harvest micro-amplitude and high-frequency mechanical energy, arrayed
cavities with a depth of 90 ± 10 nm were fabricated on a silicon wafer with 300 nm thick
silicon oxide grown on the surface using photolithography and reactive-ion etching (RIE)
technologies. Subsequently, the wafer was fusion bonded with a Silicon-On-Insulator (SOI)
wafer at 480 ◦C under a vacuum of 3 Kg/cm2 and then annealed at 1100 ◦C to make the
wafer bonding stronger and obtain a vacuum chamber to eliminate the influence of the
ambient environment. After photolithography, etching and electron beam deposition, the
µTUD shown in Figure 11b was obtained. Under the excitation of the incident ultrasonic
wave, the suspended silicon film in the µTUD cavity vibrates and contacts the silicon oxide
at the bottom, and then the silicon and silicon oxide generates equal negative and positive
charges, respectively. The µTUD can be used for signal communication by generating
electrical output based on ultrasonic wave. As shown in Figure 11c, in the oscilloscope, the
signal from the signal generator was given by CH1, and the recovery signal from µTUD
was obtained by CH2. Figure 11c shows the CH1 and CH2 signals given by the 20 and
40-cycle sinusoidal pulse signals input to a commercial ultrasonic (US) transducer. The
transmitted signal was modulated by amplitude shift keying, and the µTUD can realize
signal communication by receiving the signal through the ultrasonic link. Silicon-based
MEMS fabrication technology provides a reference for the development of TENG devices.
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Figure 11. Fabrication, structure and application of the µTUD. (a) Fabrication process and dimension
structures of the µTUD. (b) Structure diagram and working principle of the µTUD. (c) Schematic
diagram of the experimental setup, the input signal to the US transducer and the received signal of
the µTUD [22]. Copyright permission from Nature Publishing Group.
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4.2. MEMS Vibration Sensors

The output performance of TENG is also a key factor restricting its application in micro-
electronics. To obtain ideal output performance, the selection of triboelectric materials is
crucial. According to the triboelectric series reported by Zou et al. [127], silicon is not an
ideal material for obtaining high-output performance. In addition, the development of
flexible TENGs through MEMS fabrication technology can further expand the application
of TENGs in microelectronics. Polymers such as PDMS, PVDF, PTFE, PI and nylon are
commonly used as triboelectric materials, which have a high surface charge density when
contact electrification occurs. These materials can be utilized to fabricate MEMS-TENGs by
surface micromachining. Hamid et al. [128] reported a novel optimization design method
for low-mass and small MEMS scale (5 mm × 3 mm × 8.5 µm) TENG (MEMS-TENG).
MEMS-TENG is composed of Al and PTFE to harvest high-frequency mechanical vibration
energy. The device structure was dynamically optimized through the geometric model
to maximize power density and output power. The simulation results show that under
the conditions of an operating frequency of 800 Hz and an acceleration of 9.8 ms−2, the
average power, volume, and surface average power densities generated by the device
are 196.91 nW, 1544.4 W/m3, and 13.1 mW/m2, respectively. On this basis, a MEMS-
TENG (5 mm × 3 mm × 15.1 µm) and sensor with high vibration frequency and wide
frequency were fabricated by UV-LIGA [129]. First, the Al layer was sputtered on the Si3N4
insulation layer deposited on the surface of the silicon wafer as the bottom electrode, and
then PTFE was coated to prepare the bottom triboelectric layer. Subsequently, MEMS-
TENG was obtained through a series of processes, such as RIE, photolithography and
electroplating. MEMS-TENG has a wide working-frequency bandwidth of 920 Hz and
a sensitivity of 43 mV/g as an accelerometer, as depicted in Figure 12a. In addition, a
smaller MEMS-TENG (1.5 mm × 1.5 mm × 1.1 µm) was developed by Alzgool et al. [130],
and its fabrication process is displayed in Figure 12b. Aluminum nitride (AlN) as an etch
stop layer was first deposited on the silicon wafer, and then through a series of steps
such as sputtering, photolithography, etching, spin coating and deposition, MEMS-TENG,
as shown in Figure 12c, was finally obtained. Under the condition of external shock,
the Al microplate suspended in MEMS-TENG was impacted on the PI, and the contact
electrification occurred, with a positive charge on Al and a negative charge on the PI.
MEMS-TENG was connected to a cantilever MEMS switch, and the voltage generated by
MEMS-TENG was combined with a bias DC voltage to drive a MEMS switch. MEMS-TENG
was used for zero-power detection with a detection range of 1.8 to 2.4 g and a sensitivity
of 1.5 V/g at a frequency of 12 kHz. The above reports on MEMS-TENGs promote the
application of non-silicon materials in TENG devices.

The structural parameters and output performance of different TENGs are shown
in Table 1. Compared with other TENGs, the output performance of MEMS-TENGs is
lower. For MEMS-TENGs, their size is much smaller than other TENGs. In addition, the
compatibility between the triboelectric materials and MEMS fabrication technology restricts
the selection of materials for MEMS-TENGs, which is also an important factor. As shown in
Table 1, different micro-nano manufacturing technologies have different characteristics and
advantages. The output performance of MEMS-TENGs can be improved by optimizing the
thickness of the triboelectric layers, and triboelectric materials through technologies such as
PVD, CVD, ECD and electrospinning. Moreover, micro-nano structures can be fabricated
on the surface of the triboelectric layers by laser ablation, ICP, nanoimprint and other
technologies to improve the output performance of MEMS-TENGs. These technologies are
conducive to the further development and application of high-performance MEMS-TENGs.
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Table 1. Summary of advanced micro-nano manufacturing technologies for TENGs.

TENGs Technologies Materials Film Thickness/Micro-Nano
Structures/TENG Size Output Performance Ref.

3D-TENG PVD Al 100 nm VOC = 303 V, ISC = 1140 µA, 104.6 W/m2 [25]
GSEC-based TENG PVD GSEC 100 nm, 25 mm × 25 mm VOC = 13.5 V, JSC = 0.35 µA/cm2, 6.3 W/m2 [28]
C60-based TENG PVD C60 200 nm VOC = 1600 V, ISC = 100 µA, 38 W/m2 [29]
Graphene-based TENG CVD Graphene 30 mm × 40 mm VOC = 22 V, ISC = 0.9 µA [33]
CS-TENG CVD Parylene 2 µm, 20 mm × 20 mm VOC = 3 V [37]
S-TENG CVD Parylene C 1 µm, 20 mm × 20 mm VOC = 1.6 V, ISC = 0.15 µA, 0.00224 W/m2 [44]
ZnO-based TENG ECD ZnO 360 nm, 20 mm × 20 mm VOC = 5.34 V, ISC = 0.1814 µA [46]
PPy-PVDF TENG ECD PPy 20 mm × 20 mm VOC = 20.2 V, ISC = 1.3 µA, 0.0124 W/m2 [47]
Sb-TENG ECD Antimonene 20 nm VOC = 54 V, ISC = 0.87 µA, 0.0685 W/m2 [49]
PVDF/G-PA6 TENG Electrospinning PVDF/Graphene 50 µm, 20 mm × 20 mm VOC = 1511 V, JSC = 18.9 µA/cm2, 130.2 W/m2 [57]
NF-TENG Electrospinning PA66/MWCNTs 49 µm, 20 mm × 20 mm VOC = 142 V, ISC = 15.5 µA, 1.30 W/m2 [58]
MSNFs mat-TENG Electrospinning SMPU 40 µm VOC = 320 V, JSC = 4 µA/cm2 [60]
La2O3-TENG Screen printing La2O3 10 µm, 25 mm × 25 mm VOC = 120 V, ISC = 23.7 µA, 7.125 W/m2 [73]
pnG-TENG Screen printing Ag VOC = 136 V, ISC = 2.68 µA, 0.0388 W/m2 [74]
S-TENG Screen printing ZnO 7 µm VOC = 25 V, ISC = 10 µA, 1.38 W/m2 [76]
Pyramid-TENG Soft lithography PDMS Pyramid, 45 mm × 12 mm × 460 µm VOC = 18 V, ISC = 0.7 µA [81]
WTNG Soft lithography PDMS Oblique microrod VOC = 1014.2 V, JSC =3.24 µA/cm2, 2.117 W/m2 [82]
TEH Soft lithography Au Micropillar 0.0023 W/m2 [83]
Line-patterned TENG Laser ablation PET Line VOC = 36 V, ISC = 0.46 µA, 0.008 W/m2 [90]
Cu-PDMS TENG Laser ablation Cu, PDMS Micro/nano-cone, micro-bowl VOC = 22.04 V, 0.21 W/m2 [94]
SA-TENG Laser ablation Al Groove, 50 mm × 50 mm VOC = 66 V, ISC = 5.1 µA, 350 µW [95]
PTFE-based TENG ICP PTFE Nanowire VOC = 110.3 V, ISC = 8.8 µA, 9.9 W/m2 [102]
PDMS-based TENG ICP PDMS Micro-pillar, 10 mm × 10 mm VOC = 72 V, ISC = 8.3 µA [103]
EC-based TENG ICP EC Micro-patterns, 20 mm × 30 mm VOC = 245 V, ISC = 50 µA [104]
S-TENG Nanoimprint PDMS Nanopillar arrays VOC = 160 V, ISC = 3 µA, 0.4238 W/m2 [115]

PDMS-PMMA TENG Nanoimprint PDMS, PMMA Hexagonal, 40 mm × 40 mm VOC = 451.75 V, JSC = 237.28 µA/m2,
0.10719 W/m2 [117]

PTFE-based TENG Nanoimprint PTFE Microgroove, 50 mm × 50 mm VOC = 625 V, ISC = 50.5 µA, 252 W/m2 [118]
µTUD MEMS fabrication Si, SiO2 VOC = 0.0168 V, 0.297 µW [22]
MEMS-TENG MEMS fabrication Al, PTFE 5 mm × 3 mm × 8.5 µm VOC = 26.9 V, ISC = 0.56 µA, 0.0131 W/m2 [128]
MEMS-TENG MEMS fabrication Al, PTFE 5 mm × 3 mm × 15.1 µm 0.0398 W/m2 [129]
MEMS-TENG MEMS fabrication Al, PI 1.5 mm × 1.5 mm × 1.1 µm VOC = 0.4 V [130]
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5. Conclusions and Perspectives

This review systematically summarizes the advanced micro-nano manufacturing
technologies for TENGs, including the film preparation for triboelectric layers, surface
processing for micro-nano structures and MEMS fabrication for TENG devices. First, CVD,
PVD, ECD, electrospinning and screen printing can be used to prepare triboelectric layers,
in which PVD, CVD and ECD can deposit films on different shapes and patterned sub-
strates and can precisely control the thickness of the films. The triboelectric layers with
surface micro-nano structures can be prepared by ECD and electrospinning without further
processing. The surface micro-nano structures of the films can be controlled by adjusting
the experimental parameters. Screen printing can produce a triboelectric layer on a large
scale. Secondly, the micro-nano structures of the triboelectric layers are fabricated by soft
lithography, laser ablation, ICP and nanoimprint. In the surface processing of the triboelec-
tric layer, various micro-nano structures can be obtained by photolithography, etching and
replication. Laser ablation and ICP can directly treat the surface of the triboelectric layer
to create micro-nano structures, which can be adjusted by experimental parameters. In
addition, nanoimprint can create a specific pattern on the surface of the triboelectric layer
by designing the structure of the nanostamp. These micro-nano manufacturing technolo-
gies can further improve the output performance of TENGs. Finally, MEMS fabrication
incorporates various technologies such as the photolithography, PVD, CVD, ECD and ICP,
to fabricate MEMS-TENGs, which can effectively control the structures of the TENGs at
micro-nano scales, for example, the µTUD cavity depth. These technologies facilitate the
miniaturization, integration and standardized manufacturing of TENGs, thereby promoting
the application of TENGs in microelectronics (Figure 13).
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Although the advanced micro-nano manufacturing technologies for TENGs have
made great progress, the selection of materials and the fabrication of micro-nano structures
are facing significant challenges in the TENG manufacturing process. The following are the
challenges of the advanced micro-nano manufacturing technologies for TENGs, as well as
the prospects for future work.

(i) Precise control of the thickness of the triboelectric layer is of great significance for
the manufacturing of ultra-thin TENGs and MEMS-TENGs. However, PVD, CVD and
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ECD are greatly limited in the choice of triboelectric polymers, especially those polymer
materials with excellent performance, such as PDMS, nylon and PVDF. These polymers
require spin coating, electrospinning, screen printing and other methods to prepare the
triboelectric layers. Although electrospinning can directly prepare triboelectric layers with
surface micro-nano structures, the efficiency is low. Moreover, screen printing can produce
triboelectric layers on a large scale, but it is not conducive to controlling the thickness of
the triboelectric layers. Thus, the fabrication of triboelectric polymer films throughPVD,
CVD and ECD needs further exploration. For instance, PI film can be prepared via CVD.

(ii) In terms of the fabrication of surface micro-nano structures, soft lithography
and nanoimprint need to ensure that the mold does not interact with the triboelectric
material in the process of fabricating surface micro-nano structures to avoid damage to
the micro-nano structures on the surface of the triboelectric layer during the demolding
process. Meanwhile, the mold is easy to contaminate and has a short lifetime. These
shortcomings limit some triboelectric materials from fabricating micro-nano structures by
these two methods. Coating the mold with a specific material to eliminate the interaction
between the mold and the triboelectric material or to develop a suitable mold is a feasible
solution. Furthermore, triboelectric materials directly used in photolithography need to be
further explored. Laser ablation can directly create micro-nano structures on the surface
of polymers or even metal triboelectric layers, but this technology is not conducive to
large-scale manufacturing. ICP can also produce micro-nano structures on the surface of
the triboelectric layer, but further design of the mask is needed to produce the desired
pattern. Therefore, further exploration to reduce mold contamination and prolong service
life is a solution for efficient and large-scale fabrication of surface micro-nano structures.

(iii) Although the silicon-based MEMS fabrication technology is very mature, AC-
TENGs with silicon as the triboelectric layer does not have obvious advantages in terms
of output performance. Therefore, exploring non-silicon materials to fabricate the TENGs
using MEMS fabrication technology would be beneficial for enhancing the output perfor-
mance of MEMS-TENGs. Non-silicon materials include metals, oxides, polymers, carbon-
based materials and composites, which make the MEMS fabrication technology have more
choices for triboelectric materials. However, the compatibility between triboelectric materi-
als and MEMS fabrication technology is a noteworthy issue when designing MEMS-TENGs.
With the development of DC-TENGs, triboelectric materials, such as metals, polymers,
silicon, gallium nitride, etc., can be used to fabricate MEMS-DC-TENGs through MEMS
fabrication technology. Furthermore, designing MEMS-TENGs with broadband frequency
characteristics is an important factor in broadening its applications. In the application of
MEMS-TENGs, power management also needs further research.

In conclusion, although there are still some challenges for advanced micro-nano man-
ufacturing technologies of TENGs, it would be further improved with the development
of multi-disciplines such as materials science, microelectronics, physics and chemistry.
Advanced micro-nano manufacturing technologies are highly expected to realize the stan-
dardized manufacturing of TENGs.
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